A Learned Proximal Alternating Minimization Algorithm and Its Induced Network for a Class of Two-Block Nonconvex and Nonsmooth Optimization

This work proposes a general learned proximal alternating minimization algorithm, LPAM, for solving learnable two-block nonsmooth and nonconvex optimization problems. We tackle the nonsmoothness by an appropriate smoothing technique with automatic diminishing smoothing effect. For smoothed nonconvex...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of scientific computing Ročník 103; číslo 2; s. 56
Hlavní autori: Chen, Yunmei, Liu, Lezhi, Zhang, Lei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.05.2025
Springer Nature B.V
Predmet:
ISSN:0885-7474, 1573-7691
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This work proposes a general learned proximal alternating minimization algorithm, LPAM, for solving learnable two-block nonsmooth and nonconvex optimization problems. We tackle the nonsmoothness by an appropriate smoothing technique with automatic diminishing smoothing effect. For smoothed nonconvex problems we modify the proximal alternating linearized minimization (PALM) scheme by incorporating the residual learning architecture, which has proven to be highly effective in deep network training, and employing the block coordinate decent (BCD) iterates as a safeguard for the convergence of the algorithm. We prove that there is a subsequence of the iterates generated by LPAM, which has at least one accumulation point and each accumulation point is a Clarke stationary point. Our method is widely applicable as one can employ various learning problems formulated as two-block optimizations, and is also easy to be extended for solving multi-block nonsmooth and nonconvex optimization problems. The network, whose architecture follows the LPAM exactly, namely LPAM-net, inherits the convergence properties of the algorithm to make the network interpretable. As an example application of LPAM-net, we present the numerical and theoretical results on the application of LPAM-net for joint multi-modal MRI reconstruction with significantly under-sampled k -space data. The experimental results indicate the proposed LPAM-net is parameter-efficient and has favourable performance in comparison with some state-of-the-art methods.
AbstractList This work proposes a general learned proximal alternating minimization algorithm, LPAM, for solving learnable two-block nonsmooth and nonconvex optimization problems. We tackle the nonsmoothness by an appropriate smoothing technique with automatic diminishing smoothing effect. For smoothed nonconvex problems we modify the proximal alternating linearized minimization (PALM) scheme by incorporating the residual learning architecture, which has proven to be highly effective in deep network training, and employing the block coordinate decent (BCD) iterates as a safeguard for the convergence of the algorithm. We prove that there is a subsequence of the iterates generated by LPAM, which has at least one accumulation point and each accumulation point is a Clarke stationary point. Our method is widely applicable as one can employ various learning problems formulated as two-block optimizations, and is also easy to be extended for solving multi-block nonsmooth and nonconvex optimization problems. The network, whose architecture follows the LPAM exactly, namely LPAM-net, inherits the convergence properties of the algorithm to make the network interpretable. As an example application of LPAM-net, we present the numerical and theoretical results on the application of LPAM-net for joint multi-modal MRI reconstruction with significantly under-sampled k -space data. The experimental results indicate the proposed LPAM-net is parameter-efficient and has favourable performance in comparison with some state-of-the-art methods.
This work proposes a general learned proximal alternating minimization algorithm, LPAM, for solving learnable two-block nonsmooth and nonconvex optimization problems. We tackle the nonsmoothness by an appropriate smoothing technique with automatic diminishing smoothing effect. For smoothed nonconvex problems we modify the proximal alternating linearized minimization (PALM) scheme by incorporating the residual learning architecture, which has proven to be highly effective in deep network training, and employing the block coordinate decent (BCD) iterates as a safeguard for the convergence of the algorithm. We prove that there is a subsequence of the iterates generated by LPAM, which has at least one accumulation point and each accumulation point is a Clarke stationary point. Our method is widely applicable as one can employ various learning problems formulated as two-block optimizations, and is also easy to be extended for solving multi-block nonsmooth and nonconvex optimization problems. The network, whose architecture follows the LPAM exactly, namely LPAM-net, inherits the convergence properties of the algorithm to make the network interpretable. As an example application of LPAM-net, we present the numerical and theoretical results on the application of LPAM-net for joint multi-modal MRI reconstruction with significantly under-sampled k-space data. The experimental results indicate the proposed LPAM-net is parameter-efficient and has favourable performance in comparison with some state-of-the-art methods.
