JDExtractor: an automated approach for efficient extraction of defect-related methods in Java projects

High-quality repositories containing real-world defects are essential for developing defect-related algorithms. Although plenty of defect repositories exist, they often fail to capture the context of inter-procedural defects, which include all methods in the propagation path from the defect-source m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automated software engineering Jg. 33; H. 1; S. 22
Hauptverfasser: Liu, Tianyang, Ye, Jiawei, Ji, Weixing
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.06.2026
Springer Nature B.V
Schlagworte:
ISSN:0928-8910, 1573-7535
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract High-quality repositories containing real-world defects are essential for developing defect-related algorithms. Although plenty of defect repositories exist, they often fail to capture the context of inter-procedural defects, which include all methods in the propagation path from the defect-source method to the defect-triggering method. This limitation is particularly critical for the Null Pointer Exception (NPE), a common defect that often propagates across multiple methods in Java systems. To address this problem, we propose a novel and automatic approach, called JDExtractor , to extract defect-related methods from real applications. The main challenge is how to identify all defect-related methods efficiently and accurately. JDExtractor tackles this challenge by constructing a method-level data graph using the principle of Java type compatibility and simplifying the data graph using filtering criteria. Data flow analysis helps construct a coarse-grained method-level data graph, which reflects the potential patterns of inter-procedural data interaction, thereby ensuring analysis efficiency. Afterward, filtering analysis simplifies the data graph based on the propagation properties of inter-procedural defects, thus ensuring analysis accuracy. Evaluation results suggest that both the static slicing tool WALA and the dynamic slicing tool Slicer4J yield several false positives, whereas JDExtractor successfully extracts defect-related methods and defect propagation paths with fewer false positives in a short time. Moreover, JDExtractor has been applied to open source projects on GitHub, ultimately extracting defect-related methods for 67 defects from 319 compiled open source applications.
AbstractList High-quality repositories containing real-world defects are essential for developing defect-related algorithms. Although plenty of defect repositories exist, they often fail to capture the context of inter-procedural defects, which include all methods in the propagation path from the defect-source method to the defect-triggering method. This limitation is particularly critical for the Null Pointer Exception (NPE), a common defect that often propagates across multiple methods in Java systems. To address this problem, we propose a novel and automatic approach, called JDExtractor , to extract defect-related methods from real applications. The main challenge is how to identify all defect-related methods efficiently and accurately. JDExtractor tackles this challenge by constructing a method-level data graph using the principle of Java type compatibility and simplifying the data graph using filtering criteria. Data flow analysis helps construct a coarse-grained method-level data graph, which reflects the potential patterns of inter-procedural data interaction, thereby ensuring analysis efficiency. Afterward, filtering analysis simplifies the data graph based on the propagation properties of inter-procedural defects, thus ensuring analysis accuracy. Evaluation results suggest that both the static slicing tool WALA and the dynamic slicing tool Slicer4J yield several false positives, whereas JDExtractor successfully extracts defect-related methods and defect propagation paths with fewer false positives in a short time. Moreover, JDExtractor has been applied to open source projects on GitHub, ultimately extracting defect-related methods for 67 defects from 319 compiled open source applications.
High-quality repositories containing real-world defects are essential for developing defect-related algorithms. Although plenty of defect repositories exist, they often fail to capture the context of inter-procedural defects, which include all methods in the propagation path from the defect-source method to the defect-triggering method. This limitation is particularly critical for the Null Pointer Exception (NPE), a common defect that often propagates across multiple methods in Java systems. To address this problem, we propose a novel and automatic approach, called JDExtractor, to extract defect-related methods from real applications. The main challenge is how to identify all defect-related methods efficiently and accurately. JDExtractor tackles this challenge by constructing a method-level data graph using the principle of Java type compatibility and simplifying the data graph using filtering criteria. Data flow analysis helps construct a coarse-grained method-level data graph, which reflects the potential patterns of inter-procedural data interaction, thereby ensuring analysis efficiency. Afterward, filtering analysis simplifies the data graph based on the propagation properties of inter-procedural defects, thus ensuring analysis accuracy. Evaluation results suggest that both the static slicing tool WALA and the dynamic slicing tool Slicer4J yield several false positives, whereas JDExtractor successfully extracts defect-related methods and defect propagation paths with fewer false positives in a short time. Moreover, JDExtractor has been applied to open source projects on GitHub, ultimately extracting defect-related methods for 67 defects from 319 compiled open source applications.
