Throughput prediction of fifth-generation cellular system using hybrid feature selection and enhanced sequential decision tree machine learning algorithm
This paper proposes enhanced sequential decision tree (ESDT) for the prediction of fifth-generation (5G) cellular network throughput. The dataset which is used as input for machine learning (ML) model without preprocessing steps is called as dataset 1 and contains 49,706 no. of records. Missing valu...
Gespeichert in:
| Veröffentlicht in: | Wireless networks Jg. 31; H. 3; S. 3025 - 3042 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.03.2025
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1022-0038, 1572-8196 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!