A Learned Proximal Alternating Minimization Algorithm and Its Induced Network for a Class of Two-Block Nonconvex and Nonsmooth Optimization
This work proposes a general learned proximal alternating minimization algorithm, LPAM, for solving learnable two-block nonsmooth and nonconvex optimization problems. We tackle the nonsmoothness by an appropriate smoothing technique with automatic diminishing smoothing effect. For smoothed nonconvex...
Uložené v:
| Vydané v: | Journal of scientific computing Ročník 103; číslo 2; s. 56 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.05.2025
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0885-7474, 1573-7691 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This work proposes a general learned proximal alternating minimization algorithm, LPAM, for solving learnable two-block nonsmooth and nonconvex optimization problems. We tackle the nonsmoothness by an appropriate smoothing technique with automatic diminishing smoothing effect. For smoothed nonconvex problems we modify the proximal alternating linearized minimization (PALM) scheme by incorporating the residual learning architecture, which has proven to be highly effective in deep network training, and employing the block coordinate decent (BCD) iterates as a safeguard for the convergence of the algorithm. We prove that there is a subsequence of the iterates generated by LPAM, which has at least one accumulation point and each accumulation point is a Clarke stationary point. Our method is widely applicable as one can employ various learning problems formulated as two-block optimizations, and is also easy to be extended for solving multi-block nonsmooth and nonconvex optimization problems. The network, whose architecture follows the LPAM exactly, namely LPAM-net, inherits the convergence properties of the algorithm to make the network interpretable. As an example application of LPAM-net, we present the numerical and theoretical results on the application of LPAM-net for joint multi-modal MRI reconstruction with significantly under-sampled
k
-space data. The experimental results indicate the proposed LPAM-net is parameter-efficient and has favourable performance in comparison with some state-of-the-art methods. |
|---|---|
| AbstractList | This work proposes a general learned proximal alternating minimization algorithm, LPAM, for solving learnable two-block nonsmooth and nonconvex optimization problems. We tackle the nonsmoothness by an appropriate smoothing technique with automatic diminishing smoothing effect. For smoothed nonconvex problems we modify the proximal alternating linearized minimization (PALM) scheme by incorporating the residual learning architecture, which has proven to be highly effective in deep network training, and employing the block coordinate decent (BCD) iterates as a safeguard for the convergence of the algorithm. We prove that there is a subsequence of the iterates generated by LPAM, which has at least one accumulation point and each accumulation point is a Clarke stationary point. Our method is widely applicable as one can employ various learning problems formulated as two-block optimizations, and is also easy to be extended for solving multi-block nonsmooth and nonconvex optimization problems. The network, whose architecture follows the LPAM exactly, namely LPAM-net, inherits the convergence properties of the algorithm to make the network interpretable. As an example application of LPAM-net, we present the numerical and theoretical results on the application of LPAM-net for joint multi-modal MRI reconstruction with significantly under-sampled
