On Nonlinear Hahn Difference Equations with Maxima On Nonlinear Hahn Difference Equations with Maxima

In this paper, we study the first and second order nonlinear Hahn difference equations with maxima. Firstly, we prove the existence and uniqueness of the solutions to the nonlinear Hahn difference equations with the help of theorem of step by step contraction. Then, we obtain a comparison theorem by...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Qualitative theory of dynamical systems Ročník 24; číslo 4; s. 154
Hlavní autoři: Zhou, Longyun, Wang, JinRong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.08.2025
Springer Nature B.V
Témata:
ISSN:1575-5460, 1662-3592
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we study the first and second order nonlinear Hahn difference equations with maxima. Firstly, we prove the existence and uniqueness of the solutions to the nonlinear Hahn difference equations with the help of theorem of step by step contraction. Then, we obtain a comparison theorem by constructing successive approximation sequences in combination with the weakly Picard operator (WPO). Further, the Ulam’s type stability of the nonlinear Hahn difference equations with maxima are given. Finally, two examples are given to illustrate the theoretical results.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1575-5460
1662-3592
DOI:10.1007/s12346-025-01315-w