ArticleNumber 56
Author Zhang, Lei
Liu, Lezhi
Chen, Yunmei
Author_xml – sequence: 1
  givenname: Yunmei
  orcidid: 0000-0002-4716-303X
  surname: Chen
  fullname: Chen, Yunmei
  email: yun@ufl.edu
  organization: Department of Mathematics, University of Florida
– sequence: 2
  givenname: Lezhi
  surname: Liu
  fullname: Liu, Lezhi
  organization: Department of Mathematics, University of Florida
– sequence: 3
  givenname: Lei
  surname: Zhang
  fullname: Zhang, Lei
  organization: Department of Mathematics, University of Florida
BookMark eNp9kM1OAjEYRRuDiYC-gKsmrkf7M0OnSyT-kCC6wHVTOi0MDC22RdBX8KUtYHTnomm-9J77pacDWtZZDcAlRtcYIXYTMOK4yBDZn5LlWXEC2rhgNGM9jlugjcqyyFjO8jPQCWGBEOIlJ23w1YcjLb3VFXzxblevZAP7TdTeyljbGXyqbb2qP9PgbHqYOV_H-QpKW8FhDHBoq41K7FjHrfNLaJyHEg4aGQJ0Bk62LrttnFrCsbPK2Xe9O6BpCivn4hw-r-Nv_zk4NbIJ-uLn7oLX-7vJ4DEbPT8MB_1RpggjMaMo51JqNpVEKUoor0qClKmmPcqwJqXJp6rCKscoL4whZc4UrypODEeK9KSmXXB17F1797bRIYqF26QPN0FQXPYw5WlPSpFjSnkXgtdGrH3S4z8ERmIvXRyliyRdHKSLIkH0CIUUtjPt_6r_ob4BpVaIwA
Cites_doi 10.1007/978-3-030-32226-7_4
10.1007/978-3-031-16446-0_34
10.1137/120887679
10.1109/IVMSPW.2018.8448694
10.1109/TIP.2019.2937734
10.1145/2488608.2488693
10.1109/FOCS.2014.75
10.1109/TMI.2023.3314747
10.48550/ARXIV.2104.12939
10.1109/TMI.2018.2865356
10.1287/moor.1100.0449
10.1016/0041-5553(64)90137-5
10.1109/TMI.2023.3314008
10.1007/s10107-011-0484-9
10.1007/s10107-013-0701-9
10.1007/978-3-031-43999-5_17
10.1109/CVPR.2016.90
10.1109/CVPR.2017.38
10.1109/ICASSP.2009.4960116
10.1137/20M1353368
10.1137/16M1064064
10.1016/j.jmr.2022.107354
10.1109/TIP.2011.2175740
10.1002/mp.14006
10.1016/j.sigpro.2011.10.012
10.1109/83.551699
10.1109/TMI.2014.2377694
10.1007/978-3-319-46493-0_38
10.1007/978-3-319-91578-4
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. May 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. May 2025
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s10915-025-02874-5
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1573-7691
ExternalDocumentID 10_1007_s10915_025_02874_5
GrantInformation_xml – fundername: National Science Foundation
  grantid: DMS-2152961
  funderid: http://dx.doi.org/10.13039/100000001
– fundername: Simons Foundation
  grantid: 584918
  funderid: http://dx.doi.org/10.13039/100000893
GroupedDBID -Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFNX
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF-
PHGZM
PHGZT
PQGLB
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
ZMTXR
ZWQNP
~A9
~EX
AAYXX
AFFHD
CITATION
JQ2
ID FETCH-LOGICAL-c272t-3049aae7ba2cc3239d820cfdb6371e28f4bcd1c41045ff2847c9dd92f90c26ae3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001459309400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-7474
IngestDate Wed Nov 05 04:11:12 EST 2025
Sat Nov 29 07:59:52 EST 2025
Mon Jul 21 06:06:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Deep learning
