Multi-dimensional assessment of flood susceptibility drivers in the urban watershed of Guwahati

Floods are a critical natural disaster causing widespread global devastation, exacerbated by the interaction of natural hydrological phenomena and human activities, particularly in rapidly urbanizing areas like Guwahati, India. The present study systematically examines the influence of sixteen envir...

Full description

Saved in:
Bibliographic Details
Published in:Acta geophysica Vol. 73; no. 6; pp. 5815 - 5837
Main Authors: Ahmed, Ishita Afreen, Talukdar, Swapan, Naikoo, Mohd Waseem, Shahfahad, Rahman, Atiqur
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01.12.2025
Springer Nature B.V
Subjects:
ISSN:1895-7455, 1895-6572, 1895-7455
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Floods are a critical natural disaster causing widespread global devastation, exacerbated by the interaction of natural hydrological phenomena and human activities, particularly in rapidly urbanizing areas like Guwahati, India. The present study systematically examines the influence of sixteen environmental and socioeconomic parameters on flood dynamics using a comprehensive modeling framework that combines statistical analysis, advanced machine learning (ML) algorithms, and four feature selection methods: genetic algorithm (GA), Boruta, recursive feature elimination (RFE), and recursive partitioning (Rpart). The application of ML models—support vector machine (SVM) and random forest (RF)—with GA-derived parameters resulted in high predictive performance (accuracy: 0.892; precision: 0.887; recall: 0.868), while deep neural networks (DNNs) integrated with explainable artificial intelligence (XAI) enabled robust sensitivity analysis. The results show a strong positive correlation between the topographic wetness index (TWI) and land use and land cover (LULC) with flooding events. Conversely, factors such as proximity to agricultural land and built-up areas show a negative correlation. LULC, precipitation, distance to built-up areas, and population density were identified as important factors influencing inundation patterns. Furthermore, rainfall, LULC, and proximity to built-up areas emerged as key predictors, with SHAP values highlighting rainfall as the most influential driver of flood risk. Spatial analysis delineated approximately 773 km 2 as very low and 38.47 km 2 as very high susceptibility zones. These findings of the study offer actionable insights for urban planners, policymakers, and disaster management authorities to design targeted mitigation strategies, inform zoning regulations, and prioritize resilient infrastructure development. The approach also contributes to broader urban climate resilience strategies, aligning with SDG 11 and SDG 13 objectives.
AbstractList Floods are a critical natural disaster causing widespread global devastation, exacerbated by the interaction of natural hydrological phenomena and human activities, particularly in rapidly urbanizing areas like Guwahati, India. The present study systematically examines the influence of sixteen environmental and socioeconomic parameters on flood dynamics using a comprehensive modeling framework that combines statistical analysis, advanced machine learning (ML) algorithms, and four feature selection methods: genetic algorithm (GA), Boruta, recursive feature elimination (RFE), and recursive partitioning (Rpart). The application of ML models—support vector machine (SVM) and random forest (RF)—with GA-derived parameters resulted in high predictive performance (accuracy: 0.892; precision: 0.887; recall: 0.868), while deep neural networks (DNNs) integrated with explainable artificial intelligence (XAI) enabled robust sensitivity analysis. The results show a strong positive correlation between the topographic wetness index (TWI) and land use and land cover (LULC) with flooding events. Conversely, factors such as proximity to agricultural land and built-up areas show a negative correlation. LULC, precipitation, distance to built-up areas, and population density were identified as important factors influencing inundation patterns. Furthermore, rainfall, LULC, and proximity to built-up areas emerged as key predictors, with SHAP values highlighting rainfall as the most influential driver of flood risk. Spatial analysis delineated approximately 773 km2 as very low and 38.47 km2 as very high susceptibility zones. These findings of the study offer actionable insights for urban planners, policymakers, and disaster management authorities to design targeted mitigation strategies, inform zoning regulations, and prioritize resilient infrastructure development. The approach also contributes to broader urban climate resilience strategies, aligning with SDG 11 and SDG 13 objectives.
