Multi Kernel Polar Code using Nut cracker optimization based GAN for Successive Cancellation Decoder to attain low latency and high efficiency
Multi-Kernel Polar Code is a type of polar code that utilizes multiple kernels for information encoding and decoding. The selection and optimization of multiple kernels can be challenging. Previous research has demonstrated that existing deep learning models may achieve high decoding accuracy and sp...
Gespeichert in:
| Veröffentlicht in: | Evolving systems Jg. 16; H. 3; S. 93 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2025
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1868-6478, 1868-6486 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Multi-Kernel Polar Code is a type of polar code that utilizes multiple kernels for information encoding and decoding. The selection and optimization of multiple kernels can be challenging. Previous research has demonstrated that existing deep learning models may achieve high decoding accuracy and speed for polar code when the block length can be very tiny. Its speed, however, dramatically drops with longer codes because of the huge network structure. A successful Generative Artificial Intelligence (GEN AI) is developed in this work for decoding polar codes. The input sequence has been encoded using multiple kernel polar codes, giving a polar encoded output. After encoding the message using the multi-kernel polar encoder, the resulting bits are mapped to binary phase-shift keying (BPSK) symbols prior to transmission. The Gaussian noise term with zero mean and variance in additive white Gaussian noise (AWGN) is used to receive the signal. The improved Generative Adversarial Network (GAN) improves the decoder performance under different channel conditions after the signals have been transmitted via the channel. Computation is employed to determine the approximate reliability of the bit channel. The proposed approach achieves 95.30% of accuracy, 4.70% error, 91.70% precision and 96.80% specificity. Thus, the designed optimized GAN model is the best option for successive cancellation in the decoder.
Graphical abstract |
|---|---|
| AbstractList | Multi-Kernel Polar Code is a type of polar code that utilizes multiple kernels for information encoding and decoding. The selection and optimization of multiple kernels can be challenging. Previous research has demonstrated that existing deep learning models may achieve high decoding accuracy and speed for polar code when the block length can be very tiny. Its speed, however, dramatically drops with longer codes because of the huge network structure. A successful Generative Artificial Intelligence (GEN AI) is developed in this work for decoding polar codes. The input sequence has been encoded using multiple kernel polar codes, giving a polar encoded output. After encoding the message using the multi-kernel polar encoder, the resulting bits are mapped to binary phase-shift keying (BPSK) symbols prior to transmission. The Gaussian noise term with zero mean and variance in additive white Gaussian noise (AWGN) is used to receive the signal. The improved Generative Adversarial Network (GAN) improves the decoder performance under different channel conditions after the signals have been transmitted via the channel. Computation is employed to determine the approximate reliability of the bit channel. The proposed approach achieves 95.30% of accuracy, 4.70% error, 91.70% precision and 96.80% specificity. Thus, the designed optimized GAN model is the best option for successive cancellation in the decoder.