k
-space data. The experimental results indicate the proposed LPAM-net is parameter-efficient and has favourable performance in comparison with some state-of-the-art methods. This work proposes a general learned proximal alternating minimization algorithm, LPAM, for solving learnable two-block nonsmooth and nonconvex optimization problems. We tackle the nonsmoothness by an appropriate smoothing technique with automatic diminishing smoothing effect. For smoothed nonconvex problems we modify the proximal alternating linearized minimization (PALM) scheme by incorporating the residual learning architecture, which has proven to be highly effective in deep network training, and employing the block coordinate decent (BCD) iterates as a safeguard for the convergence of the algorithm. We prove that there is a subsequence of the iterates generated by LPAM, which has at least one accumulation point and each accumulation point is a Clarke stationary point. Our method is widely applicable as one can employ various learning problems formulated as two-block optimizations, and is also easy to be extended for solving multi-block nonsmooth and nonconvex optimization problems. The network, whose architecture follows the LPAM exactly, namely LPAM-net, inherits the convergence properties of the algorithm to make the network interpretable. As an example application of LPAM-net, we present the numerical and theoretical results on the application of LPAM-net for joint multi-modal MRI reconstruction with significantly under-sampled k-space data. The experimental results indicate the proposed LPAM-net is parameter-efficient and has favourable performance in comparison with some state-of-the-art methods. |
| ArticleNumber | 56 |
| Author | Zhang, Lei Liu, Lezhi Chen, Yunmei |
| Author_xml | – sequence: 1 givenname: Yunmei orcidid: 0000-0002-4716-303X surname: Chen fullname: Chen, Yunmei email: yun@ufl.edu organization: Department of Mathematics, University of Florida – sequence: 2 givenname: Lezhi surname: Liu fullname: Liu, Lezhi organization: Department of Mathematics, University of Florida – sequence: 3 givenname: Lei surname: Zhang fullname: Zhang, Lei organization: Department of Mathematics, University of Florida |
| BookMark | eNp9kM1OAjEYRRuDiYC-gKsmrkf7M0OnSyT-kCC6wHVTOi0MDC22RdBX8KUtYHTnomm-9J77pacDWtZZDcAlRtcYIXYTMOK4yBDZn5LlWXEC2rhgNGM9jlugjcqyyFjO8jPQCWGBEOIlJ23w1YcjLb3VFXzxblevZAP7TdTeyljbGXyqbb2qP9PgbHqYOV_H-QpKW8FhDHBoq41K7FjHrfNLaJyHEg4aGQJ0Bk62LrttnFrCsbPK2Xe9O6BpCivn4hw-r-Nv_zk4NbIJ-uLn7oLX-7vJ4DEbPT8MB_1RpggjMaMo51JqNpVEKUoor0qClKmmPcqwJqXJp6rCKscoL4whZc4UrypODEeK9KSmXXB17F1797bRIYqF26QPN0FQXPYw5WlPSpFjSnkXgtdGrH3S4z8ERmIvXRyliyRdHKSLIkH0CIUUtjPt_6r_ob4BpVaIwA |
