A Simplistic Method for Assessing Seismic Damage in Rock Tunnels Before Earthquake: Part 2—Application of Simplistic Method by a Python-Based GUI Tool for India and Adjacent Countries
The first part of this paper outlines a simple method for assessing seismic damage to rock tunnels prior to an earthquake, based on the Seismic Damage Classification of Tunnels (SDCT), proposed by Reddy and Singh (2024) [‘A Simplistic Method for Assessing Seismic Damage in Rock Tunnels Before Earthq...
Saved in:
| Published in: | Rock mechanics and rock engineering Vol. 58; no. 6; pp. 7149 - 7170 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Vienna
Springer Vienna
01.06.2025
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0723-2632, 1434-453X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The first part of this paper outlines a simple method for assessing seismic damage to rock tunnels prior to an earthquake, based on the Seismic Damage Classification of Tunnels (SDCT), proposed by Reddy and Singh (2024) [‘A Simplistic Method for Assessing Seismic Damage in Rock Tunnels Before Earthquake: Part 1—Damage Prediction and Validation Using Seismic Damage Classification of Tunnels’, Rock Mechanics and Rock Engineering, pp. 1-32]. However, to implement the proposed methodology in the field, the data on seismic sources within 250 km are necessary. Seismic sources within this range should be mapped in Google Earth Pro to obtain source-to-site distances, which are then used to calculate PGA values. After gathering all inputs, the engineer needs to check critical parameter combinations to determine damage class and predict damages before an earthquake. Though the method is simple, the process is time-intensive, requiring precision at each step. This study simplifies the process and develops a software implementation of the proposed methodology. This software is an outcome of a Python-based GUI tool developed for India and adjacent countries. To develop this tool, the seismic sources are collected and mapped in QGIS to create a database of 4602 faults across India and adjacent countries. The written Python code identifies the sources within 250 km of the tunnel site and also calculates the PGA from each source through empirical attenuation relationships. This GUI tool evaluates the Seismic Vulnerability of Rock Tunnels (SVRT) using input parameters, such as latitude, longitude, Rock Mass Rating, Overburden, lining type, and tunnel shape. Using the obtained PGA values for seismic sources within 250 km and by critically combining the entered input parameters, the tool predicts the damage class and probable damages for any location within the study region. The reports are generated in .txt (notepad) format and graphs for the distribution of total faults in each damage class are provided for the user’s location. The validation of this tool is done by performing SVRT of the Daliang tunnel site. The results of the software and actual damages of the Daliang tunnel due to the Menyuan earthquake (2022/Mw 6.6) in Qinghai, China are compared. The tool showed a good agreement with the proposed software. The software’s user-friendly interface makes it easy to input data and quickly obtain results.
Highlights
For the first time, a simple method is proposed for predicting and assessing the seismic damages to the rock tunnels before an earthquake using the Seismic Damage Classification of Tunnels.
Employing the methodology, this study proposes a software, which is a Python-based GUI tool that can perform the Seismic Vulnerability of Rock Tunnels (SVRT) before an earthquake in India and adjacent Countries.
Utilizing this tool, engineers can perform the SVRT for tunnel sites by generating reports and graphs before an earthquake.