Floods are a critical natural disaster causing widespread global devastation, exacerbated by the interaction of natural hydrological phenomena and human activities, particularly in rapidly urbanizing areas like Guwahati, India. The present study systematically examines the influence of sixteen environmental and socioeconomic parameters on flood dynamics using a comprehensive modeling framework that combines statistical analysis, advanced machine learning (ML) algorithms, and four feature selection methods: genetic algorithm (GA), Boruta, recursive feature elimination (RFE), and recursive partitioning (Rpart). The application of ML models—support vector machine (SVM) and random forest (RF)—with GA-derived parameters resulted in high predictive performance (accuracy: 0.892; precision: 0.887; recall: 0.868), while deep neural networks (DNNs) integrated with explainable artificial intelligence (XAI) enabled robust sensitivity analysis. The results show a strong positive correlation between the topographic wetness index (TWI) and land use and land cover (LULC) with flooding events. Conversely, factors such as proximity to agricultural land and built-up areas show a negative correlation. LULC, precipitation, distance to built-up areas, and population density were identified as important factors influencing inundation patterns. Furthermore, rainfall, LULC, and proximity to built-up areas emerged as key predictors, with SHAP values highlighting rainfall as the most influential driver of flood risk. Spatial analysis delineated approximately 773 km 2 as very low and 38.47 km 2 as very high susceptibility zones. These findings of the study offer actionable insights for urban planners, policymakers, and disaster management authorities to design targeted mitigation strategies, inform zoning regulations, and prioritize resilient infrastructure development. The approach also contributes to broader urban climate resilience strategies, aligning with SDG 11 and SDG 13 objectives.
Author Talukdar, Swapan
Naikoo, Mohd Waseem
Rahman, Atiqur
Shahfahad
Ahmed, Ishita Afreen
Author_xml – sequence: 1
  givenname: Ishita Afreen
  surname: Ahmed
  fullname: Ahmed, Ishita Afreen
  organization: Department of Geography, Faculty of Sciences, Jamia Millia Islamia, Department of Civil Engineering, Indian Institute of Technology
– sequence: 2
  givenname: Swapan
  orcidid: 0000-0001-6680-9791
  surname: Talukdar
  fullname: Talukdar, Swapan
  organization: Department of Geography, Asutosh College, University of Calcutta
– sequence: 3
  givenname: Mohd Waseem
  orcidid: 0000-0001-5779-9325
  surname: Naikoo
  fullname: Naikoo, Mohd Waseem
  organization: Department of Geography and Disaster Management, School of Earth and Environmental Sciences, University of Kashmir
– sequence: 4
  surname: Shahfahad
  fullname: Shahfahad
  organization: Department of Geography, Institute of Science, Banaras Hindu University
– sequence: 5
  givenname: Atiqur
  orcidid: 0000-0002-9001-5059
  surname: Rahman
  fullname: Rahman, Atiqur
  email: arahman2@jmi.ac.in
  organization: Department of Geography, Faculty of Sciences, Jamia Millia Islamia
BookMark eNp9kF1LwzAUhoNMcJv-Aa8CXkfz0SbtpQzdhIk3eh3SJnUZXTNzUsf-vZ0V9Mqr88H7HDjPDE260DmErhm9ZZSqO2BMUkoozwllUkqiztCUFWVOVJbnkz_9BZoBbCmVGWV8ivRz3yZPrN-5DnzoTIsNgAMY5oRDg5s2BIuhh9rtk69869MR2-g_XQTsO5w2DvexMh0-mDTsNs6esGV_MBuT_CU6b0wL7uqnztHb48PrYkXWL8unxf2a1FzxRJgoioob2VhZuKIwqsppSUWZVzZnpmFW0ZpbkzWCcS4qZRhVvDSZkaJ2FavFHN2Md_cxfPQOkt6GPg7vgBZciUwOnBpSfEzVMQBE1-h99DsTj5pRfRKpR5F6EKm_ReoTJEYIhnD37uLv6X-oL_-leQA
Cites_doi 10.1016/j.jenvman.2023.119866
