Large scale WSNs node localization based on salp swarm algorithm using density peak clustering strategy
To improve the node localization accuracy of large-scale wireless sensor networks (WSNs), a node localization method for WSNs using density peak clustering to optimize the Salp Swarm Algorithm is proposed. Firstly, the block-based non-ranging WSNs node localization model is established, adaptively d...
Gespeichert in:
| Veröffentlicht in: | Wireless networks Jg. 31; H. 7; S. 4451 - 4463 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.10.2025
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1022-0038, 1572-8196 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | To improve the node localization accuracy of large-scale wireless sensor networks (WSNs), a node localization method for WSNs using density peak clustering to optimize the Salp Swarm Algorithm is proposed. Firstly, the block-based non-ranging WSNs node localization model is established, adaptively determines the number of WSNs subregion divisions, and the location problem is abstracted as the optimal extreme value solution problem. Secondly, the improved density peak clustering (IDPC) algorithm and the improved salp swarm algorithm (ISSA) algorithm are designed for adaptive determination of hyper-parameters by defining the disparity truncation distance judgment index and two-stage approximation computation to improve the effectiveness of IDPC clustering. The IDPC is used to cluster the spatial characteristics of bottlenose sea squirt populations, adaptively determine leader and follower groups, and redefine the individual evolutionary approach to improve the global convergence accuracy of ISSA. Finally, ISSA is employed to solve the optimal extreme value problem of node location. The simulation results show that compared with the existing node location algorithm, the localization errors of the proposed method are reduced by about 65.83% and 23.93%. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1022-0038 1572-8196 |
| DOI: | 10.1007/s11276-025-04011-4 |