The proposed software is simple to use and delivers quicker results through obtained reports, as it can be used by engineers for preliminary seismic investigations. |
|---|---|
| AbstractList | The first part of this paper outlines a simple method for assessing seismic damage to rock tunnels prior to an earthquake, based on the Seismic Damage Classification of Tunnels (SDCT), proposed by Reddy and Singh (2024) [‘A Simplistic Method for Assessing Seismic Damage in Rock Tunnels Before Earthquake: Part 1—Damage Prediction and Validation Using Seismic Damage Classification of Tunnels’, Rock Mechanics and Rock Engineering, pp. 1-32]. However, to implement the proposed methodology in the field, the data on seismic sources within 250 km are necessary. Seismic sources within this range should be mapped in Google Earth Pro to obtain source-to-site distances, which are then used to calculate PGA values. After gathering all inputs, the engineer needs to check critical parameter combinations to determine damage class and predict damages before an earthquake. Though the method is simple, the process is time-intensive, requiring precision at each step. This study simplifies the process and develops a software implementation of the proposed methodology. This software is an outcome of a Python-based GUI tool developed for India and adjacent countries. To develop this tool, the seismic sources are collected and mapped in QGIS to create a database of 4602 faults across India and adjacent countries. The written Python code identifies the sources within 250 km of the tunnel site and also calculates the PGA from each source through empirical attenuation relationships. This GUI tool evaluates the Seismic Vulnerability of Rock Tunnels (SVRT) using input parameters, such as latitude, longitude, Rock Mass Rating, Overburden, lining type, and tunnel shape. Using the obtained PGA values for seismic sources within 250 km and by critically combining the entered input parameters, the tool predicts the damage class and probable damages for any location within the study region. The reports are generated in .txt (notepad) format and graphs for the distribution of total faults in each damage class are provided for the user’s location. The validation of this tool is done by performing SVRT of the Daliang tunnel site. The results of the software and actual damages of the Daliang tunnel due to the Menyuan earthquake (2022/Mw 6.6) in Qinghai, China are compared. The tool showed a good agreement with the proposed software. The software’s user-friendly interface makes it easy to input data and quickly obtain results.
Highlights
For the first time, a simple method is proposed for predicting and assessing the seismic damages to the rock tunnels before an earthquake using the Seismic Damage Classification of Tunnels.
Employing the methodology, this study proposes a software, which is a Python-based GUI tool that can perform the Seismic Vulnerability of Rock Tunnels (SVRT) before an earthquake in India and adjacent Countries.
Utilizing this tool, engineers can perform the SVRT for tunnel sites by generating reports and graphs before an earthquake.