68U10
65K05
MRI Image reconstruction
Learned alternating minimization algorithm
Nonconvex nonsmooth optimization
65K10
90C26
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-3049aae7ba2cc3239d820cfdb6371e28f4bcd1c41045ff2847c9dd92f90c26ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4716-303X
PQID 3186139272
PQPubID 2043771
ParticipantIDs proquest_journals_3186139272
crossref_primary_10_1007_s10915_025_02874_5
springer_journals_10_1007_s10915_025_02874_5
PublicationCentury 2000
PublicationDate 20250500
2025-05-00
20250501
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 5
  year: 2025
  text: 20250500
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of scientific computing
PublicationTitleAbbrev J Sci Comput
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References 2874_CR12
2874_CR34
2874_CR13
2874_CR35
2874_CR14
2874_CR15
V Abolghasemi (2874_CR1) 2012; 92
HK Aggarwal (2874_CR2) 2018; 38
D Guo (2874_CR17) 2023; 346
2874_CR33
A Beck (2874_CR5) 2013; 23
T Pock (2874_CR30) 2016; 9
W Bian (2874_CR7) 2022; 13436
H Attouch (2874_CR3) 2010; 35
J Bolte (2874_CR8) 2014; 146
F Sroubek (2874_CR32) 2011; 21
2874_CR18
2874_CR19
Y Chen (2874_CR10) 2021; 14
IY Chun (2874_CR11) 2020; 29
2874_CR23
2874_CR24
2874_CR20
2874_CR21
2874_CR22
Y Nesterov (2874_CR26) 2018
2874_CR6
WJ Do (2874_CR16) 2020; 47
P Charbonnier (2874_CR9) 1997; 6
2874_CR27
DP Palomar (2874_CR28) 2010
H Attouch (2874_CR4) 2013; 137
BH Menze (2874_CR25) 2014; 34
2874_CR29
BT Polyak (2874_CR31) 1964; 4
References_xml – ident: 2874_CR13
  doi: 10.1007/978-3-030-32226-7_4
– volume: 13436
  start-page: 354
  year: 2022
  ident: 2874_CR7
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/978-3-031-16446-0_34
– ident: 2874_CR22
– volume: 23
  start-page: 2037
  issue: 4
  year: 2013
  ident: 2874_CR5
  publication-title: SIAM J. Optim.
  doi: 10.1137/120887679
– ident: 2874_CR14
  doi: 10.1109/IVMSPW.2018.8448694
– volume: 29
  start-page: 2108
  year: 2020
  ident: 2874_CR11
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2937734
– ident: 2874_CR21
  doi: 10.1145/2488608.2488693
– ident: 2874_CR19
  doi: 10.1109/FOCS.2014.75
– ident: 2874_CR18
  doi: 10.1109/TMI.2023.3314747
– ident: 2874_CR35
  doi: 10.48550/ARXIV.2104.12939
– ident: 2874_CR6
– volume: 38
  start-page: 394
  issue: 2
  year: 2018
  ident: 2874_CR2
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2865356
– volume: 35
  start-page: 438
  issue: 2
  year: 2010
  ident: 2874_CR3
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1100.0449
– ident: 2874_CR27
– volume: 4
  start-page: 1
  issue: 5
  year: 1964
  ident: 2874_CR31
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(64)90137-5
– ident: 2874_CR34
  doi: 10.1109/TMI.2023.3314008
– volume: 137
  start-page: 91
  issue: 1–2
  year: 2013
  ident: 2874_CR4
  publication-title: Math. Program.