10.1007/978-981-99-1414-2_5
10.1007/s12524-018-0791-1
10.1007/s11356-021-16747-5
10.1016/j.uclim.2023.101643
10.1016/j.jclepro.2024.142286
10.1016/j.wsee.2022.11.011
10.1007/s12524-023-01777-y
10.3390/geographies2030031
10.3390/land12030627
10.3390/app9173543
10.3390/rs14194897
10.1080/02626667909491834
10.1016/J.JCLEPRO.2022.133227
10.5194/egusphere-egu23-1569
10.1007/s11356-022-24672-4
10.1080/10106049.2022.2066200
10.3390/w14192980
10.1007/s12665-015-4873-x
10.1016/j.scitotenv.2018.10.064
10.1080/10106049.2020.1868619
10.1038/s41598-024-84655-y
10.1016/j.jhydrol.2016.06.027
10.1002/wcc.874
10.3390/rs16193673
10.2166/9781789060768_0235
10.1016/j.ecolind.2021.107612
10.2139/ssrn.4669881
10.2166/wcc.2022.435
10.18637/jss.v028.i05
10.1007/s11069-022-05793-y
10.1016/j.jhydrol.2020.125615
10.1016/j.ijdrr.2020.101659
10.1007/s12145-023-01213-2
10.1080/10106049.2021.2005698
10.21203/rs.3.rs-2132552/v1
10.1016/j.ecolind.2023.111137
10.3390/w10091210
10.1016/B978-0-12-817465-4.00027-3
10.1002/ldr.4742
10.1007/s11069-023-06098-4
10.1007/s12517-023-11412-2
10.18637/jss.v036.i11
10.1007/978-3-031-21587-2_20
10.1007/s10661-023-12240-3
10.1007/s11356-023-29132-1
10.1109/TPAMI.2021.3092177
10.1016/j.jclepro.2022.135363
10.1007/s11069-023-06267-5
10.3390/app13169445
10.5194/egusphere-egu22-10483
10.3390/rs15010192
10.3390/rs14215523
10.1016/j.asr.2023.03.026
10.1007/s00477-015-1021-9
10.3390/app9142824
10.1007/s13762-022-04491-3
10.1016/B978-0-323-91838-1.00026-9
10.1007/s11053-021-09922-5
10.1016/j.jenvman.2019.109863
10.1038/s41598-025-97008-0
ContentType Journal Article
Copyright The Author(s) under exclusive licence to Institute of Geophysics, Polish Academy of Sciences 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s) under exclusive licence to Institute of Geophysics, Polish Academy of Sciences 2025.
Copyright_xml – notice: The Author(s) under exclusive licence to Institute of Geophysics, Polish Academy of Sciences 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s) under exclusive licence to Institute of Geophysics, Polish Academy of Sciences 2025.
DBID AAYXX
CITATION
7TG
8FD
FR3
H8D
KL.
KR7
L7M
DOI 10.1007/s11600-025-01666-7
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1895-7455
EndPage 5837
ExternalDocumentID 10_1007_s11600_025_01666_7
GeographicLocations India
GeographicLocations_xml – name: India
GroupedDBID -Y2
-~X
.86
06D
0R~
0VY
1N0
2JY
2LR
2VQ
2~H
30V
4.4
406
408
40D
5VS
67M
67Z
6NX
88I
8FE
8FG
8FH
8TC
8UJ
95.
95~
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AASML
AATNV
AATVU
AAUYE
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABQBU
ABRTQ
ABTEG
ABTKH
ABTMW
ABUWG
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJRE
AEMSY
AEOHA
AEPYU
AEUYN
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFFHD
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AHBYD
AHPBZ
AHSBF
AHWEU
AIAKS
AIGIU
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ARAPS
ATHPR
AXYYD
AYFIA
AZQEC
BA0
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
D1K
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GJIRD
GNUQQ
GQ7
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HZ~
IHE
IJ-
IKXTQ
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
JZLTJ
K6-
KDC
KOV
KQ8
L6V
LK5
LLZTM
M2P
M4Y
M7R
M7S
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
P2P
P62
PCBAR
PF0
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PT4
PTHSS
Q2X
QOS
R9I
ROL
RPX
RSV
S1Z
S27
S3B
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
TSK
TSV
TUC
U2A
UOJIU
UTJUX
UZXMN
VC2
VFIZW
WK8
ZMTXR
~02
~A9
AAYXX
CITATION
7TG
8FD
FR3
H8D
KL.