ArticleNumber 22
Author Liu, Tianyang
Ji, Weixing
Ye, Jiawei
Author_xml – sequence: 1
  givenname: Tianyang
  surname: Liu
  fullname: Liu, Tianyang
  organization: Beijing Institute of Technology
– sequence: 2
  givenname: Jiawei
  surname: Ye
  fullname: Ye, Jiawei
  organization: Beijing Institute of Technology
– sequence: 3
  givenname: Weixing
  surname: Ji
  fullname: Ji, Weixing
  email: jwx@bnu.edu.cn
  organization: School of Artificial Intelligence, Beijing Normal University
BookMark eNp9kE1PAyEURYnRxFb9A65IXKN8DAO4M_WzaeKme0IZsNO0UIEa7a8XOybuXLy8xTvnvuSOwXGIwQFwSfA1wVjcZII54QjTOpi3DO2PwIhwwZDgjB-DEVZUIqkIPgXjnFcYY9UqNQJ-ev_wWZKxJaZbaAI0uxI3prgOmu02RWOX0McEnfe97V0o0A14HwOMHnbOO1tQcuuDs3FlGbsM-wCn5sPAmrCq93wOTrxZZ3fxu8_A_PFhPnlGs9enl8ndDFkqaEGssWqBLWaNVNYJyYwTnWk62nS2ZcoTtaC2IUoy4brWCEZEI620qhGL1nN2Bq6G2Pr3fedy0au4S6F-1Iy2VHBKpagUHSibYs7Jeb1N_cakL02w_qlTD3XqWqc-1Kn3VWKDlCsc3lz6i_7H-gbh5ns7
Cites_doi 10.1145/3468264.3468620
10.1145/3196398.3196473
10.1109/SANER60148.2024.00093
10.1145/3540250.3549128
10.1145/3106237.3106255
10.1109/ICSE.2019.00048
10.1145/3183519.3183540
10.1007/s11390-020-9754-4
10.1109/TSE.2022.3177713
10.1145/3510003.3510186
10.1145/1321631.1321702
10.1145/1273442.1250748
10.1109/TR.2020.3040191
10.1145/3558489.3559068
10.1007/s10664-005-3861-2
10.1145/3597503.3639162
10.1109/SANER.2019.8667991
10.1145/1250734.1250748
10.1109/ASE51524.2021.9678622
10.5220/0007929201170128
10.1109/ASE51524.2021.9678535
10.1109/MC.2012.345
10.1145/2610384.2628055
10.1145/3236024.3236084
10.1049/iet-ifs.2018.5647
10.1109/ICMLA.2018.00120
10.1007/978-3-319-42089-9_44
10.1109/ICSE-SEIP52600.2021.00020
10.1145/3460319.3464819
10.1109/ICST.2019.00019
10.1109/DSN48987.2021.00030
10.1007/s10664-022-10168-9
10.1145/3468264.3473123
10.1109/ICSME.2018.00058
10.1016/j.infsof.2023.107219
10.1145/3180155.3180243
10.1145/3691620.3695484
10.1016/j.jlamp.2022.100826
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s10515-025-00563-z
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7535
ExternalDocumentID 10_1007_s10515_025_00563_z
GrantInformation_xml – fundername: National Natural Science Foundation of China
GroupedDBID -~C
.86
.DC
.VR
06D
0R~
0VY
199
1N0
203
23N
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
NB0
NPVJJ
NQJWS
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
AAOBN
AARHV
AAYTO
AAYXX
ABJCF
ABQSL
ABULA
ACBXY
ADHKG
AEBTG
AEFIE
AEKMD
AFEXP
AFFHD
AFGCZ
AFKRA
AGGDS
AGQPQ
AJBLW
ARAPS
BBWZM
BDATZ
BENPR
BGLVJ
CAG
CCPQU
CITATION
COF
EJD
FINBP
FSGXE
H13
HCIFZ
HZ~
K7-
KOW
M7S
MVM
N2Q
NDZJH
NU0
O9-
OVD
PHGZM
PHGZT
PQGLB
PTHSS
R4E
RNI
RZC
RZE
RZK
S26
S28
SCJ
SCLPG
T16
TEORI
UZXMN
VFIZW
JQ2
ID FETCH-LOGICAL-c272t-34c9b0c03489ce783ae7da4d24dc639f19b2c419837ed6a731748c8c947b6f53
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001595869700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0928-8910
IngestDate Thu Nov 06 14:28:06 EST 2025
Sat Nov 29 07:09:32 EST 2025
Sun Oct 19 01:43:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Null pointer exception
Program slicing
Static analysis
Defect detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-34c9b0c03489ce783ae7da4d24dc639f19b2c419837ed6a731748c8c947b6f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3262752287
PQPubID 2043871
ParticipantIDs proquest_journals_3262752287
crossref_primary_10_1007_s10515_025_00563_z
springer_journals_10_1007_s10515_025_00563_z
PublicationCentury 2000
PublicationDate 2026-06-01
PublicationDateYYYYMMDD 2026-06-01
PublicationDate_xml – month: 06
  year: 2026
  text: 2026-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Automated software engineering
PublicationTitleAbbrev Autom Softw Eng
PublicationYear 2026
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References 563_CR40
563_CR41
563_CR42
563_CR43
563_CR45
M Sridharan (563_CR36) 2007; 42
563_CR46
563_CR47
563_CR37
563_CR38
563_CR39
Z Song (563_CR34) 2023; 160
563_CR51
563_CR52
563_CR10
RS Wahono (563_CR44) 2015; 1
563_CR13
563_CR14
563_CR49
Y-Z Zhang (563_CR50) 2021; 36
C Galindo (563_CR12) 2023; 130
563_CR20
563_CR21
563_CR22
563_CR23
T Boland (563_CR8) 2012; 45
563_CR24
H Do (563_CR11) 2005; 10
563_CR25
563_CR6
563_CR7
563_CR16
J Xu (563_CR48) 2021; 70
Y Jiang (563_CR15) 2023; 49
563_CR17
563_CR5
563_CR18
563_CR19
AD Sawadogo (563_CR33) 2022; 27
563_CR9
563_CR2
563_CR3
563_CR1
563_CR30
563_CR31
563_CR32
J Akram (563_CR4) 2020; 14
563_CR35
563_CR26
563_CR27
563_CR28
563_CR29
References_xml – ident: 563_CR39
– ident: 563_CR1
– ident: 563_CR22
– ident: 563_CR37
  doi: 10.1145/3468264.3468620
– ident: 563_CR32
  doi: 10.1145/3196398.3196473
– ident: 563_CR47
  doi: 10.1109/SANER60148.2024.00093
– ident: 563_CR26
– ident: 563_CR24
  doi: 10.1145/3540250.3549128
– ident: 563_CR7
  doi: 10.1145/3106237.3106255
– ident: 563_CR40
  doi: 10.1109/ICSE.2019.00048
– ident: 563_CR43
  doi: 10.1145/3183519.3183540
– volume: 36
  start-page: 397
  year: 2021
  ident: 563_CR50
  publication-title: J. Comput. Sci. Technol.
  doi: 10.1007/s11390-020-9754-4
– volume: 49
  start-page: 1443
  issue: 4
  year: 2023
  ident: 563_CR15
  publication-title: IEEE Trans. Software Eng.
  doi: 10.1109/TSE.2022.3177713
– ident: 563_CR19
  doi: 10.1145/3510003.3510186
– ident: 563_CR10
  doi: 10.1145/1321631.1321702
– volume: 42
  start-page: 112
  issue: 6
  year: 2007
  ident: 563_CR36
  publication-title: SIGPLAN Not.
  doi: 10.1145/1273442.1250748
– volume: 70
  start-page: 613
  issue: 2
  year: 2021
  ident: 563_CR48
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2020.3040191
– ident: 563_CR25
– ident: 563_CR6
  doi: 10.1145/3558489.3559068
– volume: 10
  start-page: 405
  issue: 4
  year: 2005
  ident: 563_CR11
  publication-title: Empir. Softw. Eng.
  doi: 10.1007/s10664-005-3861-2
– ident: 563_CR21
  doi: 10.1145/3597503.3639162
– ident: 563_CR46
– ident: 563_CR23
  doi: 10.1109/SANER.2019.8667991
– ident: 563_CR35
  doi: 10.1145/1250734.1250748
– ident: 563_CR18
  doi: 10.1109/ASE51524.2021.9678622
– ident: 563_CR14
  doi: 10.5220/0007929201170128
– ident: 563_CR41
  doi: 10.1109/ASE51524.2021.9678535
– volume: 45
  start-page: 88
  issue: 10
  year: 2012
  ident: 563_CR8
  publication-title: Computer
  doi: 10.1109/MC.2012.345
– ident: 563_CR17
  doi: 10.1145/2610384.2628055
– ident: 563_CR52
– ident: 563_CR29
  doi: 10.1145/3236024.3236084
– volume: 14
  start-page: 60
  issue: 1
  year: 2020
  ident: 563_CR4
  publication-title: IET Inf. Secur.
  doi: 10.1049/iet-ifs.2018.5647
– ident: 563_CR16
  doi: 10.1145/2610384.2628055
– ident: 563_CR28
– ident: 563_CR30
  doi: 10.1109/ICMLA.2018.00120
– ident: 563_CR42
  doi: 10.1007/978-3-319-42089-9_44
– ident: 563_CR2
– ident: 563_CR51
  doi: 10.1109/ICSE-SEIP52600.2021.00020
– ident: 563_CR49
  doi: 10.1145/3460319.3464819
– ident: 563_CR13
  doi: 10.1109/ICST.2019.00019
– ident: 563_CR45
  doi: 10.1109/DSN48987.2021.00030
– volume: 27
  start-page: 151
  issue: 6
  year: 2022
  ident: 563_CR33
  publication-title: Empir. Softw. Eng.
  doi: 10.1007/s10664-022-10168-9
– ident: 563_CR3
  doi: 10.1145/3468264.3473123
– ident: 563_CR31
  doi: 10.1109/ICSME.2018.00058
– volume: 160
  start-page: 107219
  year: 2023
  ident: 563_CR34
  publication-title: Inf. Softw. Technol.
  doi: 10.1016/j.infsof.2023.107219
– ident: 563_CR27
– ident: 563_CR38
  doi: 10.1145/3180155.3180243
– ident: 563_CR20
  doi: 10.1145/3691620.3695484
– ident: 563_CR5
– volume: 130
  start-page: 100826
  year: 2023
  ident: 563_CR12
  publication-title: J. Log. Algebraic Methods Program.
  doi: 10.1016/j.jlamp.2022.100826
– volume: 1
  start-page: 1
  issue: 1
  year: 2015
  ident: 563_CR44
  publication-title: J. Softw. Eng.
– ident: 563_CR9
SSID ssj0009699
Score 2.403291
Snippet High-quality repositories containing real-world defects are essential for developing defect-related algorithms. Although plenty of defect repositories exist,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 22
SubjectTerms Algorithms
Artificial Intelligence
Computer Science
Data flow analysis
Defects
Filtration
Graphs
Methods
Open source software
Propagation
Repositories
Software
Software Engineering/Programming and Operating Systems
Title JDExtractor: an automated approach for efficient extraction of defect-related methods in Java projects
URI https://link.springer.com/article/10.1007/s10515-025-00563-z
https://www.proquest.com/docview/3262752287
Volume 33
WOSCitedRecordID wos001595869700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009699
  issn: 0928-8910
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwFLSgMLBQPkWhIA9sYClxnNhmQ0CFOlQIKtQtcvwhdUlRk1aov54XJ1EBwQBLljhW9J6dO8d-dwhdhiZWscsMccJYwkTASAa0iESBlnHGnQ4c82YTfDQSk4l8aorCiva0e7sl6b_Un4rdAHtJZb9a6VdGZLWJtgDuRGXY8PzyupbaTWStsEcFEYCGTanMz318haM1x_y2LerRZtD933vuod2GXeLbejjsow2bH6Bu69yAm4l8iNzw_uG9nHuvnRuscqwW5Qy4qzW4FRnHwGax9QITgEvY1s0hi3jmsLHVKRDiC2HgmdqGusDTHA_VUuHm905xhMaDh_HdI2kcF4imnJYkYlpmgQ4iJqS2XETKcqOYocxooDIulBnVLJSwqrUmURzIBxNaaMl4lrg4OkadfJbbE4RZ6JiOo0oNzbBK5U5SzrUScM2S2IY9dNXGPX2rdTXStYJyFcEUIpj6CKarHuq3qUmbOVakQDwpB_ooeA9dt6lY3_69t9O_NT9DOxRWqvX5sD7qlPOFPUfbellOi_mFH3sf1KnU4g
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BQYILO6KsPnADS1mc2uaGWFRKqRBUiFvkeJG4pKgJFerXM9lUQHCASy5xrGjGznuOPe8BHPsmUpFLDHXCWMqEx2iCtIiGnpZRwp32HCvNJvhgIJ6f5X1dFJY1p92bLcnyS_2p2A2xlxb2q4V-ZUin87DAELEKxfyHx6eZ1G5HVgp7gaAC0bAulfm5j69wNOOY37ZFS7S5Xv3fe67BSs0uyXk1HNZhzqYbsNo4N5B6Im-C611evefj0mvnjKiUqLd8hNzVGtKIjBNks8SWAhOIS8RWzTGLZOSIscUpEFoWwuAzlQ11Rl5S0lMTRerfO9kWDK-vhhddWjsuUB3wIKch0zLxtBcyIbXlIlSWG8VMwIxGKuN8mQSa-RJXtdZ0FEfywYQWWjKedFwUbkMrHaV2BwjzHdNRWKihGVao3MmAc60EXpNOZP02nDRxj18rXY14pqBcRDDGCMZlBONpG_ab1MT1HMtiJJ4BR_ooeBtOm1TMbv_e2-7fmh_BUnd414_7N4PbPVgOcNVanRXbh1Y-frMHsKgn-Us2PizH4QfYmNfG
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BQYgLO6JQwAduYJHFiW1uCKjYVCFRIW6R40XqJa3atEL9euwsSkFwQFxyieNEM7bmTTzzHsCZryIRmVRhw5TGhHkEpxYW4dCTPEqpkZ4hhdgE7fXY-zt_WejiL6rd6yPJsqfBsTRl-eVImcuFxjcbh7GTYnVcliGeL8MKcYX0Ll9_fWtod2Nesu0FDDMbGau2mZ_n-BqaGrz57Yi0iDzdzf9_8xZsVKgTXZfLZBuWdLYDm7WiA6o2-C6Yx9u7j3xcaPBcIZEhMc2HFtNqhWrycWRRLtIF8YR9N9LlcOtdNDRIaVcdgosGGftMKU89QYMMPYqZQNVvn8ke9Lt3_Zt7XCkxYBnQIMchkTz1pBcSxqWmLBSaKkFUQJS0EMf4PA0k8bnNdrWKBbWghDDJJCc0jU0U7kMrG2b6ABDxDZFR6FjSFHHsdzygVApmr2kcab8N57UPklHJt5E0zMrOgom1YFJYMJm3oVO7Kan23iSxgDSgFlYy2oaL2i3N7d9nO_zb8FNYe7ntJs8PvacjWA9sMluWkHWglY-n-hhW5SwfTMYnxZL8BECm4Ko
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=JDExtractor%3A+an+automated+approach+for+efficient+extraction+of+defect-related+methods+in+Java+projects&rft.jtitle=Automated+software+engineering&rft.au=Liu%2C+Tianyang&rft.au=Ye%2C+Jiawei&rft.au=Ji%2C+Weixing&rft.date=2026-06-01&rft.pub=Springer+US&rft.issn=0928-8910&rft.eissn=1573-7535&rft.volume=33&rft.issue=1&rft_id=info:doi/10.1007%2Fs10515-025-00563-z&rft.externalDocID=10_1007_s10515_025_00563_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0928-8910&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0928-8910&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0928-8910&client=summon