The proposed software is simple to use and delivers quicker results through obtained reports, as it can be used by engineers for preliminary seismic investigations. The first part of this paper outlines a simple method for assessing seismic damage to rock tunnels prior to an earthquake, based on the Seismic Damage Classification of Tunnels (SDCT), proposed by Reddy and Singh (2024) [‘A Simplistic Method for Assessing Seismic Damage in Rock Tunnels Before Earthquake: Part 1—Damage Prediction and Validation Using Seismic Damage Classification of Tunnels’, Rock Mechanics and Rock Engineering, pp. 1-32]. However, to implement the proposed methodology in the field, the data on seismic sources within 250 km are necessary. Seismic sources within this range should be mapped in Google Earth Pro to obtain source-to-site distances, which are then used to calculate PGA values. After gathering all inputs, the engineer needs to check critical parameter combinations to determine damage class and predict damages before an earthquake. Though the method is simple, the process is time-intensive, requiring precision at each step. This study simplifies the process and develops a software implementation of the proposed methodology. This software is an outcome of a Python-based GUI tool developed for India and adjacent countries. To develop this tool, the seismic sources are collected and mapped in QGIS to create a database of 4602 faults across India and adjacent countries. The written Python code identifies the sources within 250 km of the tunnel site and also calculates the PGA from each source through empirical attenuation relationships. This GUI tool evaluates the Seismic Vulnerability of Rock Tunnels (SVRT) using input parameters, such as latitude, longitude, Rock Mass Rating, Overburden, lining type, and tunnel shape. Using the obtained PGA values for seismic sources within 250 km and by critically combining the entered input parameters, the tool predicts the damage class and probable damages for any location within the study region. The reports are generated in .txt (notepad) format and graphs for the distribution of total faults in each damage class are provided for the user’s location. The validation of this tool is done by performing SVRT of the Daliang tunnel site. The results of the software and actual damages of the Daliang tunnel due to the Menyuan earthquake (2022/Mw 6.6) in Qinghai, China are compared. The tool showed a good agreement with the proposed software. The software’s user-friendly interface makes it easy to input data and quickly obtain results. HighlightsFor the first time, a simple method is proposed for predicting and assessing the seismic damages to the rock tunnels before an earthquake using the Seismic Damage Classification of Tunnels.Employing the methodology, this study proposes a software, which is a Python-based GUI tool that can perform the Seismic Vulnerability of Rock Tunnels (SVRT) before an earthquake in India and adjacent Countries.Utilizing this tool, engineers can perform the SVRT for tunnel sites by generating reports and graphs before an earthquake.The proposed software is simple to use and delivers quicker results through obtained reports, as it can be used by engineers for preliminary seismic investigations. |
| Author | Singh, Aditya Reddy, A. Dinesh |
| Author_xml | – sequence: 1 givenname: A. Dinesh surname: Reddy fullname: Reddy, A. Dinesh organization: Department of Civil Engineering, Indian Institute of Technology Roorkee – sequence: 2 givenname: Aditya surname: Singh fullname: Singh, Aditya email: aditya.singh@ce.iitr.ac.in organization: Department of Civil Engineering, Indian Institute of Technology Roorkee |
| BookMark | eNp9UU1rGzEQFSGFOmn_QE8DPW87K2k_ktvGTVNDSkLiQG9ClmYdObbkSLsH3_oj-mf6d_pLqsaBXEoY0DyY994Mekfs0AdPjH0o8VOJ2HxOiDWKAnlVoJRNRgdsUkohC1mJH4dsgg0XBa8Ff8uOUloh5mHTTtjvDm7dZrt2aXAGvtNwHyz0IUKXEqXk_BJuyaVNHn7RG70kcB5ugnmA-eg9rROcUaYTnOs43D-O-oFO4Tpj4H9-_uq22dnowQUPof_PpsUONFzvMvbFmU5k4eJuBvMQ1k9HzLx1GrS30NmVNuQHmIbRD9FResfe9Hqd6P1zP2Z3X8_n02_F5dXFbNpdFoY3fChKlBU1lvr8tKXsed0Stk3bCmMrMqbHBVlb00mpcdG3fNHaKpckIWpd1VIcs497320MjyOlQa3CGH1eqQTnXDb5L-vM4nuWiSGlSL3aRrfRcadKVP8iUvuIVI5IPUWkMIvEXpQy2S8pvli_ovoLhbuYzg |