KR7
L7M
ID FETCH-LOGICAL-c272t-1388b2a6fd68e88a7b5090395bd51af1d70c2da4f31223b7a10729a4a63ceb1c3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001538715200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1895-7455
1895-6572
IngestDate Fri Nov 21 03:41:12 EST 2025
Thu Nov 27 00:59:01 EST 2025
Thu Nov 20 01:11:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Flood susceptibility modeling
Machine learning algorithms
Guwahati urban watershed
Urban flood resilience
Feature selection methods
Human and natural impacts
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-1388b2a6fd68e88a7b5090395bd51af1d70c2da4f31223b7a10729a4a63ceb1c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5779-9325
0000-0001-6680-9791
0000-0002-9001-5059
PQID 3273461227
PQPubID 54450
PageCount 23
ParticipantIDs proquest_journals_3273461227
crossref_primary_10_1007_s11600_025_01666_7
springer_journals_10_1007_s11600_025_01666_7
PublicationCentury 2000
PublicationDate 2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Berlin
PublicationSubtitle Official Journal of The Institute of Geophysics of the Polish Academy of Sciences
PublicationTitle Acta geophysica
PublicationTitleAbbrev Acta Geophys
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References E Feloni (1666_CR22) 2022; 2
1666_CR10
1666_CR54
1666_CR56
MHM Ali (1666_CR6) 2022; 13
I Guyon (1666_CR24) 2003; 3
B Manandhar (1666_CR36) 2023; 12
HS Chang (1666_CR15) 2016; 75
B Choubin (1666_CR18) 2019; 651
M Daviran (1666_CR19) 2023; 20
1666_CR50
M Wang (1666_CR65) 2023; 156
H Wang (1666_CR64) 2021; 44
R Abedi (1666_CR1) 2022; 37
P Senthilkumar (1666_CR52) 2023; 34
HE Aydin (1666_CR8) 2023; 116
PT Nguyen (1666_CR41) 2019; 9
SN Sivanandam (1666_CR55) 2008
IA Ahmed (1666_CR4) 2023; 382
A Riche (1666_CR45) 2023; 16
S Talukdar (1666_CR59) 2024; 351
N Ahmed (1666_CR3) 2022; 37
J Li (1666_CR33) 2022; 14
1666_CR47
D Sarkar (1666_CR48) 2023; 51
MS Tehrany (1666_CR60) 2015; 29
1666_CR40
BT Pham (1666_CR69) 2018; 46
A Bilali (1666_CR11) 2022; 368
S Arya (1666_CR7) 2023; 51
IA Ahmed (1666_CR2) 2022; 37
KJ Beven (1666_CR70) 1979; 24
SC Vaddiraju (1666_CR63) 2023; 30
A Jamshed (1666_CR27) 2024; 120
P Scussolini (1666_CR51) 2024; 15
HD Nguyen (1666_CR42) 2023; 118
MB Meles (1666_CR38) 2020; 255
1666_CR34
D Tien Bui (1666_CR61) 2018; 10
P Chaudhary (1666_CR16) 2022
1666_CR39
SA Eslaminezhad (1666_CR21) 2022; 13
M Kuhn (1666_CR30) 2008; 28
1666_CR31
S Zhou (1666_CR68) 2024; 457
Tung TM Tiyasha (1666_CR71) 2021; 30
Q Zhao (1666_CR66) 2022; 14
H Khodaei (1666_CR29) 2025; 15
MB Kursa (1666_CR32) 2010; 36
ST Seydi (1666_CR53) 2022; 15
M Lu (1666_CR35) 2023; 857
1666_CR23
F He (1666_CR25) 2025; 15
M Rihan (1666_CR46) 2023; 72
1666_CR28
D Tien Bui (1666_CR62) 2019; 9
S Bose (1666_CR12) 2023; 16
S Talukdar (1666_CR58) 2021; 126
J Debnath (1666_CR20) 2024; 196
M Bagyaraj (1666_CR9) 2023; 30
DT Bui (1666_CR14) 2016; 540
Y Zhou (1666_CR67) 2023; 626
M Jahanbani (1666_CR26) 2024; 17
BT Pham (1666_CR43) 2021; 592
S Sutradhar (1666_CR57) 2023; 5
HA Megahed (1666_CR37) 2023; 13
N Rathi (1666_CR44) 2023
T Sarmah (1666_CR49) 2020; 51
