JDExtractor: an automated approach for efficient extraction of defect-related methods in Java projects
High-quality repositories containing real-world defects are essential for developing defect-related algorithms. Although plenty of defect repositories exist, they often fail to capture the context of inter-procedural defects, which include all methods in the propagation path from the defect-source m...
Gespeichert in:
| Veröffentlicht in: | Automated software engineering Jg. 33; H. 1; S. 22 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.06.2026
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0928-8910, 1573-7535 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | High-quality repositories containing real-world defects are essential for developing defect-related algorithms. Although plenty of defect repositories exist, they often fail to capture the context of inter-procedural defects, which include all methods in the propagation path from the defect-source method to the defect-triggering method. This limitation is particularly critical for the Null Pointer Exception (NPE), a common defect that often propagates across multiple methods in Java systems. To address this problem, we propose a novel and automatic approach, called
JDExtractor
, to extract defect-related methods from real applications. The main challenge is how to identify all defect-related methods efficiently and accurately.
JDExtractor
tackles this challenge by constructing a method-level data graph using the principle of Java type compatibility and simplifying the data graph using filtering criteria. Data flow analysis helps construct a coarse-grained method-level data graph, which reflects the potential patterns of inter-procedural data interaction, thereby ensuring analysis efficiency. Afterward, filtering analysis simplifies the data graph based on the propagation properties of inter-procedural defects, thus ensuring analysis accuracy. Evaluation results suggest that both the static slicing tool WALA and the dynamic slicing tool Slicer4J yield several false positives, whereas
JDExtractor
successfully extracts defect-related methods and defect propagation paths with fewer false positives in a short time. Moreover,
JDExtractor
has been applied to open source projects on GitHub, ultimately extracting defect-related methods for 67 defects from 319 compiled open source applications. |
|---|---|
| AbstractList | High-quality repositories containing real-world defects are essential for developing defect-related algorithms. Although plenty of defect repositories exist, they often fail to capture the context of inter-procedural defects, which include all methods in the propagation path from the defect-source method to the defect-triggering method. This limitation is particularly critical for the Null Pointer Exception (NPE), a common defect that often propagates across multiple methods in Java systems. To address this problem, we propose a novel and automatic approach, called
JDExtractor
, to extract defect-related methods from real applications. The main challenge is how to identify all defect-related methods efficiently and accurately.
JDExtractor