| Cites_doi | 10.1007/s00603-022-03056-7 10.1002/geot.201600007 10.1016/j.ijrmms.2022.105290 10.1007/s11069-011-9924-3 10.1016/j.tust.2017.07.019 10.1029/2010EO200001 10.3133/ofr97470G 10.1785/0120050138 10.1061/AJGEB6.0000580 10.1007/s12517-022-09793-x 10.1007/s11629-016-3878-6 10.1007/s00603-024-04102-2 10.12090/j.issn.1006-6616.2023027 10.1016/j.istruc.2023.02.039 10.1016/j.soildyn.2022.107505 10.1007/s10064-011-0367-6 10.1016/S0886-7798(01)00047-5 10.1016/j.soildyn.2012.11.002 10.1016/j.engfailanal.2023.107047 10.1016/j.epsl.2023.118412 10.1016/j.enggeo.2014.07.017 10.1785/BSSA0840040974 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025 Copyright Springer Nature B.V. Jun 2025 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025 – notice: Copyright Springer Nature B.V. Jun 2025 |
| DBID | AAYXX CITATION 7TN 7UA 8FD C1K F1W FR3 H96 KR7 L.G |
| DOI | 10.1007/s00603-025-04473-0 |
| DatabaseName | CrossRef Oceanic Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Engineering |
| EISSN | 1434-453X |
| EndPage | 7170 |
| ExternalDocumentID | 10_1007_s00603_025_04473_0 |
| GeographicLocations | India |
| GeographicLocations_xml | – name: India |
| GroupedDBID | -Y2 .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29P 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67M 67Z 6NX 78A 88I 8FE 8FG 8FH 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKIV ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFFNX AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V L8X LAS LK5 LLZTM M2P M4Y M7R M7S MA- MK~ MM- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PCBAR PF0 PHGZM PHGZT PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK6 WK8 Y6R YLTOR Z45 Z8Z ZMTXR ZY4 ~02 ~EX AAYXX ABRTQ AFFHD CITATION PQGLB 7TN 7UA 8FD C1K F1W FR3 H96 KR7 L.G |
| ID | FETCH-LOGICAL-c272t-1045e7defe7d814f268e087883cd5eccf0bedd6e91a0bf82b8d5d5d4e336a5643 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001445003900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0723-2632 |
| IngestDate | Wed Nov 05 08:50:14 EST 2025 Sat Nov 29 07:47:27 EST 2025 Fri Jun 20 01:12:01 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Portal Seismic damages Rock tunnels Lining Earthquake Python-based GUI tool |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c272t-1045e7defe7d814f268e087883cd5eccf0bedd6e91a0bf82b8d5d5d4e336a5643 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3222470016 |
| PQPubID | 60272 |
| PageCount | 22 |
| ParticipantIDs | proquest_journals_3222470016 crossref_primary_10_1007_s00603_025_04473_0 springer_journals_10_1007_s00603_025_04473_0 |
| PublicationCentury | 2000 |
| PublicationDate | 20250600 2025-06-00 20250601 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 6 year: 2025 text: 20250600 |
| PublicationDecade | 2020 |
| PublicationPlace | Vienna |
| PublicationPlace_xml | – name: Vienna – name: Wien |
| PublicationTitle | Rock mechanics and rock engineering |
| PublicationTitleAbbrev | Rock Mech Rock Eng |
| PublicationYear | 2025 |
| Publisher | Springer Vienna Springer Nature B.V |
| Publisher_xml | – name: Springer Vienna – name: Springer Nature B.V |