MI Brunner (1666_CR13) 2021; 8
B Choubin (1666_CR17) 2019; 651
References_xml – volume: 351
  start-page: 119866
  year: 2024
  ident: 1666_CR59
  publication-title: J Environ Manag
  doi: 10.1016/j.jenvman.2023.119866
– ident: 1666_CR10
  doi: 10.1007/978-981-99-1414-2_5
– volume: 46
  start-page: 1457
  year: 2018
  ident: 1666_CR69
  publication-title: J Indian Soc Remote Sens
  doi: 10.1007/s12524-018-0791-1
– ident: 1666_CR56
  doi: 10.1007/s11356-021-16747-5
– volume: 51
  year: 2023
  ident: 1666_CR7
  publication-title: Urban Clim
  doi: 10.1016/j.uclim.2023.101643
– volume: 457
  start-page: 142286
  year: 2024
  ident: 1666_CR68
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2024.142286
– volume: 5
  start-page: 1
  year: 2023
  ident: 1666_CR57
  publication-title: Watershed Ecol Environ
  doi: 10.1016/j.wsee.2022.11.011
– volume: 13
  start-page: 972
  issue: 9
  year: 2022
  ident: 1666_CR6
  publication-title: Int J Adv Comput Sci Appl
– volume: 51
  start-page: 2447
  issue: 12
  year: 2023
  ident: 1666_CR48
  publication-title: J Indian Soc Remote Sens
  doi: 10.1007/s12524-023-01777-y
– volume: 2
  start-page: 516
  issue: 3
  year: 2022
  ident: 1666_CR22
  publication-title: Geographies
  doi: 10.3390/geographies2030031
– volume: 12
  start-page: 627
  issue: 3
  year: 2023
  ident: 1666_CR36
  publication-title: Land
  doi: 10.3390/land12030627
– volume: 9
  start-page: 3543
  issue: 17
  year: 2019
  ident: 1666_CR62
  publication-title: Appl Sci
  doi: 10.3390/app9173543
– volume: 14
  start-page: 4897
  issue: 19
  year: 2022
  ident: 1666_CR66
  publication-title: Remote Sens
  doi: 10.3390/rs14194897
– volume: 24
  start-page: 43
  issue: 1
  year: 1979
  ident: 1666_CR70
  publication-title: Hydrol Sci J
  doi: 10.1080/02626667909491834
– volume: 368
  year: 2022
  ident: 1666_CR11
  publication-title: J Clean Prod
  doi: 10.1016/J.JCLEPRO.2022.133227
– ident: 1666_CR54
  doi: 10.5194/egusphere-egu23-1569
– volume: 30
  start-page: 107021
  issue: 49
  year: 2023
  ident: 1666_CR63
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-022-24672-4
– volume: 37
  start-page: 12238
  issue: 21
  year: 2022
  ident: 1666_CR2
  publication-title: Geocarto Int
  doi: 10.1080/10106049.2022.2066200
– year: 2022
  ident: 1666_CR16
  publication-title: Water
  doi: 10.3390/w14192980
– volume: 75
  start-page: 1
  year: 2016
  ident: 1666_CR15
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-015-4873-x
– volume: 651
  start-page: 2087
  issue: Pt 2
  year: 2019
  ident: 1666_CR17
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.10.064
– volume: 37
  start-page: 5479
  issue: 19
  year: 2022
  ident: 1666_CR1
  publication-title: Geocarto Int
  doi: 10.1080/10106049.2020.1868619
– volume: 15
  start-page: 1702
  issue: 1
  year: 2025
  ident: 1666_CR25
  publication-title: Sci Rep
  doi: 10.1038/s41598-024-84655-y
– volume: 540
  start-page: 317
  year: 2016
  ident: 1666_CR14
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2016.06.027
– volume: 15
  start-page: e874
  issue: 3
  year: 2024
  ident: 1666_CR51
  publication-title: Wiley Interdiscip Rev Clim Change
  doi: 10.1002/wcc.874
– volume: 16
  start-page: 3673
  issue: 19
  year: 2023
  ident: 1666_CR45
  publication-title: Remote Sens
  doi: 10.3390/rs16193673
– ident: 1666_CR47
  doi: 10.2166/9781789060768_0235
– volume: 126
  year: 2021
  ident: 1666_CR58
  publication-title: Ecol Indicators
  doi: 10.1016/j.ecolind.2021.107612
– ident: 1666_CR23
– ident: 1666_CR34
  doi: 10.2139/ssrn.4669881
– ident: 1666_CR40
– volume: 651
  start-page: 2087
  year: 2019
  ident: 1666_CR18
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.10.064
– volume: 13
  start-page: 2353
  issue: 6
  year: 2022
  ident: 1666_CR21
  publication-title: J Water Clim Change
  doi: 10.2166/wcc.2022.435
– volume: 28
  start-page: 1
  year: 2008
  ident: 1666_CR30
  publication-title: J Stat Softw
  doi: 10.18637/jss.v028.i05
– volume: 116
  start-page: 2957
  issue: 3
  year: 2023
  ident: 1666_CR8
  publication-title: Nat Hazards
  doi: 10.1007/s11069-022-05793-y
– volume: 592
  start-page: 125615
  year: 2021
  ident: 1666_CR43
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2020.125615
– volume: 51
  year: 2020
  ident: 1666_CR49
  publication-title: Int J Disaster Risk Reduct
  doi: 10.1016/j.ijdrr.2020.101659
– volume: 17
  start-page: 1433
  issue: 2
  year: 2024
  ident: 1666_CR26
  publication-title: Earth Sci Inform
  doi: 10.1007/s12145-023-01213-2
– volume: 37
  start-page: 8770
  issue: 25
  year: 2022
  ident: 1666_CR3
  publication-title: Geocarto Int
  doi: 10.1080/10106049.2021.2005698
– ident: 1666_CR31
  doi: 10.21203/rs.3.rs-2132552/v1
– volume: 156
  year: 2023
  ident: 1666_CR65
  publication-title: Ecol Ind
  doi: 10.1016/j.ecolind.2023.111137
– volume: 10
  start-page: 1210
  issue: 9
  year: 2018
  ident: 1666_CR61
  publication-title: Water
  doi: 10.3390/w10091210
– ident: 1666_CR28
  doi: 10.1016/B978-0-12-817465-4.00027-3
– volume: 626
  year: 2023
  ident: 1666_CR67
  publication-title: J Hydrol
– volume: 34
  start-page: 3793
  issue: 13
  year: 2023
  ident: 1666_CR52
  publication-title: Land Degrad Dev
  doi: 10.1002/ldr.4742
– volume: 118
  start-page: 1933
  issue: 3
  year: 2023
  ident: 1666_CR42
  publication-title: Nat Hazards
  doi: 10.1007/s11069-023-06098-4
– volume: 16
  start-page: 320
  issue: 5
  year: 2023
  ident: 1666_CR12
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-023-11412-2
– volume: 36
  start-page: 1
  year: 2010
  ident: 1666_CR32
  publication-title: J Stat Softw
  doi: 10.18637/jss.v036.i11
– start-page: 341
  volume-title: Advancements in urban environmental studies: application of geospatial technology and artificial intelligence in urban studies
  year: 2023
  ident: 1666_CR44
  doi: 10.1007/978-3-031-21587-2_20
– volume: 196
  start-page: 110
  issue: 2
  year: 2024
  ident: 1666_CR20
  publication-title: Environ Monitor Assessm
  doi: 10.1007/s10661-023-12240-3
– volume: 857
  year: 2023
  ident: 1666_CR35
  publication-title: Sci Total Environ
– start-page: 15
  volume-title: Genetic algorithms
  year: 2008
  ident: 1666_CR55
– volume: 30
  start-page: 100562
  issue: 45
  year: 2023
  ident: 1666_CR9
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-023-29132-1
– volume: 3
  start-page: 1157
  issue: Mar
  year: 2003
  ident: 1666_CR24
  publication-title: J Mach Learn Res
– volume: 44
  start-page: 7253
  issue: 10
  year: 2021
  ident: 1666_CR64
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2021.3092177
– volume: 382
  start-page: 135363
  year: 2023
  ident: 1666_CR4
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2022.135363
– volume: 120
  start-page: 9297
  issue: 10
  year: 2024
  ident: 1666_CR27
  publication-title: Nat Hazards
  doi: 10.1007/s11069-023-06267-5
– volume: 13
  start-page: 9445
  issue: 16
  year: 2023
  ident: 1666_CR37
  publication-title: Appl Sci
  doi: 10.3390/app13169445
– ident: 1666_CR39
  doi: 10.5194/egusphere-egu22-10483
– volume: 15
  start-page: 192
  issue: 1
  year: 2022
  ident: 1666_CR53
  publication-title: Remote Sens
  doi: 10.3390/rs15010192
– volume: 14
  start-page: 5523
  issue: 21
  year: 2022
  ident: 1666_CR33
  publication-title: Remote Sens
  doi: 10.3390/rs14215523
– volume: 72
  start-page: 426
  issue: 2
  year: 2023
  ident: 1666_CR46
  publication-title: Adv Space Res
  doi: 10.1016/j.asr.2023.03.026
– volume: 29
  start-page: 1149
  year: 2015
  ident: 1666_CR60
  publication-title: Stoch Environ Res Risk Assess
  doi: 10.1007/s00477-015-1021-9
– volume: 9
  start-page: 2824
  issue: 14
  year: 2019
  ident: 1666_CR41
  publication-title: Appl Sci
  doi: 10.3390/app9142824
– volume: 20
  start-page: 259
  issue: 1
  year: 2023
  ident: 1666_CR19
  publication-title: Int J Environ Sci Technol
  doi: 10.1007/s13762-022-04491-3
– ident: 1666_CR50
  doi: 10.1016/B978-0-323-91838-1.00026-9
– volume: 8
  issue: 3
  year: 2021
  ident: 1666_CR13
  publication-title: Wiley Interdiscip Rev Water
– volume: 30
  start-page: 4235
  year: 2021
  ident: 1666_CR71
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-021-09922-5
– volume: 255
  year: 2020
  ident: 1666_CR38
  publication-title: J Environ Manag
  doi: 10.1016/j.jenvman.2019.109863
– volume: 15
  start-page: 12394
  year: 2025
  ident: 1666_CR29
  publication-title: Sci Rep
  doi: 10.1038/s41598-025-97008-0
SSID ssj0064012
Score 2.362734
Snippet Floods are a critical natural disaster causing widespread global devastation, exacerbated by the interaction of natural hydrological phenomena and human...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 5815
SubjectTerms Accuracy
Agricultural land
Algorithms
Artificial intelligence
Artificial neural networks
Climate adaptation
Deep learning
Disaster management
Drainage
Earth and Environmental Science
Earth Sciences
Emergency preparedness
Environmental risk
Explainable artificial intelligence
Feature selection
Flood risk
Flooding
Floods
Genetic algorithms
Geophysics/Geodesy
Geotechnical Engineering & Applied Earth Sciences
Hydrology
Infrastructure
Land cover
Land use
Machine learning
Natural disasters
Neural networks
Parameters
Population density
Proximity
Rainfall
Research Article - Hydrology and Hydraulics
Resilience
Sensitivity analysis