tackles this challenge by constructing a method-level data graph using the principle of Java type compatibility and simplifying the data graph using filtering criteria. Data flow analysis helps construct a coarse-grained method-level data graph, which reflects the potential patterns of inter-procedural data interaction, thereby ensuring analysis efficiency. Afterward, filtering analysis simplifies the data graph based on the propagation properties of inter-procedural defects, thus ensuring analysis accuracy. Evaluation results suggest that both the static slicing tool WALA and the dynamic slicing tool Slicer4J yield several false positives, whereas
JDExtractor
successfully extracts defect-related methods and defect propagation paths with fewer false positives in a short time. Moreover,
JDExtractor
has been applied to open source projects on GitHub, ultimately extracting defect-related methods for 67 defects from 319 compiled open source applications. High-quality repositories containing real-world defects are essential for developing defect-related algorithms. Although plenty of defect repositories exist, they often fail to capture the context of inter-procedural defects, which include all methods in the propagation path from the defect-source method to the defect-triggering method. This limitation is particularly critical for the Null Pointer Exception (NPE), a common defect that often propagates across multiple methods in Java systems. To address this problem, we propose a novel and automatic approach, called JDExtractor, to extract defect-related methods from real applications. The main challenge is how to identify all defect-related methods efficiently and accurately. JDExtractor tackles this challenge by constructing a method-level data graph using the principle of Java type compatibility and simplifying the data graph using filtering criteria. Data flow analysis helps construct a coarse-grained method-level data graph, which reflects the potential patterns of inter-procedural data interaction, thereby ensuring analysis efficiency. Afterward, filtering analysis simplifies the data graph based on the propagation properties of inter-procedural defects, thus ensuring analysis accuracy. Evaluation results suggest that both the static slicing tool WALA and the dynamic slicing tool Slicer4J yield several false positives, whereas JDExtractor successfully extracts defect-related methods and defect propagation paths with fewer false positives in a short time. Moreover, JDExtractor has been applied to open source projects on GitHub, ultimately extracting defect-related methods for 67 defects from 319 compiled open source applications. |
| ArticleNumber | 22 |
| Author | Liu, Tianyang Ji, Weixing Ye, Jiawei |
| Author_xml | – sequence: 1 givenname: Tianyang surname: Liu fullname: Liu, Tianyang organization: Beijing Institute of Technology – sequence: 2 givenname: Jiawei surname: Ye fullname: Ye, Jiawei organization: Beijing Institute of Technology – sequence: 3 givenname: Weixing surname: Ji fullname: Ji, Weixing email: jwx@bnu.edu.cn organization: School of Artificial Intelligence, Beijing Normal University |
| BookMark | eNp9kE1PAyEURYnRxFb9A65IXKN8DAO4M_WzaeKme0IZsNO0UIEa7a8XOybuXLy8xTvnvuSOwXGIwQFwSfA1wVjcZII54QjTOpi3DO2PwIhwwZDgjB-DEVZUIqkIPgXjnFcYY9UqNQJ-ev_wWZKxJaZbaAI0uxI3prgOmu02RWOX0McEnfe97V0o0A14HwOMHnbOO1tQcuuDs3FlGbsM-wCn5sPAmrCq93wOTrxZZ3fxu8_A_PFhPnlGs9enl8ndDFkqaEGssWqBLWaNVNYJyYwTnWk62nS2ZcoTtaC2IUoy4brWCEZEI620qhGL1nN2Bq6G2Pr3fedy0au4S6F-1Iy2VHBKpagUHSibYs7Jeb1N_cakL02w_qlTD3XqWqc-1Kn3VWKDlCsc3lz6i_7H-gbh5ns7 |
