Multi Kernel Polar Code using Nut cracker optimization based GAN for Successive Cancellation Decoder to attain low latency and high efficiency

Multi-Kernel Polar Code is a type of polar code that utilizes multiple kernels for information encoding and decoding. The selection and optimization of multiple kernels can be challenging. Previous research has demonstrated that existing deep learning models may achieve high decoding accuracy and sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evolving systems Jg. 16; H. 3; S. 93
Hauptverfasser: Pushpa, B. Yamini, Panda, Sunita
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2025
Springer Nature B.V
Schlagworte:
ISSN:1868-6478, 1868-6486
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Multi-Kernel Polar Code is a type of polar code that utilizes multiple kernels for information encoding and decoding. The selection and optimization of multiple kernels can be challenging. Previous research has demonstrated that existing deep learning models may achieve high decoding accuracy and speed for polar code when the block length can be very tiny. Its speed, however, dramatically drops with longer codes because of the huge network structure. A successful Generative Artificial Intelligence (GEN AI) is developed in this work for decoding polar codes. The input sequence has been encoded using multiple kernel polar codes, giving a polar encoded output. After encoding the message using the multi-kernel polar encoder, the resulting bits are mapped to binary phase-shift keying (BPSK) symbols prior to transmission. The Gaussian noise term with zero mean and variance in additive white Gaussian noise (AWGN) is used to receive the signal. The improved Generative Adversarial Network (GAN) improves the decoder performance under different channel conditions after the signals have been transmitted via the channel. Computation is employed to determine the approximate reliability of the bit channel. The proposed approach achieves 95.30% of accuracy, 4.70% error, 91.70% precision and 96.80% specificity. Thus, the designed optimized GAN model is the best option for successive cancellation in the decoder. Graphical abstract
AbstractList Multi-Kernel Polar Code is a type of polar code that utilizes multiple kernels for information encoding and decoding. The selection and optimization of multiple kernels can be challenging. Previous research has demonstrated that existing deep learning models may achieve high decoding accuracy and speed for polar code when the block length can be very tiny. Its speed, however, dramatically drops with longer codes because of the huge network structure. A successful Generative Artificial Intelligence (GEN AI) is developed in this work for decoding polar codes. The input sequence has been encoded using multiple kernel polar codes, giving a polar encoded output. After encoding the message using the multi-kernel polar encoder, the resulting bits are mapped to binary phase-shift keying (BPSK) symbols prior to transmission. The Gaussian noise term with zero mean and variance in additive white Gaussian noise (AWGN) is used to receive the signal. The improved Generative Adversarial Network (GAN) improves the decoder performance under different channel conditions after the signals have been transmitted via the channel. Computation is employed to determine the approximate reliability of the bit channel. The proposed approach achieves 95.30% of accuracy, 4.70% error, 91.70% precision and 96.80% specificity. Thus, the designed optimized GAN model is the best option for successive cancellation in the decoder. Graphical abstract
Multi-Kernel Polar Code is a type of polar code that utilizes multiple kernels for information encoding and decoding. The selection and optimization of multiple kernels can be challenging. Previous research has demonstrated that existing deep learning models may achieve high decoding accuracy and speed for polar code when the block length can be very tiny. Its speed, however, dramatically drops with longer codes because of the huge network structure. A successful Generative Artificial Intelligence (GEN AI) is developed in this work for decoding polar codes. The input sequence has been encoded using multiple kernel polar codes, giving a polar encoded output. After encoding the message using the multi-kernel polar encoder, the resulting bits are mapped to binary phase-shift keying (BPSK) symbols prior to transmission. The Gaussian noise term with zero mean and variance in additive white Gaussian noise (AWGN) is used to receive the signal. The improved Generative Adversarial Network (GAN) improves the decoder performance under different channel conditions after the signals have been transmitted via the channel. Computation is employed to determine the approximate reliability of the bit channel. The proposed approach achieves 95.30% of accuracy, 4.70% error, 91.70% precision and 96.80% specificity. Thus, the designed optimized GAN model is the best option for successive cancellation in the decoder.