  doi: 10.1007/s10107-011-0484-9
– volume: 146
  start-page: 459
  issue: 1–2
  year: 2014
  ident: 2874_CR8
  publication-title: Math. Program.
  doi: 10.1007/s10107-013-0701-9
– ident: 2874_CR15
  doi: 10.1007/978-3-031-43999-5_17
– ident: 2874_CR20
  doi: 10.1109/CVPR.2016.90
– ident: 2874_CR24
  doi: 10.1109/CVPR.2017.38
– ident: 2874_CR29
  doi: 10.1109/ICASSP.2009.4960116
– volume: 14
  start-page: 1532
  issue: 4
  year: 2021
  ident: 2874_CR10
  publication-title: SIAM J. Imag. Sci.
  doi: 10.1137/20M1353368
– volume-title: Convex optimization in signal processing and communications
  year: 2010
  ident: 2874_CR28
– volume: 9
  start-page: 1756
  issue: 4
  year: 2016
  ident: 2874_CR30
  publication-title: SIAM J. Imag. Sci.
  doi: 10.1137/16M1064064
– volume: 346
  start-page: 107354
  year: 2023
  ident: 2874_CR17
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2022.107354
– volume: 21
  start-page: 1687
  issue: 4
  year: 2011
  ident: 2874_CR32
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2011.2175740
– volume: 47
  start-page: 983
  issue: 3
  year: 2020
  ident: 2874_CR16
  publication-title: Med. Phys.
  doi: 10.1002/mp.14006
– volume: 92
  start-page: 999
  issue: 4
  year: 2012
  ident: 2874_CR1
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2011.10.012
– volume: 6
  start-page: 298
  issue: 2
  year: 1997
  ident: 2874_CR9
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.551699
– volume: 34
  start-page: 1993
  issue: 10
  year: 2014
  ident: 2874_CR25
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2377694
– ident: 2874_CR33
– ident: 2874_CR12
– ident: 2874_CR23
  doi: 10.1007/978-3-319-46493-0_38
– volume-title: Lectures on convex optimization
  year: 2018
  ident: 2874_CR26
  doi: 10.1007/978-3-319-91578-4
SSID ssj0009892
Score 2.3998911
Snippet This work proposes a general learned proximal alternating minimization algorithm, LPAM, for solving learnable two-block nonsmooth and nonconvex optimization...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 56
SubjectTerms Accumulation
Algorithms
Computational Mathematics and Numerical Analysis
Computer vision
Convergence
Inverse problems
Learning
Machine learning
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Neural networks
Optimization
Optimization algorithms
Smoothing
Sparsity
Theoretical
Title A Learned Proximal Alternating Minimization Algorithm and Its Induced Network for a Class of Two-Block Nonconvex and Nonsmooth Optimization
URI https://link.springer.com/article/10.1007/s10915-025-02874-5
https://www.proquest.com/docview/3186139272