| Cites_doi | 10.1007/978-3-030-32226-7_4 10.1007/978-3-031-16446-0_34 10.1137/120887679 10.1109/IVMSPW.2018.8448694 10.1109/TIP.2019.2937734 10.1145/2488608.2488693 10.1109/FOCS.2014.75 10.1109/TMI.2023.3314747 10.48550/ARXIV.2104.12939 10.1109/TMI.2018.2865356 10.1287/moor.1100.0449 10.1016/0041-5553(64)90137-5 10.1109/TMI.2023.3314008 10.1007/s10107-011-0484-9 10.1007/s10107-013-0701-9 10.1007/978-3-031-43999-5_17 10.1109/CVPR.2016.90 10.1109/CVPR.2017.38 10.1109/ICASSP.2009.4960116 10.1137/20M1353368 10.1137/16M1064064 10.1016/j.jmr.2022.107354 10.1109/TIP.2011.2175740 10.1002/mp.14006 10.1016/j.sigpro.2011.10.012 10.1109/83.551699 10.1109/TMI.2014.2377694 10.1007/978-3-319-46493-0_38 10.1007/978-3-319-91578-4 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. May 2025 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. May 2025 |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s10915-025-02874-5 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Mathematics |
| EISSN | 1573-7691 |
| ExternalDocumentID | 10_1007_s10915_025_02874_5 |
| GrantInformation_xml | – fundername: National Science Foundation grantid: DMS-2152961 funderid: http://dx.doi.org/10.13039/100000001 – fundername: Simons Foundation grantid: 584918 funderid: http://dx.doi.org/10.13039/100000893 |
| GroupedDBID | -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFFNX AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF- PHGZM PHGZT PQGLB PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 ZMTXR ZWQNP ~A9 ~EX AAYXX AFFHD CITATION JQ2 |
| ID | FETCH-LOGICAL-c272t-3049aae7ba2cc3239d820cfdb6371e28f4bcd1c41045ff2847c9dd92f90c26ae3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001459309400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-7474 |
| IngestDate | Wed Nov 05 04:11:12 EST 2025 Sat Nov 29 07:59:52 EST 2025 Mon Jul 21 06:06:37 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Deep learning 68U10 65K05 MRI Image reconstruction Learned alternating minimization algorithm Nonconvex nonsmooth optimization 65K10 90C26 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c272t-3049aae7ba2cc3239d820cfdb6371e28f4bcd1c41045ff2847c9dd92f90c26ae3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4716-303X |
| PQID | 3186139272 |
| PQPubID | 2043771 |
| ParticipantIDs | proquest_journals_3186139272 crossref_primary_10_1007_s10915_025_02874_5 springer_journals_10_1007_s10915_025_02874_5 |
| PublicationCentury | 2000 |
| PublicationDate | 20250500 2025-05-00 20250501 |
| PublicationDateYYYYMMDD | 2025-05-01 |
| PublicationDate_xml | – month: 5 year: 2025 text: 20250500 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Journal of scientific computing |
| PublicationTitleAbbrev | J Sci Comput |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | 2874_CR12 2874_CR34 2874_CR13 2874_CR35 2874_CR14 2874_CR15 V Abolghasemi (2874_CR1) 2012; 92 HK Aggarwal (2874_CR2) 2018; 38 D Guo (2874_CR17) 2023; 346 2874_CR33 A Beck (2874_CR5) 2013; 23 T Pock (2874_CR30) 2016; 9 W Bian (2874_CR7) 2022; 13436 H Attouch (2874_CR3) 2010; 35 J Bolte (2874_CR8) 2014; 146 F Sroubek (2874_CR32) 2011; 21 2874_CR18 2874_CR19 Y Chen (2874_CR10) 2021; 14 IY Chun (2874_CR11) 2020; 29 2874_CR23 2874_CR24 2874_CR20 2874_CR21 2874_CR22 Y Nesterov (2874_CR26) 2018 2874_CR6 WJ Do (2874_CR16) 2020; 47 P Charbonnier (2874_CR9) 1997; 6 2874_CR27 DP Palomar (2874_CR28) 2010 H Attouch (2874_CR4) 2013; 137 BH Menze (2874_CR25) 2014; 34 2874_CR29 BT Polyak (2874_CR31) 1964; 4 |