ArticleNumber 93
Author Pushpa, B. Yamini
Panda, Sunita
Author_xml – sequence: 1
  givenname: B. Yamini
  surname: Pushpa
  fullname: Pushpa, B. Yamini
  email: yamini.pushpa@gmail.com, 321960404504@gitam.in
  organization: Department of ECE, GITAM University
– sequence: 2
  givenname: Sunita
  surname: Panda
  fullname: Panda, Sunita
  organization: Department of ECE, GITAM University
BookMark eNp9kM1OFjEUhhsCCQjcgKuTsB7t37SdJflQMCCQgOum9OejMLSfbQeDF-E1OzhEd65Oc_q870med2g75eQRek_wB4Kx_FgJ7RnuMO07PEhKu2EL7RElVCe4Ett_31LtosNaHzDGlHCMudxDv75OY4tw7kvyI1zn0RRYZedhqjGt4XJqYIuxj75A3rT4FH-aFnOCO1O9g9PjSwi5wM1kra81PntYmWT9OC7UibdzV4GWwbRmYoIx_4D50yf7AiY5uI_re_AhRBtfdwdoJ5ix-sO3uY--ff50uzrrLq5Ov6yOLzpLJW0dE4IxybkbpCe9U4MwoRdWDaS3PeUOqyADplw6jiUzZHBCht6R2cFwp1Rg--ho6d2U_H3ytemHPJU0n9SMMtoLygWZKbpQtuRaiw96U-KTKS-aYP2qXi_q9axe_1GvhznEllCd4bT25V_1f1K_ASI7iIY
Cites_doi 10.1109/ACCESS.2024.3364384
10.1007/s11831-022-09800-0
10.1109/LWC.2024.3422877
10.1109/JETCAS.2020.2995962
10.1109/TCSI.2023.3311514
10.1109/ICCW.2017.7962750
10.1007/s11277-021-09432-w
10.1109/TCSI.2022.3230589
10.1016/j.aeue.2024.155220
10.1109/TCOMM.2023.3285773
10.1109/ACCESS.2022.3219090
10.1109/TCOMM.2020.3006212
10.1016/j.micpro.2022.104552
10.1016/j.microrel.2023.115234
10.1109/TCOMM.2019.2908870
10.1016/j.asoc.2020.106742
10.1109/ACCESS.2022.3221742
10.3390/fi15080260
10.1002/dac.5855
10.1109/ACCESS.2024.3416826
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s12530-025-09722-9
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1868-6486
ExternalDocumentID 10_1007_s12530_025_09722_9
GroupedDBID 06D
0R~
0VY
1N0
203
29~
2JY
30V
4.4
406
408
409
40D
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATLR
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAZMS
ABAKF
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ATHPR
AUKKA
AXYYD
AYFIA
AYJHY
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
ESBYG
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FYJPI
GGCAI
GGRSB
GJIRD
GQ7
GQ8
HG6
HMJXF
HQYDN
HRMNR
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O93
O9J
P9P
PT4
QOS
R89
R9I
RLLFE
ROL
RSV
S1Z
S27
S3B
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
WK8
Z45
ZMTXR
~A9
2VQ
AAAVM
AARHV
AAYTO
AAYXX
ABULA
AEBTG
AFFHD
AFKRA
AFLOW
AHSBF
AJBLW
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
EJD
FINBP
FSGXE
H13
HCIFZ
HF~
HZ~
K7-
O9-
PHGZM
PHGZT
PQGLB
JQ2
ID FETCH-LOGICAL-c272t-36633744d97e15d896af56c8915c524d08f7f0247d4073a19d67f5d16479b88f3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001536185600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1868-6478
IngestDate Tue Dec 02 16:05:25 EST 2025
Sat Nov 29 07:05:18 EST 2025
Sun Oct 19 01:43:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords GEN AI
Multi Kernel Polar Code
Decoder
Transmission matrix
Encoder
Successive cancellation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-36633744d97e15d896af56c8915c524d08f7f0247d4073a19d67f5d16479b88f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3232562461
PQPubID 2043919
ParticipantIDs proquest_journals_3232562461
crossref_primary_10_1007_s12530_025_09722_9
springer_journals_10_1007_s12530_025_09722_9
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle An Interdisciplinary Journal for Advanced Science and Technology
PublicationTitle Evolving systems
PublicationTitleAbbrev Evolving Systems
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References M Meenalakshmi (9722_CR18) 2024
P Qi (9722_CR20) 2024
MH Ali (9722_CR3) 2024; 17
Y Ali (9722_CR2) 2024
H Hematkhah (9722_CR14) 2022; 92