Graphical abstract Multi-Kernel Polar Code is a type of polar code that utilizes multiple kernels for information encoding and decoding. The selection and optimization of multiple kernels can be challenging. Previous research has demonstrated that existing deep learning models may achieve high decoding accuracy and speed for polar code when the block length can be very tiny. Its speed, however, dramatically drops with longer codes because of the huge network structure. A successful Generative Artificial Intelligence (GEN AI) is developed in this work for decoding polar codes. The input sequence has been encoded using multiple kernel polar codes, giving a polar encoded output. After encoding the message using the multi-kernel polar encoder, the resulting bits are mapped to binary phase-shift keying (BPSK) symbols prior to transmission. The Gaussian noise term with zero mean and variance in additive white Gaussian noise (AWGN) is used to receive the signal. The improved Generative Adversarial Network (GAN) improves the decoder performance under different channel conditions after the signals have been transmitted via the channel. Computation is employed to determine the approximate reliability of the bit channel. The proposed approach achieves 95.30% of accuracy, 4.70% error, 91.70% precision and 96.80% specificity. Thus, the designed optimized GAN model is the best option for successive cancellation in the decoder. |
| ArticleNumber | 93 |
| Author | Pushpa, B. Yamini Panda, Sunita |
| Author_xml | – sequence: 1 givenname: B. Yamini surname: Pushpa fullname: Pushpa, B. Yamini email: yamini.pushpa@gmail.com, 321960404504@gitam.in organization: Department of ECE, GITAM University – sequence: 2 givenname: Sunita surname: Panda fullname: Panda, Sunita organization: Department of ECE, GITAM University |
| BookMark | eNp9kM1OFjEUhhsCCQjcgKuTsB7t37SdJflQMCCQgOum9OejMLSfbQeDF-E1OzhEd65Oc_q870med2g75eQRek_wB4Kx_FgJ7RnuMO07PEhKu2EL7RElVCe4Ett_31LtosNaHzDGlHCMudxDv75OY4tw7kvyI1zn0RRYZedhqjGt4XJqYIuxj75A3rT4FH-aFnOCO1O9g9PjSwi5wM1kra81PntYmWT9OC7UibdzV4GWwbRmYoIx_4D50yf7AiY5uI_re_AhRBtfdwdoJ5ix-sO3uY--ff50uzrrLq5Ov6yOLzpLJW0dE4IxybkbpCe9U4MwoRdWDaS3PeUOqyADplw6jiUzZHBCht6R2cFwp1Rg--ho6d2U_H3ytemHPJU0n9SMMtoLygWZKbpQtuRaiw96U-KTKS-aYP2qXi_q9axe_1GvhznEllCd4bT25V_1f1K_ASI7iIY |
| Cites_doi | 10.1109/ACCESS.2024.3364384 10.1007/s11831-022-09800-0 10.1109/LWC.2024.3422877 10.1109/JETCAS.2020.2995962 10.1109/TCSI.2023.3311514 10.1109/ICCW.2017.7962750 10.1007/s11277-021-09432-w 10.1109/TCSI.2022.3230589 10.1016/j.aeue.2024.155220 10.1109/TCOMM.2023.3285773 10.1109/ACCESS.2022.3219090 10.1109/TCOMM.2020.3006212 10.1016/j.micpro.2022.104552 10.1016/j.microrel.2023.115234 10.1109/TCOMM.2019.2908870 10.1016/j.asoc.2020.106742 10.1109/ACCESS.2022.3221742 10.3390/fi15080260 10.1002/dac.5855 10.1109/ACCESS.2024.3416826 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s12530-025-09722-9 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1868-6486 |
| ExternalDocumentID | 10_1007_s12530_025_09722_9 |
| GroupedDBID | 06D 0R~ 0VY 1N0 203 29~ 2JY 30V 4.4 406 408 409 40D 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATLR AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAZMS ABAKF ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHQN ABJNI ABJOX ABKCH ABMQK ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMLO ACOKC ACPIV ACSTC ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ATHPR AUKKA AXYYD AYFIA AYJHY BGNMA CSCUP DNIVK DPUIP EBLON EBS EIOEI ESBYG FERAY FFXSO FIGPU FNLPD FRRFC FYJPI GGCAI GGRSB GJIRD GQ7 GQ8 HG6 HMJXF HQYDN HRMNR I0C IKXTQ IWAJR IXD IZIGR J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O93 O9J P9P PT4 QOS R89 R9I RLLFE ROL RSV S1Z S27 S3B SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VFIZW W48 WK8 Z45 ZMTXR ~A9 2VQ AAAVM AARHV AAYTO AAYXX ABULA AEBTG AFFHD AFKRA AFLOW AHSBF AJBLW ARAPS BENPR BGLVJ CCPQU CITATION EJD FINBP FSGXE H13 HCIFZ HF~ HZ~ K7- O9- PHGZM PHGZT PQGLB JQ2 |
| ID | FETCH-LOGICAL-c272t-36633744d97e15d896af56c8915c524d08f7f0247d4073a19d67f5d16479b88f3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001536185600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1868-6478 |