| References_xml | – ident: 2874_CR13 doi: 10.1007/978-3-030-32226-7_4 – volume: 13436 start-page: 354 year: 2022 ident: 2874_CR7 publication-title: Lect. Notes Comput. Sci. doi: 10.1007/978-3-031-16446-0_34 – ident: 2874_CR22 – volume: 23 start-page: 2037 issue: 4 year: 2013 ident: 2874_CR5 publication-title: SIAM J. Optim. doi: 10.1137/120887679 – ident: 2874_CR14 doi: 10.1109/IVMSPW.2018.8448694 – volume: 29 start-page: 2108 year: 2020 ident: 2874_CR11 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2937734 – ident: 2874_CR21 doi: 10.1145/2488608.2488693 – ident: 2874_CR19 doi: 10.1109/FOCS.2014.75 – ident: 2874_CR18 doi: 10.1109/TMI.2023.3314747 – ident: 2874_CR35 doi: 10.48550/ARXIV.2104.12939 – ident: 2874_CR6 – volume: 38 start-page: 394 issue: 2 year: 2018 ident: 2874_CR2 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2865356 – volume: 35 start-page: 438 issue: 2 year: 2010 ident: 2874_CR3 publication-title: Math. Oper. Res. doi: 10.1287/moor.1100.0449 – ident: 2874_CR27 – volume: 4 start-page: 1 issue: 5 year: 1964 ident: 2874_CR31 publication-title: USSR Comput. Math. Math. Phys. doi: 10.1016/0041-5553(64)90137-5 – ident: 2874_CR34 doi: 10.1109/TMI.2023.3314008 – volume: 137 start-page: 91 issue: 1–2 year: 2013 ident: 2874_CR4 publication-title: Math. Program. doi: 10.1007/s10107-011-0484-9 – volume: 146 start-page: 459 issue: 1–2 year: 2014 ident: 2874_CR8 publication-title: Math. Program. doi: 10.1007/s10107-013-0701-9 – ident: 2874_CR15 doi: 10.1007/978-3-031-43999-5_17 – ident: 2874_CR20 doi: 10.1109/CVPR.2016.90 – ident: 2874_CR24 doi: 10.1109/CVPR.2017.38 – ident: 2874_CR29 doi: 10.1109/ICASSP.2009.4960116 – volume: 14 start-page: 1532 issue: 4 year: 2021 ident: 2874_CR10 publication-title: SIAM J. Imag. Sci. doi: 10.1137/20M1353368 – volume-title: Convex optimization in signal processing and communications year: 2010 ident: 2874_CR28 – volume: 9 start-page: 1756 issue: 4 year: 2016 ident: 2874_CR30 publication-title: SIAM J. Imag. Sci. doi: 10.1137/16M1064064 – volume: 346 start-page: 107354 year: 2023 ident: 2874_CR17 publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2022.107354 – volume: 21 start-page: 1687 issue: 4 year: 2011 ident: 2874_CR32 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2011.2175740 – volume: 47 start-page: 983 issue: 3 year: 2020 ident: 2874_CR16 publication-title: Med. Phys. doi: 10.1002/mp.14006 – volume: 92 start-page: 999 issue: 4 year: 2012 ident: 2874_CR1 publication-title: Signal Process. doi: 10.1016/j.sigpro.2011.10.012 – volume: 6 start-page: 298 issue: 2 year: 1997 ident: 2874_CR9 publication-title: IEEE Trans. Image Process. doi: 10.1109/83.551699 – volume: 34 start-page: 1993 issue: 10 year: 2014 ident: 2874_CR25 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2014.2377694 – ident: 2874_CR33 – ident: 2874_CR12 – ident: 2874_CR23 doi: 10.1007/978-3-319-46493-0_38 – volume-title: Lectures on convex optimization year: 2018 ident: 2874_CR26 doi: 10.1007/978-3-319-91578-4 |
| SSID | ssj0009892 |
| Score | 2.3998911 |
| Snippet | This work proposes a general learned proximal alternating minimization algorithm, LPAM, for solving learnable two-block nonsmooth and nonconvex optimization... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 56 |