| Cites_doi | 10.1145/3468264.3468620 10.1145/3196398.3196473 10.1109/SANER60148.2024.00093 10.1145/3540250.3549128 10.1145/3106237.3106255 10.1109/ICSE.2019.00048 10.1145/3183519.3183540 10.1007/s11390-020-9754-4 10.1109/TSE.2022.3177713 10.1145/3510003.3510186 10.1145/1321631.1321702 10.1145/1273442.1250748 10.1109/TR.2020.3040191 10.1145/3558489.3559068 10.1007/s10664-005-3861-2 10.1145/3597503.3639162 10.1109/SANER.2019.8667991 10.1145/1250734.1250748 10.1109/ASE51524.2021.9678622 10.5220/0007929201170128 10.1109/ASE51524.2021.9678535 10.1109/MC.2012.345 10.1145/2610384.2628055 10.1145/3236024.3236084 10.1049/iet-ifs.2018.5647 10.1109/ICMLA.2018.00120 10.1007/978-3-319-42089-9_44 10.1109/ICSE-SEIP52600.2021.00020 10.1145/3460319.3464819 10.1109/ICST.2019.00019 10.1109/DSN48987.2021.00030 10.1007/s10664-022-10168-9 10.1145/3468264.3473123 10.1109/ICSME.2018.00058 10.1016/j.infsof.2023.107219 10.1145/3180155.3180243 10.1145/3691620.3695484 10.1016/j.jlamp.2022.100826 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s10515-025-00563-z |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7535 |
| ExternalDocumentID | 10_1007_s10515_025_00563_z |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China |
| GroupedDBID | -~C .86 .DC .VR 06D 0R~ 0VY 199 1N0 203 23N 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BGNMA BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI ESBYG FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- NB0 NPVJJ NQJWS O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX VC2 W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 ~EX -Y2 1SB 2.D 28- 2P1 2VQ 5QI AAOBN AARHV AAYTO AAYXX ABJCF ABQSL ABULA ACBXY ADHKG AEBTG AEFIE AEKMD AFEXP AFFHD AFGCZ AFKRA AGGDS AGQPQ AJBLW ARAPS BBWZM BDATZ BENPR BGLVJ CAG CCPQU CITATION COF EJD FINBP FSGXE H13 HCIFZ HZ~ K7- KOW M7S MVM N2Q NDZJH NU0 O9- OVD PHGZM PHGZT PQGLB PTHSS R4E RNI RZC RZE RZK S26 S28 SCJ SCLPG T16 TEORI UZXMN VFIZW JQ2 |
| ID | FETCH-LOGICAL-c272t-34c9b0c03489ce783ae7da4d24dc639f19b2c419837ed6a731748c8c947b6f53 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001595869700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0928-8910 |
| IngestDate | Thu Nov 06 14:28:06 EST 2025 Sat Nov 29 07:09:32 EST 2025 Sun Oct 19 01:43:21 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Null pointer exception Program slicing Static analysis Defect detection |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c272t-34c9b0c03489ce783ae7da4d24dc639f19b2c419837ed6a731748c8c947b6f53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3262752287 |
| PQPubID | 2043871 |
| ParticipantIDs | proquest_journals_3262752287 crossref_primary_10_1007_s10515_025_00563_z springer_journals_10_1007_s10515_025_00563_z |
| PublicationCentury | 2000 |
| PublicationDate | 2026-06-01 |
| PublicationDateYYYYMMDD | 2026-06-01 |
| PublicationDate_xml | – month: 06 year: 2026 text: 2026-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Automated software engineering |
| PublicationTitleAbbrev | Autom Softw Eng |
| PublicationYear | 2026 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | 563_CR40 563_CR41 563_CR42 563_CR43 563_CR45 M Sridharan (563_CR36) 2007; 42 563_CR46 563_CR47 563_CR37 563_CR38 563_CR39 Z Song (563_CR34) 2023; 160 563_CR51 563_CR52 563_CR10 RS Wahono (563_CR44) 2015; 1 563_CR13 563_CR14 563_CR49 Y-Z Zhang (563_CR50) 2021; 36 C Galindo (563_CR12) 2023; 130 563_CR20 563_CR21 563_CR22 563_CR23 T Boland (563_CR8) 2012; 45 563_CR24 H Do (563_CR11) 2005; 10 563_CR25 563_CR6 563_CR7 563_CR16 J Xu (563_CR48) 2021; 70 Y Jiang (563_CR15) 2023; 49 563_CR17 563_CR5 563_CR18 563_CR19 AD Sawadogo (563_CR33) 2022; 27 563_CR9 563_CR2 563_CR3 563_CR1 563_CR30 563_CR31 563_CR32 J Akram (563_CR4) 2020; 14 563_CR35 563_CR26 563_CR27 563_CR28 563_CR29 |
| References_xml | – ident: 563_CR39 – ident: 563_CR1 – ident: 563_CR22 – ident: 563_CR37 doi: 10.1145/3468264.3468620 – ident: 563_CR32 doi: 10.1145/3196398.3196473 – ident: 563_CR47 doi: 10.1109/SANER60148.2024.00093 – ident: 563_CR26 – ident: 563_CR24 doi: 10.1145/3540250.3549128 – ident: 563_CR7 doi: 10.1145/3106237.3106255 – ident: 563_CR40 doi: 10.1109/ICSE.2019.00048 – ident: 563_CR43 doi: 10.1145/3183519.3183540 – volume: 36 start-page: 397 year: 2021 ident: 563_CR50 publication-title: J. Comput. Sci. Technol. doi: 10.1007/s11390-020-9754-4 – volume: 49 start-page: 1443 issue: 4 year: 2023 ident: 563_CR15 publication-title: IEEE Trans. Software Eng. doi: 10.1109/TSE.2022.3177713 – ident: 563_CR19 doi: 10.1145/3510003.3510186 – ident: 563_CR10 doi: 10.1145/1321631.1321702 – volume: 42 start-page: 112 issue: 6 year: 2007 ident: 563_CR36 publication-title: SIGPLAN Not. doi: 10.1145/1273442.1250748 – volume: 70 start-page: 613 issue: 2 year: 2021 ident: 563_CR48 publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2020.3040191 – ident: 563_CR25 – ident: 563_CR6 doi: 10.1145/3558489.3559068 – volume: 10 start-page: 405 issue: 4 year: 2005 ident: 563_CR11 publication-title: Empir. Softw. Eng. doi: 10.1007/s10664-005-3861-2 – ident: 563_CR21 doi: 10.1145/3597503.3639162 – ident: 563_CR46 – ident: 563_CR23 doi: 10.1109/SANER.2019.8667991 – ident: 563_CR35 doi: 10.1145/1250734.1250748 – ident: 563_CR18 doi: 10.1109/ASE51524.2021.9678622 – ident: 563_CR14 doi: 10.5220/0007929201170128 – ident: 563_CR41 doi: 10.1109/ASE51524.2021.9678535 – volume: 45 start-page: 88 issue: 10 year: 2012 ident: 563_CR8 publication-title: Computer doi: 10.1109/MC.2012.345 – ident: 563_CR17 doi: 10.1145/2610384.2628055 – ident: 563_CR52 – ident: 563_CR29 doi: 10.1145/3236024.3236084 – volume: 14 start-page: 60 issue: 1 year: 2020 ident: 563_CR4 publication-title: IET Inf. Secur. doi: 10.1049/iet-ifs.2018.5647 – ident: 563_CR16 doi: 10.1145/2610384.2628055 – ident: 563_CR28 – ident: 563_CR30 doi: 10.1109/ICMLA.2018.00120 – ident: 563_CR42 doi: 10.1007/978-3-319-42089-9_44 – ident: 563_CR2 – ident: 563_CR51 doi: 10.1109/ICSE-SEIP52600.2021.00020 – ident: 563_CR49 doi: 10.1145/3460319.3464819 – ident: 563_CR13 doi: 10.1109/ICST.2019.00019 – ident: 563_CR45 doi: 10.1109/DSN48987.2021.00030 – volume: 27 start-page: 151 issue: 6 year: 2022 ident: 563_CR33 publication-title: Empir. Softw. Eng. doi: 10.1007/s10664-022-10168-9 – ident: 563_CR3 doi: 10.1145/3468264.3473123 – ident: 563_CR31 doi: 10.1109/ICSME.2018.00058 – volume: 160 start-page: 107219 year: 2023 ident: 563_CR34 publication-title: Inf. Softw. Technol. doi: 10.1016/j.infsof.2023.107219 – ident: 563_CR27 – ident: 563_CR38 doi: 10.1145/3180155.3180243 – ident: 563_CR20 doi: 10.1145/3691620.3695484 – ident: 563_CR5 – volume: 130 start-page: 100826 year: 2023 ident: 563_CR12 publication-title: J. Log. Algebraic Methods Program. doi: 10.1016/j.jlamp.2022.100826 – volume: 1 start-page: 1 issue: 1 year: 2015 ident: 563_CR44 publication-title: J. Softw. Eng. – ident: 563_CR9 |
| SSID | ssj0009699 |
| Score | 2.403291 |
| Snippet | High-quality repositories containing real-world defects are essential for developing defect-related algorithms. Although plenty of defect repositories exist,... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 22 |
| SubjectTerms | Algorithms Artificial Intelligence Computer Science Data flow analysis Defects Filtration Graphs Methods Open source software Propagation Repositories Software Software Engineering/Programming and Operating Systems |
| Title | JDExtractor: an automated approach for efficient extraction of defect-related methods in Java projects |
| URI | https://link.springer.com/article/10.1007/s10515-025-00563-z https://www.proquest.com/docview/3262752287 |
| Volume | 33 |
| WOSCitedRecordID | wos001595869700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009699 issn: 0928-8910 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwFLSgMLBQPkWhIA9sYClxnNhmQ0CFOlQIKtQtcvwhdUlRk1aov54XJ1EBwQBLljhW9J6dO8d-dwhdhiZWscsMccJYwkTASAa0iESBlnHGnQ4c82YTfDQSk4l8aorCiva0e7sl6b_Un4rdAHtJZb9a6VdGZLWJtgDuRGXY8PzyupbaTWStsEcFEYCGTanMz318haM1x_y2LerRZtD933vuod2GXeLbejjsow2bH6Bu69yAm4l8iNzw_uG9nHuvnRuscqwW5Qy4qzW4FRnHwGax9QITgEvY1s0hi3jmsLHVKRDiC2HgmdqGusDTHA_VUuHm905xhMaDh_HdI2kcF4imnJYkYlpmgQ4iJqS2XETKcqOYocxooDIulBnVLJSwqrUmURzIBxNaaMl4lrg4OkadfJbbE4RZ6JiOo0oNzbBK5U5SzrUScM2S2IY9dNXGPX2rdTXStYJyFcEUIpj6CKarHuq3qUmbOVakQDwpB_ooeA9dt6lY3_69t9O_NT9DOxRWqvX5sD7qlPOFPUfbellOi_mFH3sf1KnU4g |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BQYILO6KsPnADS1mc2uaGWFRKqRBUiFvkeJG4pKgJFerXM9lUQHCASy5xrGjGznuOPe8BHPsmUpFLDHXCWMqEx2iCtIiGnpZRwp32HCvNJvhgIJ6f5X1dFJY1p92bLcnyS_2p2A2xlxb2q4V-ZUin87DAELEKxfyHx6eZ1G5HVgp7gaAC0bAulfm5j69wNOOY37ZFS7S5Xv3fe67BSs0uyXk1HNZhzqYbsNo4N5B6Im-C611evefj0mvnjKiUqLd8hNzVGtKIjBNks8SWAhOIS8RWzTGLZOSIscUpEFoWwuAzlQ11Rl5S0lMTRerfO9kWDK-vhhddWjsuUB3wIKch0zLxtBcyIbXlIlSWG8VMwIxGKuN8mQSa-RJXtdZ0FEfywYQWWjKedFwUbkMrHaV2BwjzHdNRWKihGVao3MmAc60EXpNOZP02nDRxj18rXY14pqBcRDDGCMZlBONpG_ab1MT1HMtiJJ4BR_ooeBtOm1TMbv_e2-7fmh_BUnd414_7N4PbPVgOcNVanRXbh1Y-frMHsKgn-Us2PizH4QfYmNfG |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BQYgLO6JQwAduYJHFiW1uCKjYVCFRIW6R40XqJa3atEL9euwsSkFwQFxyieNEM7bmTTzzHsCZryIRmVRhw5TGhHkEpxYW4dCTPEqpkZ4hhdgE7fXY-zt_WejiL6rd6yPJsqfBsTRl-eVImcuFxjcbh7GTYnVcliGeL8MKcYX0Ll9_fWtod2Nesu0FDDMbGau2mZ_n-BqaGrz57Yi0iDzdzf9_8xZsVKgTXZfLZBuWdLYDm7WiA6o2-C6Yx9u7j3xcaPBcIZEhMc2HFtNqhWrycWRRLtIF8YR9N9LlcOtdNDRIaVcdgosGGftMKU89QYMMPYqZQNVvn8ke9Lt3_Zt7XCkxYBnQIMchkTz1pBcSxqWmLBSaKkFUQJS0EMf4PA0k8bnNdrWKBbWghDDJJCc0jU0U7kMrG2b6ABDxDZFR6FjSFHHsdzygVApmr2kcab8N57UPklHJt5E0zMrOgom1YFJYMJm3oVO7Kan23iSxgDSgFlYy2oaL2i3N7d9nO_zb8FNYe7ntJs8PvacjWA9sMluWkHWglY-n-hhW5SwfTMYnxZL8BECm4Ko |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=JDExtractor%3A+an+automated+approach+for+efficient+extraction+of+defect-related+methods+in+Java+projects&rft.jtitle=Automated+software+engineering&rft.au=Liu%2C+Tianyang&rft.au=Ye%2C+Jiawei&rft.au=Ji%2C+Weixing&rft.date=2026-06-01&rft.pub=Springer+US&rft.issn=0928-8910&rft.eissn=1573-7535&rft.volume=33&rft.issue=1&rft_id=info:doi/10.1007%2Fs10515-025-00563-z&rft.externalDocID=10_1007_s10515_025_00563_z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0928-8910&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0928-8910&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0928-8910&client=summon |