| IngestDate | Tue Dec 02 16:05:25 EST 2025 Sat Nov 29 07:05:18 EST 2025 Sun Oct 19 01:43:16 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | GEN AI Multi Kernel Polar Code Decoder Transmission matrix Encoder Successive cancellation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c272t-36633744d97e15d896af56c8915c524d08f7f0247d4073a19d67f5d16479b88f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3232562461 |
| PQPubID | 2043919 |
| ParticipantIDs | proquest_journals_3232562461 crossref_primary_10_1007_s12530_025_09722_9 springer_journals_10_1007_s12530_025_09722_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-01 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | An Interdisciplinary Journal for Advanced Science and Technology |
| PublicationTitle | Evolving systems |
| PublicationTitleAbbrev | Evolving Systems |
| PublicationYear | 2025 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | M Meenalakshmi (9722_CR18) 2024 P Qi (9722_CR20) 2024 MH Ali (9722_CR3) 2024; 17 Y Ali (9722_CR2) 2024 H Hematkhah (9722_CR14) 2022; 92 A Ahmad (9722_CR1) 2022; 10 SJSA Fathima (9722_CR17) 2022; 124 P Trifonov (9722_CR25) 2023; 71 D Ezzat (9722_CR11) 2021; 98 D Kam (9722_CR15) 2023; 70 9722_CR12 I Timokhin (9722_CR24) 2024 D Tian (9722_CR23) 2023; 149 A Bandi (9722_CR6) 2023; 15 9722_CR16 A Gautam (9722_CR13) 2024 H Rezaei (9722_CR22) 2023; 70 NA AlZahrani (9722_CR5) 2024; 24 H Rezaei (9722_CR21) 2022; 10 W Xu (9722_CR26) 2020; 10 V Bioglio (9722_CR9) 2020; 68 A Elkelesh (9722_CR10) 2019; 67 A Mohammadi (9722_CR19) 2023; 30 |
| References_xml | – year: 2024 ident: 9722_CR2 publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3364384 – volume: 30 start-page: 331 year: 2023 ident: 9722_CR19 publication-title: Arch Computat Methods Eng doi: 10.1007/s11831-022-09800-0 – year: 2024 ident: 9722_CR20 publication-title: IEEE Wirel Commun Lett doi: 10.1109/LWC.2024.3422877 – volume: 10 start-page: 189 issue: 2 year: 2020 ident: 9722_CR26 publication-title: IEEE J Emerg Sel Top Circuits Syst doi: 10.1109/JETCAS.2020.2995962 – volume: 70 start-page: 4492 year: 2023 ident: 9722_CR22 publication-title: IEEE Trans Circuits Syst I Regul Pap doi: 10.1109/TCSI.2023.3311514 – ident: 9722_CR12 doi: 10.1109/ICCW.2017.7962750 – volume: 124 start-page: 1815 issue: 2 year: 2022 ident: 9722_CR17 publication-title: Wirel Pers Commun doi: 10.1007/s11277-021-09432-w – volume: 70 start-page: 1417 issue: 3 year: 2023 ident: 9722_CR15 publication-title: IEEE Trans Circuits Syst I Regul Pap doi: 10.1109/TCSI.2022.3230589 – year: 2024 ident: 9722_CR18 publication-title: AEU-Int J Electron Commun doi: 10.1016/j.aeue.2024.155220 – volume: 24 start-page: 31 issue: 1 year: 2024 ident: 9722_CR5 publication-title: IJCSNS – volume: 71 start-page: 5039 issue: 9 year: 2023 ident: 9722_CR25 publication-title: IEEE Trans Commun doi: 10.1109/TCOMM.2023.3285773 – volume: 10 start-page: 115833 year: 2022 ident: 9722_CR1 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3219090 – volume: 68 start-page: 5350 issue: 9 year: 2020 ident: 9722_CR9 publication-title: IEEE Trans Commun doi: 10.1109/TCOMM.2020.3006212 – volume: 92 start-page: 104552 year: 2022 ident: 9722_CR14 publication-title: Microprocess Microsyst doi: 10.1016/j.micpro.2022.104552 – volume: 149 start-page: 115234 year: 2023 ident: 9722_CR23 publication-title: Microelectron Reliab doi: 10.1016/j.microrel.2023.115234 – volume: 67 start-page: 4521 issue: 7 year: 2019 ident: 9722_CR10 publication-title: IEEE Trans Commun doi: 10.1109/TCOMM.2019.2908870 – ident: 9722_CR16 – volume: 98 year: 2021 ident: 9722_CR11 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106742 – volume: 10 start-page: 119460 year: 2022 ident: 9722_CR21 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3221742 – volume: 17 start-page: 439 issue: 2 year: 2024 ident: 9722_CR3 publication-title: Int J Intell Eng Syst – volume: 15 start-page: 260 issue: 8 year: 2023 ident: 9722_CR6 publication-title: Future Internet doi: 10.3390/fi15080260 – year: 2024 ident: 9722_CR13 publication-title: Int J Commun Syst doi: 10.1002/dac.5855 – year: 2024 ident: 9722_CR24 publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3416826 |