Volume 103
WOSCitedRecordID wos001459309400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Standard Collection
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Nb9Mw9GlsHODAtgKi0E0-cACBpcb59LGgVZu0lQpKtVvkj3iLoAlqsq3_YX-aZ9dZAcGBHXKIHD9Z79t5XwCvg8QYNHsBlYEc0ohJRXmmYmrEMBEsTLVxWb7z03Qyyc7P-dQXhTVdtnsXknSa-pdiNx7YamL7ZGlE4wewg-YuswMbPn-Zb1rtZm4UMopPTNFZjnypzN9h_G6ONj7mH2FRZ23Gu_c75x488d4lGa3ZYR-2iqoHj8_uWrM2Pdj30tyQN77l9NuncDsirtFqocl0Wa_KhQXy3f8rrC7IWVmVC1-xiQsX9bJsLxdEVJqctA2x8z8U7p2sc8oJOsJEEDdvk9SGzG5q-gGN5jcyqSuX5r5yW_GtWdTIKuQTKq4O_jP4Oj6afTymfkwDVSxlLbWBOiGKVAqmVMhCrtGrUEbLJEyDgmUmkkoHKsKLX2yMNYeKa82Z4UPFElGEz2G7qqviBRC83TCuUy5kxqKkkDyUgWJhrELFAsFFH9511Mp_rLtx5Ju-yxbvOeI9d3jP4z4MOoLmXjKbHHUYejAcT96H9x0BN8v_hvby_z5_BY-Y4wGbGzmA7XZ5VRzAQ3Xdls3y0HHsT6635n8
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEJ8IkogPCojhFGEfeMDoJtft5z6ikUC4qwROwluzH11s4Fpzrcr_4D_t7N7WE6MP8tCHZruTzezszGxn5jcAe0FiDJq9gMpADmnEpKI8UzE1YpgIFqbauCzfi1Ga59nlJT_1RWFtn-3ehySdpv6t2I0HtprYPlka0XgJHkZosSxi_tn5xQJqN3OtkPH4xBSd5ciXyvydxl1ztPAx_wiLOmtz-PR-61yDJ967JAdzcViHB2W9AY_Hv6BZ2w1Y96e5Jfsecvr1M_hxQBzQaqnJ6ay5raaWyI3_V1hfkXFVV1NfsYkDV82s6j5Piag1Oe5aYvt_KJybz3PKCTrCRBDXb5M0hky-N_QdGs1rkje1S3O_dVPxrZ02KCrkIyqunv4mfDr8MHl_RH2bBqpYyjpqA3VClKkUTKmQhVyjV6GMlkmYBiXLTCSVDlSEF7_YGGsOFdeaM8OHiiWiDJ_Dct3U5RYQvN0wrlMuZMaipJQ8lIFiYaxCxQLBxQDe9LtVfJmjcRQL3GXL9wL5Xji-F_EAtvsNLfzJbAvUYejBcFz5AN72G7gY_je1F__3-S48OpqMR8XoOD95CavMyYPNk9yG5W72tXwFK-pbV7WzHSe9PwGE5elj
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RqKr2wLvqAi0-9EBVLDbO00fasgIVwkpQxC3yI4ao3QRt0sJ_4E8z9iZdqMoBccghcjyyZsaecWbmG4CPXmQMmj2PSk_2acCkojxRITWiHwnmx9q4LN-zwzhNk_NzPrxXxe-y3buQ5KSmwaI0lc3OlTY79wrfuGcri-2TxAENX8BcYBPp7X395GwKu5u4tsi4lUKKjnPQls38n8ZD0zT1N_8JkTrLM1h4_poXYb71OsnuRE2WYCYvl-HN0V_I1noZltpdXpOtFor60wrc7hIHwJprMhxXN8XIEvnV_kMsL8hRURajtpITBy6qcdFcjogoNTloamL7giicm05yzQk6yEQQ14eTVIacXlf0CxrTnyStSpf-fuOm4ls9qlCFyDEeaB39Vfgx2Dv9uk_b9g1UsZg11AbwhMhjKZhSPvO5Rm9DGS0jP_ZylphAKu0pFFsQGmPNpOJac2Z4X7FI5P5bmC2rMn8HBG89jOuYC5mwIMol96WnmB8qXzFPcNGDz53ksqsJSkc2xWO2fM-Q75njexb2YKMTbtbu2DrDsw09G44r78F2J8zp8OPU1p72-Sa8Gn4bZIcH6fd1eM2cOtj0yQ2Ybca_8_fwUv1pinr8wSnyHbtX8kc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Learned+Proximal+Alternating+Minimization+Algorithm+and+Its+Induced+Network+for+a+Class+of+Two-Block+Nonconvex+and+Nonsmooth+Optimization&rft.jtitle=Journal+of+scientific+computing&rft.date=2025-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=103&rft.issue=2&rft.spage=56&rft_id=info:doi/10.1007%2Fs10915-025-02874-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon