Deep learning-based automated 3D inspection of helical gears using voxelized CAD models and 3D convolutional autoencoders

The automated inspection of complex freeform components, such as helical gears, is a persistent challenge in advanced manufacturing due to their intricate geometries and strict precision requirements. Conventional inspection methods, such as those using coordinate measuring machines or optical techn...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced manufacturing technology Vol. 141; no. 7-8; pp. 3695 - 3715
Main Authors: Selloum, Rabia, Ameddah, Hacene, Brioua, Mourad
Format: Journal Article
Language:English
Published: London Springer London 01.12.2025
Springer Nature B.V
Subjects:
ISSN:0268-3768, 1433-3015
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The automated inspection of complex freeform components, such as helical gears, is a persistent challenge in advanced manufacturing due to their intricate geometries and strict precision requirements. Conventional inspection methods, such as those using coordinate measuring machines or optical techniques, are often time-consuming and lack adaptability to subtle deviations. Recent deep learning approaches show promise but are typically limited to point-based or scan-to-scan comparisons, which remain sensitive to noise and alignment errors. We propose a voxel-based 3D inspection framework that integrates an XGBoost-guided perturbation model with a 3D convolutional autoencoder (3D CNN-AE). CAD-derived gear models are systematically perturbed with controlled Gaussian deformations to emulate tolerances, defects, and sensor noise, then voxelized for autoencoder training. This enables robust learning of nominal gear geometry distributions. Extensive experiments conducted against PointNet++, a Variational Autoencoder, and a GAN-based reconstruction model demonstrate that our method consistently achieves superior performance across various metrics, including PSNR, SSIM, accuracy, precision, recall, and F1-score. The results highlight the potential of voxel-based learning with data-driven perturbation for scalable and high-accuracy inspection in industrial applications.
AbstractList The automated inspection of complex freeform components, such as helical gears, is a persistent challenge in advanced manufacturing due to their intricate geometries and strict precision requirements. Conventional inspection methods, such as those using coordinate measuring machines or optical techniques, are often time-consuming and lack adaptability to subtle deviations. Recent deep learning approaches show promise but are typically limited to point-based or scan-to-scan comparisons, which remain sensitive to noise and alignment errors. We propose a voxel-based 3D inspection framework that integrates an XGBoost-guided perturbation model with a 3D convolutional autoencoder (3D CNN-AE). CAD-derived gear models are systematically perturbed with controlled Gaussian deformations to emulate tolerances, defects, and sensor noise, then voxelized for autoencoder training. This enables robust learning of nominal gear geometry distributions. Extensive experiments conducted against PointNet++, a Variational Autoencoder, and a GAN-based reconstruction model demonstrate that our method consistently achieves superior performance across various metrics, including PSNR, SSIM, accuracy, precision, recall, and F1-score. The results highlight the potential of voxel-based learning with data-driven perturbation for scalable and high-accuracy inspection in industrial applications.
Author Ameddah, Hacene
Selloum, Rabia
Brioua, Mourad
Author_xml – sequence: 1
  givenname: Rabia
  orcidid: 0009-0004-5048-7774
  surname: Selloum
  fullname: Selloum, Rabia
  email: r.selloum@univ-batna2.dz
  organization: Laboratory of Innovation in Construction, Ecodesign, and Seismic Engineering, Department of Mechanical Engineering, Faculty of Technology, University of Batna 2 – Mostefa Ben Boulaïd
– sequence: 2
  givenname: Hacene
  surname: Ameddah
  fullname: Ameddah, Hacene
  organization: Laboratory of Innovation in Construction, Ecodesign, and Seismic Engineering, Department of Mechanical Engineering, Faculty of Technology, University of Batna 2 – Mostefa Ben Boulaïd
– sequence: 3
  givenname: Mourad
  surname: Brioua
  fullname: Brioua, Mourad
  organization: Laboratory of Innovation in Construction, Ecodesign, and Seismic Engineering, Department of Mechanical Engineering, Faculty of Technology, University of Batna 2 – Mostefa Ben Boulaïd
BookMark eNp9kF1LwzAUhoMouE3_gFcBr6NJujbt5dj8goE3eh3S9GR2dElN2mH99aar4J1X53B4npfDO0fn1llA6IbRO0apuA-UMkEJ5SlhWV5wMpyhGVsmCUkoS8_RjPIsJ4nI8ks0D2Ef8SyCMzRsAFrcgPK2tjtSqgAVVn3nDqqLW7LBtQ0t6K52FjuDP6CptWrwLhoB9yFK-Oi-4vU74uvVBh9cBU3Ayp5s7ezRNf2oR2sMBqsj4cMVujCqCXD9Oxfo_fHhbf1Mtq9PL-vVlmgueEcY02kuRElpBabgkEFeVUwVLGVG55rTKk-VYArMsixgaaq0KJg2JRQmzTLBkwW6nXJb7z57CJ3cu97Hb4JMuMhGRtBI8YnS3oXgwcjW1wflB8moHCuWU8UyVixPFcshSskkhQjbHfi_6H-sHy5Qgug
Cites_doi 10.1109/WSC63780.2024.10838928
10.1109/SEB4SDG60871.2024.10629997
10.1109/GCWOT53057.2022.9772891
10.1016/j.autcon.2021.103675
10.1007/s11668-023-01695-8
10.1007/s11071-024-09465-3
10.1609/aaai.v38i2.27929
10.1016/j.ins.2016.07.030
10.3390/computers11060100
10.36948/ijfmr.2024.v06i06.33087
10.48550/arXiv.1907.03739
10.1007/s40436-014-0059-0
10.48550/arXiv.2503.18283
10.1088/1757-899X/1258/1/012022
10.48550/arXiv.1312.6114
10.1051/metal/2025032
10.1007/978-3-030-86446-0_38
10.1016/j.tws.2021.107540
10.1609/aaai.v38i3.28018
10.48084/etasr.8619
10.1016/j.swevo.2017.04.006
10.17973/MMSJ.2024_11_2024096
10.1109/AIIPCC57291.2022.00086
10.3390/s24144660
10.48550/arXiv.1610.07584
10.1088/2631-8695/ac3e13
10.1016/j.rcim.2019.101843
10.1007/s00170-024-13827-x
10.1016/j.rcim.2023.102687
10.1016/j.mfglet.2024.09.159
10.1109/TPAMI.2022.3194555
10.5445/IR/1000129520
10.3390/s21248480
10.48550/arXiv.1909.12037
10.1002/9781119932475
10.48550/arXiv.1512.03012
10.48550/arXiv.1706.02413
10.1109/TIM.2024.3480198
10.1016/j.ress.2014.09.018
10.1109/ACCESS.2025.3525567
10.15282/ijame.18.2.2021.02.0658
10.1007/978-3-030-52071-7_20
10.3390/machines10090779
10.1016/j.jmsy.2020.05.008
10.48550/arXiv.2203.10314
10.1007/s00170-010-2684-5
10.1109/ACCESS.2023.3271748
10.1109/TIM.2025.3571125
10.1109/CVPR.2015.7298801
10.3390/s23208541
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025.
DBID AAYXX
CITATION
DOI 10.1007/s00170-025-16892-y
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1433-3015
EndPage 3715
ExternalDocumentID 10_1007_s00170_025_16892_y
GrantInformation_xml – fundername: Laboratory of Innovation in Construction, Eco-design, and Seismic Engineering (LICEGS), University Mustafa Ben Boulaid of Batna 2, Algeria
  grantid: A11N01UN050220190003
GroupedDBID -XW
-XX
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
203
28-
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
9M8
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFHD
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAS
LLZTM
M4Y
M7S
MA-
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PHGZM
PHGZT
PQGLB
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z8Z
ZMTXR
ZY4
~8M
~A9
~EX
AAYXX
CITATION
ID FETCH-LOGICAL-c272t-11c5877b00def92e6e8dd1a9151fc8c20d85a71aef4b9e4fd5991cfbe9f566723
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001610273800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0268-3768
IngestDate Mon Dec 01 05:11:12 EST 2025
Sat Nov 29 06:58:06 EST 2025
Sun Nov 30 01:10:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7-8
Keywords Deep learning
Helical gear inspection
Precision manufacturing
Convolutional autoencoder
Anomaly detection
Non-Destructive testing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-11c5877b00def92e6e8dd1a9151fc8c20d85a71aef4b9e4fd5991cfbe9f566723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0004-5048-7774
PQID 3276667270
PQPubID 2044010
PageCount 21
ParticipantIDs proquest_journals_3276667270
crossref_primary_10_1007_s00170_025_16892_y
springer_journals_10_1007_s00170_025_16892_y
PublicationCentury 2000
PublicationDate 20251200
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 20251200
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle International journal of advanced manufacturing technology
PublicationTitleAbbrev Int J Adv Manuf Technol
PublicationYear 2025
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References F Xie (16892_CR5) 2024; 133
Z Shi (16892_CR40) 2024; 24
16892_CR17
A Allam (16892_CR37) 2021; 21
16892_CR15
16892_CR14
16892_CR13
16892_CR11
T Idzik (16892_CR38) 2023; 23
16892_CR10
O Chamberland (16892_CR16) 2023; 23
MF Ercan (16892_CR7) 2022; 11
R Ascione (16892_CR6) 2010; 51
16892_CR49
16892_CR48
16892_CR47
16892_CR46
16892_CR45
16892_CR42
16892_CR52
16892_CR51
Y Xu (16892_CR43) 2021; 126
16892_CR50
R Cohen (16892_CR12) 2024; 112
M Prunella (16892_CR18) 2023; 11
16892_CR1
16892_CR36
16892_CR35
16892_CR34
T Li (16892_CR31) 2017; 36
16892_CR33
M Chagas Moura (16892_CR23) 2015; 133
16892_CR8
16892_CR41
16892_CR9
Y Liu (16892_CR26) 2020; 56
L Zhu (16892_CR30) 2021; 162
16892_CR4
16892_CR2
16892_CR3
H Du (16892_CR19) 2024; 38
16892_CR28
Q Yu (16892_CR22) 2014; 2
16892_CR27
16892_CR25
16892_CR24
F Cosco (16892_CR29) 2022; 10
Y Huang (16892_CR44) 2023; 37
16892_CR21
16892_CR20
R-S Mei (16892_CR39) 2024; 41
T Li (16892_CR32) 2016; 367
References_xml – ident: 16892_CR28
  doi: 10.1109/WSC63780.2024.10838928
– ident: 16892_CR4
  doi: 10.1109/SEB4SDG60871.2024.10629997
– ident: 16892_CR17
  doi: 10.1109/GCWOT53057.2022.9772891
– volume: 126
  year: 2021
  ident: 16892_CR43
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2021.103675
– ident: 16892_CR13
  doi: 10.1109/SEB4SDG60871.2024.10629997
– volume: 23
  start-page: 1633
  issue: 4
  year: 2023
  ident: 16892_CR16
  publication-title: J Fail Anal Prev
  doi: 10.1007/s11668-023-01695-8
– volume: 112
  start-page: 8089
  issue: 10
  year: 2024
  ident: 16892_CR12
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-024-09465-3
– volume: 38
  start-page: 1626
  year: 2024
  ident: 16892_CR19
  publication-title: Proc AAAI Conf Artif Intell
  doi: 10.1609/aaai.v38i2.27929
– volume: 367
  start-page: 953
  year: 2016
  ident: 16892_CR32
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2016.07.030
– volume: 11
  start-page: 100
  issue: 6
  year: 2022
  ident: 16892_CR7
  publication-title: Computers
  doi: 10.3390/computers11060100
– ident: 16892_CR14
  doi: 10.36948/ijfmr.2024.v06i06.33087
– ident: 16892_CR42
  doi: 10.48550/arXiv.1907.03739
– volume: 2
  start-page: 32
  issue: 1
  year: 2014
  ident: 16892_CR22
  publication-title: Adv Manuf
  doi: 10.1007/s40436-014-0059-0
– ident: 16892_CR46
  doi: 10.48550/arXiv.2503.18283
– ident: 16892_CR3
  doi: 10.1088/1757-899X/1258/1/012022
– ident: 16892_CR51
  doi: 10.48550/arXiv.1312.6114
– ident: 16892_CR2
  doi: 10.1051/metal/2025032
– ident: 16892_CR33
  doi: 10.1007/978-3-030-86446-0_38
– volume: 162
  year: 2021
  ident: 16892_CR30
  publication-title: Thin-Walled Structures
  doi: 10.1016/j.tws.2021.107540
– volume: 37
  start-page: 1234
  year: 2023
  ident: 16892_CR44
  publication-title: Proc AAAI Conf Artif Intell
  doi: 10.1609/aaai.v38i3.28018
– ident: 16892_CR15
  doi: 10.48084/etasr.8619
– volume: 36
  start-page: 106
  year: 2017
  ident: 16892_CR31
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2017.04.006
– ident: 16892_CR10
  doi: 10.17973/MMSJ.2024_11_2024096
– ident: 16892_CR8
  doi: 10.1109/AIIPCC57291.2022.00086
– volume: 24
  start-page: 4660
  issue: 14
  year: 2024
  ident: 16892_CR40
  publication-title: Sensors
  doi: 10.3390/s24144660
– ident: 16892_CR52
  doi: 10.48550/arXiv.1610.07584
– ident: 16892_CR24
  doi: 10.1088/2631-8695/ac3e13
– ident: 16892_CR25
  doi: 10.1016/j.rcim.2019.101843
– volume: 133
  start-page: 4331
  issue: 9
  year: 2024
  ident: 16892_CR5
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-024-13827-x
– ident: 16892_CR35
  doi: 10.1016/j.rcim.2023.102687
– volume: 41
  start-page: 1324
  year: 2024
  ident: 16892_CR39
  publication-title: Manuf Lett
  doi: 10.1016/j.mfglet.2024.09.159
– ident: 16892_CR21
  doi: 10.1109/TPAMI.2022.3194555
– ident: 16892_CR27
  doi: 10.5445/IR/1000129520
– volume: 21
  start-page: 8480
  issue: 24
  year: 2021
  ident: 16892_CR37
  publication-title: Sensors
  doi: 10.3390/s21248480
– ident: 16892_CR49
– ident: 16892_CR20
  doi: 10.48550/arXiv.1909.12037
– ident: 16892_CR1
  doi: 10.1002/9781119932475
– ident: 16892_CR47
  doi: 10.48550/arXiv.1512.03012
– ident: 16892_CR50
  doi: 10.48550/arXiv.1706.02413
– ident: 16892_CR11
  doi: 10.1109/TIM.2024.3480198
– volume: 133
  start-page: 253
  year: 2015
  ident: 16892_CR23
  publication-title: Reliab Eng Syst Safety
  doi: 10.1016/j.ress.2014.09.018
– ident: 16892_CR41
  doi: 10.1109/ACCESS.2025.3525567
– ident: 16892_CR9
  doi: 10.15282/ijame.18.2.2021.02.0658
– ident: 16892_CR34
  doi: 10.1007/978-3-030-52071-7_20
– volume: 10
  start-page: 779
  issue: 9
  year: 2022
  ident: 16892_CR29
  publication-title: Machines
  doi: 10.3390/machines10090779
– volume: 56
  start-page: 84
  year: 2020
  ident: 16892_CR26
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2020.05.008
– ident: 16892_CR45
  doi: 10.48550/arXiv.2203.10314
– volume: 51
  start-page: 1055
  year: 2010
  ident: 16892_CR6
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-010-2684-5
– volume: 11
  start-page: 43370
  year: 2023
  ident: 16892_CR18
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3271748
– ident: 16892_CR36
  doi: 10.1109/TIM.2025.3571125
– ident: 16892_CR48
  doi: 10.1109/CVPR.2015.7298801
– volume: 23
  start-page: 8541
  issue: 20
  year: 2023
  ident: 16892_CR38
  publication-title: Sensors
  doi: 10.3390/s23208541
SSID ssj0016168
ssib034539549
ssib019759004
ssib029851711
Score 2.447583
Snippet The automated inspection of complex freeform components, such as helical gears, is a persistent challenge in advanced manufacturing due to their intricate...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 3695
SubjectTerms Accuracy
Algorithms
Automation
CAD
CAE) and Design
Computer aided design
Computer-Aided Engineering (CAD
Coordinate measuring machines
Datasets
Deep learning
Defects
Engineering
Helical gears
Industrial and Production Engineering
Industrial applications
Inspection
Inspections
Machine learning
Manufacturing
Measurement techniques
Mechanical Engineering
Media Management
Neural networks
Noise sensitivity
Noise tolerance
Optics
Optimization
Original Article
Perturbation
Product reliability
Title Deep learning-based automated 3D inspection of helical gears using voxelized CAD models and 3D convolutional autoencoders
URI https://link.springer.com/article/10.1007/s00170-025-16892-y
https://www.proquest.com/docview/3276667270
Volume 141
WOSCitedRecordID wos001610273800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Journals
  customDbUrl:
  eissn: 1433-3015
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT4QwFG7cDnpwN46Opgdv2oSWpe3RuMSDMcYtcyOltKOJASNoHH-9rwVm1OhBbwTaEvq-x_vgbQjtgVnQiQ4p0VpnJIp5RFQWhSQONAVzEAulvaTP-cWFGAzkZZsUVnXR7p1L0r-px8luvtQLce1XaSIkI6NpNAvmTjh1vLq-61BEJXedMMcoY9K1n5-gOIzisPFttb6GhPqEOfgYEU7dRJta8_M9v5qvCSf95kb11ul06X_PtYwWWzaKDxv4rKApU6yihU81CtfQ6NiYJ9w2lxgSZ_VyrF7qEqguHIXH-KFo0jXLApcW3xv3G_ARD2FGhV1Y_RC_lm9w9h2Gg-Cxb75TYVX42S7svYU_zHILu9KaLrx6Hd2entwcnZG2XwPRjLOaUKpjwTkocm6sZCYxIs-pkkAqrBaaBbmIFafK2CiTJrJ5DORU28xIC6SSs3ADzRRlYTYRVhkM10msFKDH2FAxZiMD9DKRRgWJ6qH9TgzpU1OWIx0XYPYbmsKGpn5D01EP9TtJpa2KVmnIeOLuyoMeOugkM7n8-2pbfxu-jeaZF64Lgemjmfr5xeygOf1aP1TPux66Hw-b5fc
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4VigQcaKEgtqXUh97A0tp52D5WBUTVZYUoIG6R49jLSihBZEEsv56xN9kFRA9wixI_FM_nzOfMC-AnqgWTmohRY0xO40TEVOdxRJOuYagOEqlNkHRP9Pvy4kIdN0Fhdevt3pokw5d6GuwWUr1QX36VpVJxOp6DjzFqLO_Id_LvvEURU8JXwpyijCtffn6G4ihOooltq7E1pCwEzOFhRPrtJpvQmtfnfK6-Zpz0hRk1aKeDT-97r8-w0rBR8msCn1X4YMs1WH6So_ALjPesvSZNcYkB9VqvIPp2VCHVxatojwzLSbhmVZLKkUvrfwNekQH2qIl3qx-Qu-oe7z5gcxQ8CcV3aqLL0Nu7vTfwx15-YJ9a07tXr8PZwf7p70Pa1Gughgs-ooyZRAqBG7mwTnGbWlkUTCskFc5Iw7uFTLRg2ro4VzZ2RYLk1LjcKoekUvBoA-bLqrSbQHSOzU2aaI3osS7SnLvYIr1MldXdVHdgpxVDdj1Jy5FNEzCHBc1wQbOwoNm4A1utpLJmi9ZZxEXqZxXdDuy2kpk9_v9oX9_W_AcsHp4e9bLen_7fb7DEg6C9O8wWzI9ubu13WDB3o2F9sx1g_AjfPOjb
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RQBU9FGhBbAutD9xai7XzsH1ELKsi0AoJqLhFjmMvSChZsQGx_fUdO8kuoPZQ9RYltqN4ZjSfM48PYB_dgklNxKgxJqdxImKq8ziiSd8wdAeJ1CZI-kyMRvL6Wp0_q-IP2e5dSLKpafBdmsr6YFK4g3nhW2j7Qj0VK0ul4nT2BlZiTxrkz-sXPzuNYkp4Vsy5xnHlqegXGh3FSdTEudq4Q8pC8RweTKQ3PdmW2fz5nS9d2QKfvgqpBk81XP__b9yA9y1KJYeNWm3Cki0_wLtnvQs_wmxg7YS0pBNj6r1hQfRDXSEExqtoQG7LpoyzKknlyI31vwfvyBhnTIlPtx-Tx-oJ7_7C4agQJJDyTIkuw2yfDt-aBc7yC_uWmz7teguuhseXRz9oy-NADRe8poyZRAqBBl5Yp7hNrSwKphWCDWek4f1CJlowbV2cKxu7IkHQalxulUOwKXi0DctlVdodIDrH4SZNtEatsi7SnLvYIuxMldX9VPfgWyeSbNK068jmjZnDhma4oVnY0GzWg91OallrutMs4iL1bxX9HnzvpLR4_PfVPv3b8K_w9nwwzM5ORqefYY0HOfssmV1Yru8f7B6smsf6dnr_JWj0bwyz8b8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning-based+automated+3D+inspection+of+helical+gears+using+voxelized+CAD+models+and+3D+convolutional+autoencoders&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Selloum%2C+Rabia&rft.au=Ameddah%2C+Hacene&rft.au=Brioua%2C+Mourad&rft.date=2025-12-01&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007%2Fs00170-025-16892-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00170_025_16892_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon