Throughput prediction of fifth-generation cellular system using hybrid feature selection and enhanced sequential decision tree machine learning algorithm

This paper proposes enhanced sequential decision tree (ESDT) for the prediction of fifth-generation (5G) cellular network throughput. The dataset which is used as input for machine learning (ML) model without preprocessing steps is called as dataset 1 and contains 49,706 no. of records. Missing valu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless networks Jg. 31; H. 3; S. 3025 - 3042
Hauptverfasser: Sharma, Abhilasha, Pandit, Shweta, Talluri, Salman Raju
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.03.2025
Springer Nature B.V
Schlagworte:
ISSN:1022-0038, 1572-8196
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!