On Nonlinear Hahn Difference Equations with Maxima On Nonlinear Hahn Difference Equations with Maxima
In this paper, we study the first and second order nonlinear Hahn difference equations with maxima. Firstly, we prove the existence and uniqueness of the solutions to the nonlinear Hahn difference equations with the help of theorem of step by step contraction. Then, we obtain a comparison theorem by...
Uloženo v:
| Vydáno v: | Qualitative theory of dynamical systems Ročník 24; číslo 4; s. 154 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.08.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 1575-5460, 1662-3592 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we study the first and second order nonlinear Hahn difference equations with maxima. Firstly, we prove the existence and uniqueness of the solutions to the nonlinear Hahn difference equations with the help of theorem of step by step contraction. Then, we obtain a comparison theorem by constructing successive approximation sequences in combination with the weakly Picard operator (WPO). Further, the Ulam’s type stability of the nonlinear Hahn difference equations with maxima are given. Finally, two examples are given to illustrate the theoretical results. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1575-5460 1662-3592 |
| DOI: | 10.1007/s12346-025-01315-w |