A Ahmad (9722_CR1) 2022; 10
SJSA Fathima (9722_CR17) 2022; 124
P Trifonov (9722_CR25) 2023; 71
D Ezzat (9722_CR11) 2021; 98
D Kam (9722_CR15) 2023; 70
9722_CR12
I Timokhin (9722_CR24) 2024
D Tian (9722_CR23) 2023; 149
A Bandi (9722_CR6) 2023; 15
9722_CR16
A Gautam (9722_CR13) 2024
H Rezaei (9722_CR22) 2023; 70
NA AlZahrani (9722_CR5) 2024; 24
H Rezaei (9722_CR21) 2022; 10
W Xu (9722_CR26) 2020; 10
V Bioglio (9722_CR9) 2020; 68
A Elkelesh (9722_CR10) 2019; 67
A Mohammadi (9722_CR19) 2023; 30
References_xml – year: 2024
  ident: 9722_CR2
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3364384
– volume: 30
  start-page: 331
  year: 2023
  ident: 9722_CR19
  publication-title: Arch Computat Methods Eng
  doi: 10.1007/s11831-022-09800-0
– year: 2024
  ident: 9722_CR20
  publication-title: IEEE Wirel Commun Lett
  doi: 10.1109/LWC.2024.3422877
– volume: 10
  start-page: 189
  issue: 2
  year: 2020
  ident: 9722_CR26
  publication-title: IEEE J Emerg Sel Top Circuits Syst
  doi: 10.1109/JETCAS.2020.2995962
– volume: 70
  start-page: 4492
  year: 2023
  ident: 9722_CR22
  publication-title: IEEE Trans Circuits Syst I Regul Pap
  doi: 10.1109/TCSI.2023.3311514
– ident: 9722_CR12
  doi: 10.1109/ICCW.2017.7962750
– volume: 124
  start-page: 1815
  issue: 2
  year: 2022
  ident: 9722_CR17
  publication-title: Wirel Pers Commun
  doi: 10.1007/s11277-021-09432-w
– volume: 70
  start-page: 1417
  issue: 3
  year: 2023
  ident: 9722_CR15
  publication-title: IEEE Trans Circuits Syst I Regul Pap
  doi: 10.1109/TCSI.2022.3230589
– year: 2024
  ident: 9722_CR18
  publication-title: AEU-Int J Electron Commun
  doi: 10.1016/j.aeue.2024.155220
– volume: 24
  start-page: 31
  issue: 1
  year: 2024
  ident: 9722_CR5
  publication-title: IJCSNS
– volume: 71
  start-page: 5039
  issue: 9
  year: 2023
  ident: 9722_CR25
  publication-title: IEEE Trans Commun
  doi: 10.1109/TCOMM.2023.3285773
– volume: 10
  start-page: 115833
  year: 2022
  ident: 9722_CR1
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3219090
– volume: 68
  start-page: 5350
  issue: 9
  year: 2020
  ident: 9722_CR9
  publication-title: IEEE Trans Commun
  doi: 10.1109/TCOMM.2020.3006212
– volume: 92
  start-page: 104552
  year: 2022
  ident: 9722_CR14
  publication-title: Microprocess Microsyst
  doi: 10.1016/j.micpro.2022.104552
– volume: 149
  start-page: 115234
  year: 2023
  ident: 9722_CR23
  publication-title: Microelectron Reliab
  doi: 10.1016/j.microrel.2023.115234
– volume: 67
  start-page: 4521
  issue: 7
  year: 2019
  ident: 9722_CR10
  publication-title: IEEE Trans Commun
  doi: 10.1109/TCOMM.2019.2908870
– ident: 9722_CR16
– volume: 98
  year: 2021
  ident: 9722_CR11
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106742
– volume: 10
  start-page: 119460
  year: 2022
  ident: 9722_CR21
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3221742
– volume: 17
  start-page: 439
  issue: 2
  year: 2024
  ident: 9722_CR3
  publication-title: Int J Intell Eng Syst
– volume: 15
  start-page: 260
  issue: 8
  year: 2023
  ident: 9722_CR6
  publication-title: Future Internet
  doi: 10.3390/fi15080260
– year: 2024
  ident: 9722_CR13
  publication-title: Int J Commun Syst
  doi: 10.1002/dac.5855
– year: 2024
  ident: 9722_CR24
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3416826
SSID ssj0002140047
ssib031263332
Score 2.344553
Snippet Multi-Kernel Polar Code is a type of polar code that utilizes multiple kernels for information encoding and decoding. The selection and optimization of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 93