| References | T Li (4473_CR9) 2012; 71 Z Chen (4473_CR1) 2012; 61 CH Dowding (4473_CR3) 1978; 104 4473_CR24 KP Sreejaya (4473_CR15) 2022; 163 4473_CR6 4473_CR4 4473_CR5 R Styron (4473_CR16) 2010; 91 X Wang (4473_CR19) 2022; 15 A Wu (4473_CR23) 2023; 162 K Li (4473_CR10) 2023; 622 DL Wells (4473_CR22) 1994; 84 4473_CR18 4473_CR17 AD Reddy (4473_CR12) 2024 T Kanno (4473_CR8) 2006; 96 P Chen (4473_CR2) 2023; 145 4473_CR11 A Sala (4473_CR13) 2016; 9 X Zhang (4473_CR27) 2018; 71 WL Wang (4473_CR21) 2001; 16 Y Yan (4473_CR25) 2023; 29 J Huang (4473_CR7) 2022; 55 HT Yu (4473_CR26) 2016; 13 ZZ Wang (4473_CR20) 2013; 45 Y Shen (4473_CR14) 2014; 180 |
| References_xml | – volume: 55 start-page: 7817 issue: 12 year: 2022 ident: 4473_CR7 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-022-03056-7 – volume: 9 start-page: 94 issue: 2 year: 2016 ident: 4473_CR13 publication-title: Geomech Tunn doi: 10.1002/geot.201600007 – volume: 162 start-page: 105290 year: 2023 ident: 4473_CR23 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2022.105290 – volume: 61 start-page: 387 year: 2012 ident: 4473_CR1 publication-title: Nat Hazards doi: 10.1007/s11069-011-9924-3 – volume: 71 start-page: 138 year: 2018 ident: 4473_CR27 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2017.07.019 – volume: 91 start-page: 181 issue: 20 year: 2010 ident: 4473_CR16 publication-title: EOS Trans Am Geophys Union doi: 10.1029/2010EO200001 – ident: 4473_CR11 doi: 10.3133/ofr97470G – ident: 4473_CR5 – volume: 96 start-page: 879 issue: 3 year: 2006 ident: 4473_CR8 publication-title: Bull Seismol Soc Am doi: 10.1785/0120050138 – volume: 104 start-page: 175 issue: 2 year: 1978 ident: 4473_CR3 publication-title: J Geotech Eng Div doi: 10.1061/AJGEB6.0000580 – volume: 15 start-page: 478 issue: 6 year: 2022 ident: 4473_CR19 publication-title: Arab J Geosci doi: 10.1007/s12517-022-09793-x – volume: 13 start-page: 1958 year: 2016 ident: 4473_CR26 publication-title: J Mt Sci doi: 10.1007/s11629-016-3878-6 – year: 2024 ident: 4473_CR12 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-024-04102-2 – volume: 29 start-page: 869 issue: 6 year: 2023 ident: 4473_CR25 publication-title: J Geomech doi: 10.12090/j.issn.1006-6616.2023027 – ident: 4473_CR17 – ident: 4473_CR24 doi: 10.1016/j.istruc.2023.02.039 – volume: 163 start-page: 107505 year: 2022 ident: 4473_CR15 publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2022.107505 – volume: 71 start-page: 297 year: 2012 ident: 4473_CR9 publication-title: Bull Eng Geol Env doi: 10.1007/s10064-011-0367-6 – volume: 16 start-page: 133 issue: 3 year: 2001 ident: 4473_CR21 publication-title: Tunn Undergr Space Technol doi: 10.1016/S0886-7798(01)00047-5 – ident: 4473_CR4 – ident: 4473_CR6 – volume: 45 start-page: 45 year: 2013 ident: 4473_CR20 publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2012.11.002 – volume: 145 start-page: 107047 year: 2023 ident: 4473_CR2 publication-title: Eng Fail Anal doi: 10.1016/j.engfailanal.2023.107047 – volume: 622 start-page: 118412 year: 2023 ident: 4473_CR10 publication-title: Earth Planet Sci Lett doi: 10.1016/j.epsl.2023.118412 – volume: 180 start-page: 85 year: 2014 ident: 4473_CR14 publication-title: Eng Geol doi: 10.1016/j.enggeo.2014.07.017 – volume: 84 start-page: 974 issue: 4 year: 1994 ident: 4473_CR22 publication-title: Bull Seismol Soc Am doi: 10.1785/BSSA0840040974 – ident: 4473_CR18 |
| SSID | ssj0014378 |
| Score | 2.4026823 |
| Snippet | The first part of this paper outlines a simple method for assessing seismic damage to rock tunnels prior to an earthquake, based on the Seismic Damage... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 7149 |
| SubjectTerms | Civil Engineering Classification Damage Damage assessment Earth and Environmental Science Earth Sciences Earthquake damage Earthquake prediction Earthquakes Engineers Fault detection Fault lines Geophysics/Geodesy Graphs Methodology Overburden Parameters Python Rock Rock mass rating Rock mechanics Rocks Seismic activity Seismic hazard Seismic response Seismic surveys Software Technical Note Tunnels |
| Title | A Simplistic Method for Assessing Seismic Damage in Rock Tunnels Before Earthquake: Part 2—Application of Simplistic Method by a Python-Based GUI Tool for India and Adjacent Countries |
| URI | https://link.springer.com/article/10.1007/s00603-025-04473-0 https://www.proquest.com/docview/3222470016 |
| Volume | 58 |
| WOSCitedRecordID | wos001445003900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1434-453X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014378 issn: 0723-2632 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5R2kpwoJQWsTyqOfTWRkocZ51wW8pTKmjFLohb5MS2ujyyQHaR9saP4M_wd_glHXuTXajooVWkKJItx9J8mRnnmwfAV8mVzmND2s-Y3OOajjsJmWWPPIXAVxnLpGsHdPpTHB3FZ2dJu0oKK-to95qSdJp6kuxmS4dYzjHyfM4FPb2Bt2TuYtuw4bhzOuEOeDjWv4KFnq1GXqXKvL7GS3M09TH_oEWdtdn98H_7XISFyrvE1hgOH2FGF0sw_6zm4BK833O9fEef4LGFnZ4NKLelmvHQtZJG8mFxTATTbOzoXnlFg9vyivQO9go8Jv2J3aGNjilxS9N0jTsEv183Q3mhN7FNz8ie7h9aU2Yc--aVN2UjlNge2doF3hbZUoV7JwfY7fcv3SYOCkIuykJhS51LG0OKNn_e9v8qP8PJ7k73x75XdXLwcibYgHQ9j7RQ2tAtDrhhzVj7MZ2-w1xFBCLjZ1qppk4C6WcmZlmsIrq4DsOmjMhpWobZol_oFcAkEREXOcuDIOHciCxXhodcBgS4TAvRgG-1QNPrccGOdFKa2YkmJdGkTjSp34D1WuZp9fGWqSWfuOXjmw34Xst4Ovz31Vb_bfoazDEHE_tPZx1mB7dDvQHv8rtBr7z94kD9G__C8vg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEB5BC6I9FChUTVtgDtzAkr1eZ21uKf2LSKOoSaverLV3V6Q_TlsnSLnxELwMr8OTMLuxE0DlALJkWdrVeqUZz8z6m_kG4K3kSuexIetnTO5xTcedhNyyR5FC4KuMZdK1AzrriG43Pj9PelVRWFlnu9eQpLPU82I3Sx1iMcfI8zkX9PQQljl5LMuYf9I_m2MHPJzZX8FCz7KRV6Uy96_xuztaxJh_wKLO2xw8_b99PoO1KrrE1kwdnsMDXazD6i-cg-vw-ND18p2-gO8t7A9tQrmlasZj10oaKYbFGRBMs7Gvh-U1De7Ja7I7OCzwhOwnDiY2O6bEXU3TNe6T-n2-nchL_QF79Izsx9dvrQUyjiNzz5uyKUrsTS13gbdLvlTh4WkbB6PRldtEuyDNRVkobKkLaXNI0dbP2_5f5Us4PdgffDzyqk4OXs4EG5Ot55EWShu6xQE3rBlrP6bTd5iriJTI-JlWqqmTQPqZiVkWq4gursOwKSMKmjZgqRgVehMwSUTERc7yIEg4NyLLleEhlwEpXKaFaMC7WqDpzYywI51TMzvRpCSa1Ikm9RuwU8s8rT7eMrXgE7d4fLMB72sZL4b_vtrWv01_A0-OBsedtNPuftqGFeZUxv7f2YGl8d1Ev4JH-ZfxsLx77RT8J2rN9dw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTttAEB4VWqr20BYoalrazoEbWNjrddbuLRRCo9IoIgFxs9beXRF-HIqTSrn1IfoyfZ0-SWfX-aEIDhWyZFna1XqlGc_M-pv5BmBDcqXz2JD1Myb3uKbjTkJu2aNIIfBVxjLp2gEdH4h2Oz45STo3qvhdtvsUkqxqGixLUzHcvlJme1b4ZmlELP4YeT7ngp4W4DG3ifT2vN49nuEIPKxssWChZ5nJJ2Uzd6_xr2uax5u3IFLneZovH77nV_BiEnVio1KTZXikixV4foOLcAWW9l2P3_Eq_G5gt28TzS2FM35zLaaRYlusAGKajV3dLy9pcFdekj3CfoGHZFexN7JZMyXuaJqucY_U8vT7SJ7rT9ihZ2R_fv5qzBFzHJg73pSNUWJnbDkNvB3ysQr3j1rYGwwu3CZaBWk0ykJhQ51Jm1uKtq7e9gUrX8NRc6_3-Ys36fDg5UywIfkAHmmhtKFbHHDD6rH2YzqVh7mKSLmMn2ml6joJpJ-ZmGWxiujiOgzrMqJgag0Wi0Gh3wAmiYi4yFkeBAnnRmS5MjzkMiBFzLQQNdicCje9qog80hllsxNNSqJJnWhSvwbrU_mnk4-6TC0oxS1OX6_B1lTe8-H7V3v7f9M_wtPObjM9aLW_voNnzGmM_e2zDovD65F-D0_yH8N-ef3B6fpf2vr-wA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Simplistic+Method+for+Assessing+Seismic+Damage+in+Rock+Tunnels+Before+Earthquake%3A+Part+2%E2%80%94Application+of+Simplistic+Method+by+a+Python-Based+GUI+Tool+for+India+and+Adjacent+Countries&rft.jtitle=Rock+mechanics+and+rock+engineering&rft.date=2025-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0723-2632&rft.eissn=1434-453X&rft.volume=58&rft.issue=6&rft.spage=7149&rft.epage=7170&rft_id=info:doi/10.1007%2Fs00603-025-04473-0&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0723-2632&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0723-2632&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0723-2632&client=summon |