| SSID | ssj0002140047 ssib031263332 |
| Score | 2.344553 |
| Snippet | Multi-Kernel Polar Code is a type of polar code that utilizes multiple kernels for information encoding and decoding. The selection and optimization of... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 93 |
| SubjectTerms | Accuracy Algorithms Artificial Intelligence Binary phase shift keying Codes Coding Coding theory Complex Systems Complexity Decoding Efficiency Energy consumption Engineering Error correction & detection Generative adversarial networks Generative artificial intelligence Literature reviews Machine learning Methods Optimization Original Paper Random noise Wireless communications |
| Title | Multi Kernel Polar Code using Nut cracker optimization based GAN for Successive Cancellation Decoder to attain low latency and high efficiency |
| URI | https://link.springer.com/article/10.1007/s12530-025-09722-9 https://www.proquest.com/docview/3232562461 |
| Volume | 16 |
| WOSCitedRecordID | wos001536185600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1868-6486 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002140047 issn: 1868-6478 databaseCode: RSV dateStart: 20100801 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBVp0kN7SJp-kE02ZQ65tYKVZH0dwyabQIsJbFL2ZryWHAJbO3i97b_ob45Gttm2tIf2ahkhNOPRG2veG0LOTJlox4SmOi9DgqI4o0utLTXKWCWdlMpFdf3POk3NYmFvelLYeqh2H64kY6Tekt24FBOK7VdRcoZT-4zsSVSbwRx9_mXwIsG4EoMoF8ZjztBPY5eVsAKK5MqePfPnaX89obaw87eb0ngAzQ7-b-mvyH4POOG885BDsuOr1-TlTzKEb8iPyMKFT76p_ApuMNmFae08YFH8PaSbFoomx_oLqEOE-dpTNwFPQAdX5ykE5AvzTey9GKInTNGVVl2VHVx4pM030NaQt_gjAlb1dwiDSPqEvHKAksngo5YFPntL7maXt9Nr2vdpoAXXvKUioBahk8RZ7Zl0wch5KVVhLJOF5ImbmFKXAQtoF7JHkTPrlC6lQyUzuzSmFO_IblVX_oiAKqVc5loYh62wC7FMUA-N40whPuTFiHwYbJM9dnIc2VZ4GXc5C7ucxV3O7IiMB_Nl_ae5zkTAkAH0JYqNyMfBXNvhv892_G-vn5AXvLM4nbAx2W2bjT8lz4tv7cO6eR9d9gk78eJG |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0VWolyoC2lYoG2c-gNLG3s-OuIFigV2wgJWnGLsrGDkJYEZbPtv-A348km2hbBob3GkWV5JuM38bw3AF9MEWsXCc10VoQERfGITbS2zChjlXRSKteq6491kpirK3vekcJmfbV7fyXZRuol2Y1LMWTUfpUkZzizK_AypjY7lKNf_Oy9SERciV6Ui-JxeIU0ESnzCitgRK7s2DNPT_v3CbWEnY9uStsD6OTN_y39LWx0gBMPFx7yDl74chPW_5AhfA_3LQsXz3xd-imeU7KLo8p5pKL4a0zmDeZ1RvUXWIUIc9tRN5FOQIdfDxMMyBcv5m3vxRA9cUSuNF1U2eGRJ9p8jU2FWUM_InBa_cYwSKRPzEqHJJmMvtWyoGdb8OPk-HJ0yro-DSznmjdMBNQidBw7q30kXTByVkiVGxvJXPLYDU2hi4AFtAvZo8gi65QupCMlMzsxphAfYLWsSr8NqAopJ5kWxlEr7FxMYtJD4zRTiA9ZPoD93jbp3UKOI10KL9Mup2GX03aXUzuAvd58afdpzlIRMGQAfbGKBnDQm2s5_PxsO__2-mdYO738Pk7H35KzXXjNF9Znw2gPVpt67j_Cq_xXczOrP7Xu-wDfLuUq |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgIFQOfKMuFJgDN7C6tuOvY7XtFtQqWlFAvUXZ2K6QlqRKs_Av-M14nERbKnpAXOPISjyT8Zt43htC3pqQaceEproMMUFRnNGl1pYaZaySTkrlkrr-ic5zc3ZmF1dY_KnafTyS7DkNqNJUd3sXLuxtiG9ciinFVqwoP8OpvU3uZDGTwaKuT6dfR48SjCsxCnRhbOYMfTZ1XIlPQ5FoOTBp_j7tn7vVBoJeOzVNm9H84f-_xiPyYACisN97zmNyy9dPyP0r8oRPya_EzoVj39Z-BQtMgmHWOA9YLH8O-bqDqi2xLgOaGHm-D5ROwJ3RwdF-DhERw-k69WSMURVm6GKrvvoODjzS6VvoGig7_EEBq-YnxEEkg0JZO0ApZfBJ4wKvPSNf5oefZx_o0L-BVlzzjoqIZoTOMme1Z9JF45dBqspYJivJMzc1QYeIEbSLWaUomXVKB-lQ4cwujQniOdmqm9rvEFBBymWphXHYIrsSywx10jjOFONGWU3Iu9FOxUUv01FsBJlxlYu4ykVa5cJOyO5oymL4ZC8LEbFlBIOZYhPyfjTdZvjm2V782-1vyL3Fwbw4-ZgfvyTbvDc-nbJdstW1a_-K3K1-dN8u29fJk38D6hDuDg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi+Kernel+Polar+Code+using+Nut+cracker+optimization+based+GAN+for+Successive+Cancellation+Decoder+to+attain+low+latency+and+high+efficiency&rft.jtitle=Evolving+systems&rft.au=Pushpa%2C+B.+Yamini&rft.au=Panda%2C+Sunita&rft.date=2025-09-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1868-6478&rft.eissn=1868-6486&rft.volume=16&rft.issue=3&rft_id=info:doi/10.1007%2Fs12530-025-09722-9&rft.externalDocID=10_1007_s12530_025_09722_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-6478&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-6478&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-6478&client=summon |