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Binary phase shift keying
Codes
Coding
Coding theory
Complex Systems
Complexity
Decoding
Efficiency
Energy consumption
Engineering
Error correction & detection
Generative adversarial networks
Generative artificial intelligence
Literature reviews
Machine learning
Methods
Optimization
Original Paper
Random noise
Wireless communications
Title Multi Kernel Polar Code using Nut cracker optimization based GAN for Successive Cancellation Decoder to attain low latency and high efficiency
URI https://link.springer.com/article/10.1007/s12530-025-09722-9
https://www.proquest.com/docview/3232562461
Volume 16
WOSCitedRecordID wos001536185600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1868-6486
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140047
  issn: 1868-6478
  databaseCode: RSV
  dateStart: 20100801
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBVp0kN7SJp-kE02ZQ65tYKVZH0dwyabQIsJbFL2ZryWHAJbO3i97b_ob45Gttm2tIf2ahkhNOPRG2veG0LOTJlox4SmOi9DgqI4o0utLTXKWCWdlMpFdf3POk3NYmFvelLYeqh2H64kY6Tekt24FBOK7VdRcoZT-4zsSVSbwRx9_mXwIsG4EoMoF8ZjztBPY5eVsAKK5MqePfPnaX89obaw87eb0ngAzQ7-b-mvyH4POOG885BDsuOr1-TlTzKEb8iPyMKFT76p_ApuMNmFae08YFH8PaSbFoomx_oLqEOE-dpTNwFPQAdX5ykE5AvzTey9GKInTNGVVl2VHVx4pM030NaQt_gjAlb1dwiDSPqEvHKAksngo5YFPntL7maXt9Nr2vdpoAXXvKUioBahk8RZ7Zl0wch5KVVhLJOF5ImbmFKXAQtoF7JHkTPrlC6lQyUzuzSmFO_IblVX_oiAKqVc5loYh62wC7FMUA-N40whPuTFiHwYbJM9dnIc2VZ4GXc5C7ucxV3O7IiMB_Nl_ae5zkTAkAH0JYqNyMfBXNvhv892_G-vn5AXvLM4nbAx2W2bjT8lz4tv7cO6eR9d9gk78eJG
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0VWolyoC2lYoG2c-gNLG3s-OuIFigV2wgJWnGLsrGDkJYEZbPtv-A348km2hbBob3GkWV5JuM38bw3AF9MEWsXCc10VoQERfGITbS2zChjlXRSKteq6491kpirK3vekcJmfbV7fyXZRuol2Y1LMWTUfpUkZzizK_AypjY7lKNf_Oy9SERciV6Ui-JxeIU0ESnzCitgRK7s2DNPT_v3CbWEnY9uStsD6OTN_y39LWx0gBMPFx7yDl74chPW_5AhfA_3LQsXz3xd-imeU7KLo8p5pKL4a0zmDeZ1RvUXWIUIc9tRN5FOQIdfDxMMyBcv5m3vxRA9cUSuNF1U2eGRJ9p8jU2FWUM_InBa_cYwSKRPzEqHJJmMvtWyoGdb8OPk-HJ0yro-DSznmjdMBNQidBw7q30kXTByVkiVGxvJXPLYDU2hi4AFtAvZo8gi65QupCMlMzsxphAfYLWsSr8NqAopJ5kWxlEr7FxMYtJD4zRTiA9ZPoD93jbp3UKOI10KL9Mup2GX03aXUzuAvd58afdpzlIRMGQAfbGKBnDQm2s5_PxsO__2-mdYO738Pk7H35KzXXjNF9Znw2gPVpt67j_Cq_xXczOrP7Xu-wDfLuUq
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgIFQOfKMuFJgDN7C6tuOvY7XtFtQqWlFAvUXZ2K6QlqRKs_Av-M14nERbKnpAXOPISjyT8Zt43htC3pqQaceEproMMUFRnNGl1pYaZaySTkrlkrr-ic5zc3ZmF1dY_KnafTyS7DkNqNJUd3sXLuxtiG9ciinFVqwoP8OpvU3uZDGTwaKuT6dfR48SjCsxCnRhbOYMfTZ1XIlPQ5FoOTBp_j7tn7vVBoJeOzVNm9H84f-_xiPyYACisN97zmNyy9dPyP0r8oRPya_EzoVj39Z-BQtMgmHWOA9YLH8O-bqDqi2xLgOaGHm-D5ROwJ3RwdF-DhERw-k69WSMURVm6GKrvvoODjzS6VvoGig7_EEBq-YnxEEkg0JZO0ApZfBJ4wKvPSNf5oefZx_o0L-BVlzzjoqIZoTOMme1Z9JF45dBqspYJivJMzc1QYeIEbSLWaUomXVKB-lQ4cwujQniOdmqm9rvEFBBymWphXHYIrsSywx10jjOFONGWU3Iu9FOxUUv01FsBJlxlYu4ykVa5cJOyO5oymL4ZC8LEbFlBIOZYhPyfjTdZvjm2V782-1vyL3Fwbw4-ZgfvyTbvDc-nbJdstW1a_-K3K1-dN8u29fJk38D6hDuDg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi+Kernel+Polar+Code+using+Nut+cracker+optimization+based+GAN+for+Successive+Cancellation+Decoder+to+attain+low+latency+and+high+efficiency&rft.jtitle=Evolving+systems&rft.au=Pushpa%2C+B.+Yamini&rft.au=Panda%2C+Sunita&rft.date=2025-09-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1868-6478&rft.eissn=1868-6486&rft.volume=16&rft.issue=3&rft_id=info:doi/10.1007%2Fs12530-025-09722-9&rft.externalDocID=10_1007_s12530_025_09722_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-6478&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-6478&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-6478&client=summon