Symplectic Discretization of Hamiltonian Integral Equations with Applications to Nonlinear Wave Dynamics and Relativistic Orbits

We introduce a novel class of symplectic numerical schemes for solving nonlinear Volterra-type integral equations that arise from Hamiltonian systems subject to non-local interactions. The continuous integral equation is characterized by a Hamiltonian function H ( y ) and a kernel K ( t ,  s ,  y )...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of nonlinear science Ročník 35; číslo 6; s. 115
Hlavní autor: Cheng, Pengcheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.12.2025
Springer Nature B.V
Témata:
ISSN:0938-8974, 1432-1467
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We introduce a novel class of symplectic numerical schemes for solving nonlinear Volterra-type integral equations that arise from Hamiltonian systems subject to non-local interactions. The continuous integral equation is characterized by a Hamiltonian function H ( y ) and a kernel K ( t ,  s ,  y ) that satisfies a specific symplectic symmetry condition, K ( t , s , y ) = J ∂ S ( t , s , y ) ∂ y , ensuring the preservation of the phase space symplectic structure. Building upon this continuous framework, we develop high-order implicit symplectic integrators by discretizing the integral equation using an s -stage Gauss–Legendre collocation method. A rigorous proof demonstrates that the proposed numerical schemes are symplectic, i.e., they preserve the discrete symplectic form d y n + 1 ∧ J d y n + 1 = d y n ∧ J d y n . Furthermore, we establish the superconvergence property of these schemes, showing a global error of O ( h 2 s ) . For practical implementation, the resulting nonlinear algebraic equations at each time step are efficiently solved using a Newton–Krylov iterative method, and an adaptive time-stepping strategy based on embedded symplectic pairs is employed to enhance computational efficiency while maintaining numerical accuracy and symplectic fidelity. The superior long-term performance and structural preservation capabilities of the proposed methods are demonstrated through numerical experiments on challenging problems, including the soliton dynamics of the nonlinear Schrödinger equation and a model of relativistic orbital mechanics inspired by the Einstein–Infeld–Hoffmann equations. Comparisons with standard non-symplectic methods highlight the significant advantages of our symplectic approach in terms of energy conservation and phase space trajectory accuracy over extended simulation times.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0938-8974
1432-1467
DOI:10.1007/s00332-025-10215-x