Spatial analysis
Statistical analysis
Storm damage
Structural Geology
Support vector machines
Urban areas
Urban climates
Urban planning
Urban watersheds
Watersheds
Wetness index
Zoning ordinances
Title Multi-dimensional assessment of flood susceptibility drivers in the urban watershed of Guwahati
URI https://link.springer.com/article/10.1007/s11600-025-01666-7
https://www.proquest.com/docview/3273461227
Volume 73
WOSCitedRecordID wos001538715200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1895-7455
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064012
  issn: 1895-7455
  databaseCode: RSV
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66KnjxLa6ukoM3LTRp0qRHEVcPsogv9hbyKuulK-3WxX9vkm0tih70nKSUmWTma_PNNwCcKqqJyiWKaObcQFDGIpmQNFIOPFiKuLY6ePqWjUZ8PM7umqKwqmW7t1eSIVJ3xW4o9VXQ2JPNHOiO2DJYcemO-4YN9w_PbfxN3RcDbspjfl73NQV1uPLbVWjIMMPN_73bFthoECW8WGyBbbBkix2wFpidutoFIpTYRsar-C8UOKD8VOOE0xzmnroOq7oKBJfAlX2Hpgx8DfhSQIcQYV0qWcC59FKcE2v8sut6LifOrXvgaXj1eHkTNV0VIo0Z9r3nOVdYprlJueVcMkX9v5qMKkORzJFhscZGkjxBDjooJpEXF5dEpol2gV0n-6BXTAt7ACAhlJA8Vilz82NpJbOxwVqihGaZTbI-OGsNLV4X4hmik0n2JhPOZCKYTLA-GLS-EM1BqkTi5XccCsNu-Ly1fTf8-9MO_zb9CKxj775AVBmA3qys7TFY1W-zl6o8CRvsA5NkzLE
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8MgFCY6NXrxt3E6lYM3bVIolPZojDrjXIxOsxsBSrNdOtOuLv73AmttNHrQM9A078F7H_C9DwBOJVVEpgJ5NDZuIChmnghI6EkDHjRFkdLKebrH-v1oOIwfqqKwoma711eSLlI3xW4otFXQ2JLNDOj22CJYIiZjWcX8x6eXOv6GZseAq_KYn8d9TUENrvx2FeoyzPXG__5tE6xXiBJezKfAFljQ2TZYccxOVewA7kpsvcSq-M8VOKD4VOOEkxSmlroOi7JwBBfHlX2HSe74GnCcQYMQYZlLkcGZsFKcI53YYTflTIyMW3fB8_XV4LLrVa8qeAozbN-ejyKJRZgmYaSjSDBJ7VlNTGVCkUhRwnyFE0HSABnoIJlAVlxcEBEGygR2FeyBVjbJ9D6AhFBCUl-GzPT3hRZM-wlWAgU0jnUQt8FZbWj-OhfP4I1MsjUZNybjzmSctUGn9gWvFlLBAyu_Y1AYNs3nte2b5t-_dvC37idgtTu47_Hebf_uEKxh60pHWumA1jQv9RFYVm_TcZEfu8n2ATXZz5U
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LT8MgHCY6H_Hi2zidysGbNg5KS3s06tS4LEt8ZDfCq9ku3dJuLv73Am2tGj0Yz0BDfh-FD_h-HwCcikASkXDkBbGBgaCYetwnoScMedABiqSWDuku7fWiwSDuf8rid2r36kqyyGmwLk3p9GKikos68Q2FNiMaW-GZIeAeXQRLxArp7X798aWai0Oze8BlqszP7b4uRzXH_HYt6labzsb_-7kJ1kumCS-LobEFFnS6DVac4lPmO4C51FtPWXf_wpkD8g-XTjhOYGIl7TCf5U744jS0b1BlTscBRyk0zBHOMsFTOOfWonOolW12O5vzoYF7Fzx3bp6u7rzytQVPYortm_RRJDAPExVGOoo4FYE9w4kDoQLEE6RoW2LFSeIjQykE5ciajnPCQ1-aCV_6e6CRjlO9DyAhASFJW4TU1G9zzaluKyw58oM41n7cBGdV0NmkMNVgtX2yDRkzIWMuZIw2QavChZU_WM58a8tj2Bk2xecVDnXx7187-Fv1E7Dav-6w7n3v4RCsYYuk07K0QGOazfQRWJav01GeHbtx9w61Nth5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-dimensional+assessment+of+flood+susceptibility+drivers+in+the+urban+watershed+of+Guwahati&rft.jtitle=Acta+geophysica&rft.au=Ahmed%2C+Ishita+Afreen&rft.au=Talukdar%2C+Swapan&rft.au=Naikoo%2C+Mohd+Waseem&rft.au=Shahfahad&rft.date=2025-12-01&rft.issn=1895-7455&rft.eissn=1895-7455&rft.volume=73&rft.issue=6&rft.spage=5815&rft.epage=5837&rft_id=info:doi/10.1007%2Fs11600-025-01666-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11600_025_01666_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1895-7455&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1895-7455&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1895-7455&client=summon