| SubjectTerms | Accumulation Algorithms Computational Mathematics and Numerical Analysis Computer vision Convergence Inverse problems Learning Machine learning Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Neural networks Optimization Optimization algorithms Smoothing Sparsity Theoretical |
| Title | A Learned Proximal Alternating Minimization Algorithm and Its Induced Network for a Class of Two-Block Nonconvex and Nonsmooth Optimization |
| URI | https://link.springer.com/article/10.1007/s10915-025-02874-5 https://www.proquest.com/docview/3186139272 |
| Volume | 103 |
| WOSCitedRecordID | wos001459309400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Standard Collection customDbUrl: eissn: 1573-7691 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Nb9Mw9GlsHODAtgKi0E0-cACBpcb59LGgVZu0lQpKtVvkj3iLoAlqsq3_YX-aZ9dZAcGBHXKIHD9Z79t5XwCvg8QYNHsBlYEc0ohJRXmmYmrEMBEsTLVxWb7z03Qyyc7P-dQXhTVdtnsXknSa-pdiNx7YamL7ZGlE4wewg-YuswMbPn-Zb1rtZm4UMopPTNFZjnypzN9h_G6ONj7mH2FRZ23Gu_c75x488d4lGa3ZYR-2iqoHj8_uWrM2Pdj30tyQN77l9NuncDsirtFqocl0Wa_KhQXy3f8rrC7IWVmVC1-xiQsX9bJsLxdEVJqctA2x8z8U7p2sc8oJOsJEEDdvk9SGzG5q-gGN5jcyqSuX5r5yW_GtWdTIKuQTKq4O_jP4Oj6afTymfkwDVSxlLbWBOiGKVAqmVMhCrtGrUEbLJEyDgmUmkkoHKsKLX2yMNYeKa82Z4UPFElGEz2G7qqviBRC83TCuUy5kxqKkkDyUgWJhrELFAsFFH9511Mp_rLtx5Ju-yxbvOeI9d3jP4z4MOoLmXjKbHHUYejAcT96H9x0BN8v_hvby_z5_BY-Y4wGbGzmA7XZ5VRzAQ3Xdls3y0HHsT6635n8 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEJ8IkogPCojhFGEfeMDoJtft5z6ikUC4qwROwluzH11s4Fpzrcr_4D_t7N7WE6MP8tCHZruTzezszGxn5jcAe0FiDJq9gMpADmnEpKI8UzE1YpgIFqbauCzfi1Ga59nlJT_1RWFtn-3ehySdpv6t2I0HtprYPlka0XgJHkZosSxi_tn5xQJqN3OtkPH4xBSd5ciXyvydxl1ztPAx_wiLOmtz-PR-61yDJ967JAdzcViHB2W9AY_Hv6BZ2w1Y96e5Jfsecvr1M_hxQBzQaqnJ6ay5raaWyI3_V1hfkXFVV1NfsYkDV82s6j5Piag1Oe5aYvt_KJybz3PKCTrCRBDXb5M0hky-N_QdGs1rkje1S3O_dVPxrZ02KCrkIyqunv4mfDr8MHl_RH2bBqpYyjpqA3VClKkUTKmQhVyjV6GMlkmYBiXLTCSVDlSEF7_YGGsOFdeaM8OHiiWiDJ_Dct3U5RYQvN0wrlMuZMaipJQ8lIFiYaxCxQLBxQDe9LtVfJmjcRQL3GXL9wL5Xji-F_EAtvsNLfzJbAvUYejBcFz5AN72G7gY_je1F__3-S48OpqMR8XoOD95CavMyYPNk9yG5W72tXwFK-pbV7WzHSe9PwGE5elj |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RqKr2wLvqAi0-9EBVLDbO00fasgIVwkpQxC3yI4ao3QRt0sJ_4E8z9iZdqMoBccghcjyyZsaecWbmG4CPXmQMmj2PSk_2acCkojxRITWiHwnmx9q4LN-zwzhNk_NzPrxXxe-y3buQ5KSmwaI0lc3OlTY79wrfuGcri-2TxAENX8BcYBPp7X395GwKu5u4tsi4lUKKjnPQls38n8ZD0zT1N_8JkTrLM1h4_poXYb71OsnuRE2WYCYvl-HN0V_I1noZltpdXpOtFor60wrc7hIHwJprMhxXN8XIEvnV_kMsL8hRURajtpITBy6qcdFcjogoNTloamL7giicm05yzQk6yEQQ14eTVIacXlf0CxrTnyStSpf-fuOm4ls9qlCFyDEeaB39Vfgx2Dv9uk_b9g1UsZg11AbwhMhjKZhSPvO5Rm9DGS0jP_ZylphAKu0pFFsQGmPNpOJac2Z4X7FI5P5bmC2rMn8HBG89jOuYC5mwIMol96WnmB8qXzFPcNGDz53ksqsJSkc2xWO2fM-Q75njexb2YKMTbtbu2DrDsw09G44r78F2J8zp8OPU1p72-Sa8Gn4bZIcH6fd1eM2cOtj0yQ2Ybca_8_fwUv1pinr8wSnyHbtX8kc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Learned+Proximal+Alternating+Minimization+Algorithm+and+Its+Induced+Network+for+a+Class+of+Two-Block+Nonconvex+and+Nonsmooth+Optimization&rft.jtitle=Journal+of+scientific+computing&rft.date=2025-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=103&rft.issue=2&rft.spage=56&rft_id=info:doi/10.1007%2Fs10915-025-02874-5&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon |