Forecasting cooling load and water demand of a semi-closed greenhouse using a hybrid modelling approach

Forecasting the greenhouse cooling and water demand is critical for improving the performance, reducing energy consumption, and operating costs throughout the year. This research proposes a hybrid modelling approach by analyzing machine learning models to determine the most suitable algorithm for a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of ambient energy Jg. 43; H. 1; S. 8046 - 8066
Hauptverfasser: Mahmood, Farhat, Govindan, Rajesh, Yang, David, Bermak, Amine, Al-Ansari, Tareq
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Taylor & Francis 31.12.2022
Schlagworte:
ISSN:0143-0750, 2162-8246
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Forecasting the greenhouse cooling and water demand is critical for improving the performance, reducing energy consumption, and operating costs throughout the year. This research proposes a hybrid modelling approach by analyzing machine learning models to determine the most suitable algorithm for a semi-closed greenhouse. The models were investigated by increasing the time step, excluding the actuator data history, and using data sets based on different seasons to determine the forecasting accuracy. LSTM outperformed both SVMR and MLP with an RMSE and R 2 value of 0.352°C, 0.982 for temperature, and 1.23%, 0.954 for relative humidity. The outputs from LSTM were used as input for the analytical model to forecast the cooling load and water demand. Results illustrated that the greenhouse had a cooling demand of 6.03 and 15.33 MWh for a two-day period in winter and summer. Similarly, the water demand was for winter and summer was 5.85 and 12.48 m 3 .
AbstractList Forecasting the greenhouse cooling and water demand is critical for improving the performance, reducing energy consumption, and operating costs throughout the year. This research proposes a hybrid modelling approach by analyzing machine learning models to determine the most suitable algorithm for a semi-closed greenhouse. The models were investigated by increasing the time step, excluding the actuator data history, and using data sets based on different seasons to determine the forecasting accuracy. LSTM outperformed both SVMR and MLP with an RMSE and R 2 value of 0.352°C, 0.982 for temperature, and 1.23%, 0.954 for relative humidity. The outputs from LSTM were used as input for the analytical model to forecast the cooling load and water demand. Results illustrated that the greenhouse had a cooling demand of 6.03 and 15.33 MWh for a two-day period in winter and summer. Similarly, the water demand was for winter and summer was 5.85 and 12.48 m 3 .
Author Al-Ansari, Tareq
Bermak, Amine
Govindan, Rajesh
Mahmood, Farhat
Yang, David
Author_xml – sequence: 1
  givenname: Farhat
  surname: Mahmood
  fullname: Mahmood, Farhat
  organization: Hamad Bin Khalifa University, Qatar Foundation
– sequence: 2
  givenname: Rajesh
  surname: Govindan
  fullname: Govindan, Rajesh
  organization: Hamad Bin Khalifa University, Qatar Foundation
– sequence: 3
  givenname: David
  surname: Yang
  fullname: Yang, David
  organization: Hamad Bin Khalifa University, Qatar Foundation
– sequence: 4
  givenname: Amine
  surname: Bermak
  fullname: Bermak, Amine
  organization: Hamad Bin Khalifa University, Qatar Foundation
– sequence: 5
  givenname: Tareq
  surname: Al-Ansari
  fullname: Al-Ansari, Tareq
  email: talansari@hbku.edu.qa
  organization: Hamad Bin Khalifa University, Qatar Foundation
BookMark eNqFkM1KAzEURoNUsNY-gpAXmJpkZpIMbpRiVSi40XW4zU8byUxKMqX07e3YunGhd3EvF77zLc41GnWxswjdUjKjRJI7QquSiJrMGGHsuKTkVFygMaOcFZJVfITGQ6YYQldomvMnOU7VkEaQMVovYrIacu-7NdYxhuGGCAZDZ_Aeepuwse3wRIcBZ9v6QoeYrcHrZG23ibts8S4PHODNYZW8wW00NnxXwXabIujNDbp0ELKdnu8EfSye3ucvxfLt-XX-uCw0E0wUKyNqtmp0SSvKa9rUvDSydhygdAIck5Jobbmh3ImGGC61c1W1EgJY1fDGlBNUn3p1ijkn69Q2-RbSQVGiBmHqR5gahKmzsCN3_4vTvofex65P4MO_9MOJ9p2LqYV9TMGoHg4hJpeg0z6r8u-KL3LVhnw
CitedBy_id crossref_primary_10_1016_j_biosystemseng_2024_06_005
crossref_primary_10_1080_01430750_2025_2458748
crossref_primary_10_1016_j_ecmx_2025_100939
crossref_primary_10_1016_j_prime_2025_100944
crossref_primary_10_3390_agronomy14122808
crossref_primary_10_3390_w14213424
Cites_doi 10.1016/j.enbuild.2020.110372
10.3390/agriculture7020012
10.1016/j.agwat.2016.08.008
10.1016/j.compag.2017.03.024
10.1016/j.scienta.2015.09.047
10.1016/j.rser.2019.109480
10.3390/app10113835
10.1109/ICMA.2018.8484456
10.17660/actahortic.2020.1296.55
10.1016/j.compag.2019.105197
10.1016/j.inpa.2018.01.003
10.3390/electronics11010013
10.1016/j.apenergy.2016.11.069
10.1016/j.jksus.2015.12.002
10.1016/j.scienta.2011.10.016
10.1063/5.0003171
10.1016/j.aoas.2011.05.001
10.3390/su13074059
10.1016/j.compag.2018.02.016
10.1016/j.desal.2020.114769
10.1016/j.renene.2017.09.089
10.1016/j.renene.2005.07.011
10.3390/en11010065
10.21105/joss.00884
10.15666/aeer/1501_767778
10.1177/875647939000600106
10.1162/neco.1997.9.8.1735
10.1016/j.biosystemseng.2011.11.015
10.1016/S0168-1923(99)00082-9
10.1119/1.14178
10.1177/0142331216670235
10.1016/j.jclepro.2020.124843
10.1016/B978-0-12-815739-8.00007-9
10.3390/s20113246
10.1109/PC.2019.8815057
10.1016/j.compag.2016.01.019
10.5154/r.rchsh.2018.07.014
10.3182/20130828-2-SF-3019.00026
10.1142/S1469026820500133
10.1016/j.solener.2019.02.006
10.1016/j.compag.2020.105402
10.1016/j.compag.2018.02.017
ContentType Journal Article
Copyright 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2022
Copyright_xml – notice: 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2022
DBID 0YH
AAYXX
CITATION
DOI 10.1080/01430750.2022.2088617
DatabaseName Taylor & Francis Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Agriculture
EISSN 2162-8246
EndPage 8066
ExternalDocumentID 10_1080_01430750_2022_2088617
2088617
Genre Research Article
GrantInformation_xml – fundername: Qatar National Research Fund
  grantid: MME01-0922-190049
GroupedDBID .7F
.QJ
0BK
0R~
0YH
30N
4.4
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFS
ACTIO
ADCVX
ADGTB
AEISY
AEOZL
AEPSL
AEYOC
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
DGEBU
DKSSO
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
J.P
KYCEM
LJTGL
M4Z
NA5
NX~
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TTHFI
TUROJ
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
ID FETCH-LOGICAL-c2727-bd752b9c31416519563d85f6aa3f7af2880cce6d16f790d68cff44b77a24969d3
IEDL.DBID 0YH
ISSN 0143-0750
IngestDate Tue Nov 18 21:56:40 EST 2025
Sat Nov 29 08:09:11 EST 2025
Mon Oct 20 23:47:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License open-access: http://creativecommons.org/licenses/by-nc-nd/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2727-bd752b9c31416519563d85f6aa3f7af2880cce6d16f790d68cff44b77a24969d3
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/01430750.2022.2088617
PageCount 21
ParticipantIDs crossref_primary_10_1080_01430750_2022_2088617
crossref_citationtrail_10_1080_01430750_2022_2088617
informaworld_taylorfrancis_310_1080_01430750_2022_2088617
PublicationCentury 2000
PublicationDate 12/31/2022
PublicationDateYYYYMMDD 2022-12-31
PublicationDate_xml – month: 12
  year: 2022
  text: 12/31/2022
  day: 31
PublicationDecade 2020
PublicationTitle International journal of ambient energy
PublicationYear 2022
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References e_1_3_3_30_1
Stanghellini Cecilia. (e_1_3_3_36_1) 1987; 150
e_1_3_3_18_1
e_1_3_3_17_1
e_1_3_3_39_1
e_1_3_3_19_1
Kingma Diederik P. (e_1_3_3_22_1) 2015
e_1_3_3_14_1
e_1_3_3_37_1
e_1_3_3_13_1
e_1_3_3_38_1
e_1_3_3_16_1
e_1_3_3_35_1
e_1_3_3_15_1
e_1_3_3_10_1
e_1_3_3_33_1
e_1_3_3_34_1
e_1_3_3_12_1
e_1_3_3_31_1
e_1_3_3_11_1
e_1_3_3_32_1
e_1_3_3_40_1
e_1_3_3_41_1
e_1_3_3_7_1
e_1_3_3_6_1
e_1_3_3_9_1
e_1_3_3_8_1
e_1_3_3_29_1
e_1_3_3_28_1
e_1_3_3_25_1
e_1_3_3_24_1
e_1_3_3_27_1
e_1_3_3_46_1
e_1_3_3_26_1
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_44_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_45_1
e_1_3_3_5_1
e_1_3_3_23_1
e_1_3_3_42_1
e_1_3_3_4_1
e_1_3_3_43_1
References_xml – ident: e_1_3_3_11_1
  doi: 10.1016/j.enbuild.2020.110372
– ident: e_1_3_3_31_1
  doi: 10.3390/agriculture7020012
– ident: e_1_3_3_2_1
– ident: e_1_3_3_29_1
  doi: 10.1016/j.agwat.2016.08.008
– ident: e_1_3_3_7_1
  doi: 10.1016/j.compag.2017.03.024
– ident: e_1_3_3_8_1
  doi: 10.1016/j.scienta.2015.09.047
– ident: e_1_3_3_18_1
  doi: 10.1016/j.rser.2019.109480
– ident: e_1_3_3_10_1
  doi: 10.3390/app10113835
– ident: e_1_3_3_45_1
  doi: 10.1109/ICMA.2018.8484456
– ident: e_1_3_3_3_1
  doi: 10.17660/actahortic.2020.1296.55
– ident: e_1_3_3_4_1
  doi: 10.1016/j.compag.2019.105197
– ident: e_1_3_3_38_1
  doi: 10.1016/j.inpa.2018.01.003
– ident: e_1_3_3_42_1
  doi: 10.3390/electronics11010013
– ident: e_1_3_3_12_1
  doi: 10.1016/j.apenergy.2016.11.069
– ident: e_1_3_3_27_1
  doi: 10.1016/j.jksus.2015.12.002
– ident: e_1_3_3_40_1
  doi: 10.1016/j.scienta.2011.10.016
– ident: e_1_3_3_17_1
  doi: 10.1063/5.0003171
– ident: e_1_3_3_15_1
  doi: 10.1016/j.aoas.2011.05.001
– ident: e_1_3_3_21_1
  doi: 10.3390/su13074059
– ident: e_1_3_3_20_1
  doi: 10.1016/j.compag.2018.02.016
– ident: e_1_3_3_25_1
  doi: 10.1016/j.desal.2020.114769
– ident: e_1_3_3_24_1
  doi: 10.1016/j.renene.2017.09.089
– ident: e_1_3_3_34_1
  doi: 10.1016/j.renene.2005.07.011
– volume: 150
  year: 1987
  ident: e_1_3_3_36_1
  article-title: Transpiration of Greenhouse Crops an Aid to Climate Management
  publication-title: Agricultural Engineering
– ident: e_1_3_3_33_1
  doi: 10.3390/en11010065
– ident: e_1_3_3_43_1
  doi: 10.21105/joss.00884
– ident: e_1_3_3_35_1
  doi: 10.15666/aeer/1501_767778
– ident: e_1_3_3_39_1
  doi: 10.1177/875647939000600106
– ident: e_1_3_3_16_1
  doi: 10.1162/neco.1997.9.8.1735
– ident: e_1_3_3_41_1
  doi: 10.1016/j.biosystemseng.2011.11.015
– ident: e_1_3_3_6_1
  doi: 10.1016/S0168-1923(99)00082-9
– ident: e_1_3_3_9_1
  doi: 10.1119/1.14178
– ident: e_1_3_3_26_1
  doi: 10.1177/0142331216670235
– volume-title: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings
  year: 2015
  ident: e_1_3_3_22_1
– ident: e_1_3_3_14_1
  doi: 10.1016/j.jclepro.2020.124843
– ident: e_1_3_3_46_1
  doi: 10.1016/B978-0-12-815739-8.00007-9
– ident: e_1_3_3_23_1
  doi: 10.3390/s20113246
– ident: e_1_3_3_37_1
  doi: 10.1109/PC.2019.8815057
– ident: e_1_3_3_44_1
  doi: 10.1016/j.compag.2016.01.019
– ident: e_1_3_3_32_1
  doi: 10.5154/r.rchsh.2018.07.014
– ident: e_1_3_3_5_1
  doi: 10.3182/20130828-2-SF-3019.00026
– ident: e_1_3_3_13_1
  doi: 10.1142/S1469026820500133
– ident: e_1_3_3_28_1
  doi: 10.1016/j.solener.2019.02.006
– ident: e_1_3_3_19_1
  doi: 10.1016/j.compag.2020.105402
– ident: e_1_3_3_30_1
  doi: 10.1016/j.compag.2018.02.017
SSID ssj0000490970
Score 2.3128555
Snippet Forecasting the greenhouse cooling and water demand is critical for improving the performance, reducing energy consumption, and operating costs throughout the...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 8046
SubjectTerms agriculture
Food security
forecasting
greenhouse
machine learning
Title Forecasting cooling load and water demand of a semi-closed greenhouse using a hybrid modelling approach
URI https://www.tandfonline.com/doi/abs/10.1080/01430750.2022.2088617
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 2162-8246
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000490970
  issn: 0143-0750
  databaseCode: TFW
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagMMDAG1Fe8sBqyNv2WCGqDqhiKKJMkeNHWqltUNKC-Pf48qjaARhgiXSKzrLOju_Oufs-hG54KADGTRAvcX0SsDAhTPuaRMamQJppG4KUjcKPtN9nwyF_qqsJi7qsEnJoUwFFlGc1fNwiKZqKuDuApANPZ7M7D3qpGLNueBNteTY1gfzLee0tr1ngxxYvKeNAi4Ba08fz3UhrHmoNv3TF83T3_2HOB2ivDjtxp9onh2hDz47QbifNa-gNbaUVaMJjlAJnpxQFVEVjmQG1T4onmVDYTgF_2Ag1x0pPQcgMFrjQ0zGRk6zQCqdQyzPKFoXGUFaf2tejT-gMwyXvTjlUg2V-gp67D4P7HqlJGYj0bKxDEkVDL-HSd20oB9A0ka9YaCIhfEOF8ex5IKWOlBsZyh0VMWlMECSUCpvoRVz5p6g1y2b6DGEWcWO0Z5gQNBBJKISmTDo2xKNumGinjYJmIWJZI5YDccYkdhtg09qqMVg1rq3aRrdLtbcKsuM3Bb66yvG8vCsxFbFJ7P-oe_4H3Qu0A2IFG3mJWvN8oa_Qtnyfj4v8utzH9jnovnwBCnrt2g
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagIAEDb0R5emA1NC_bGStEVUTpVES3yHHstFLboKQF8e_x5VGlAzDAaFlnWWfH98jd9yF043sCYNwEsUPLIS73QsKVowjVJgRSXBkXJG8U7rF-nw-Hfr0XBsoqIYbWBVBE_lbDxw3J6Kok7g4w6cDUmfDOhmYqzo0dXkcbnrG1gJ8_6Lwu8yzwZ8vPOeNAioBY1cjz3UorJmoFwLRmejp7_7HpfbRbOp64XdyUA7SmZodopx2nJfiGMqMaOOERioG1U4oM6qKxTIDcJ8aTRETY7AF_GB81xZGawiDRWOBMTcdETpJMRTiGap5RssgUhsL62EyPPqE3DOfMO_lSFZr5MXrpPAzuu6SkZSDSNt4OCSPm2aEvHcs4cwBOQ52Ie5oK4WgmtG1eBCkVjSyqmd-KKJdau27ImDChHvUj5wQ1ZslMnSLMqa-1sjUXgrki9IRQjMuWcfKY5YWq1URudRKBLDHLgTpjElgVtGmp1QC0GpRabaLbpdhbAdrxm4BfP-ZgnmdLdEFtEjg_yp79QfYabXUHz72g99h_OkfbMFWASF6gxjxdqEu0Kd_n4yy9yi_1FxDf8PI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELWgIAQHdkRZfeBqaDbbOVZABQJVPRTRW-R4SSuVBiUtiL_HkwW1B-AAR8say7Idzxtn5j2ELsJAAI2bIG7seMTnQUy49jShxoZAmmsLQYpC4UfW7fLBIOxV2YR5lVYJMbQpiSKKuxo-7ldl6oy4K6CkA09nozsXaqk4t254Ga1Y6EzhkPc7z1_PLPBjKywk48CKgFldx_PdSAseaoG_dM7zdLb-Yc7baLOCnbhdnpMdtKQnu2ijnWQV9Ya2rTlqwj2UgGanFDlkRWOZgrRPgsepUNhOAb9bhJphpV-gkRoscK5fRkSO01wrnEAuzzCd5RpDWn1iu4cfUBmGC92dYqiay3wfPXVu-9d3pBJlINK1WIfEigVuHErPsVAOqGmop3hgqBCeYcK49j6QUlPlUMPClqJcGuP7MWPCBno0VN4BakzSiT5EmNPQGO0aLgTzRRwIoRmXLQvxmBPEutVEfr0RkawYy0E4Yxw5NbFptaoRrGpUrWoTXX6ZvZaUHb8ZhPO7HE2LtxJTCptE3o-2R3-wPUdrvZtO9HjffThG69BTMkieoMY0m-lTtCrfpqM8OyuO9Cc72e-k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+cooling+load+and+water+demand+of+a+semi-closed+greenhouse+using+a+hybrid+modelling+approach&rft.jtitle=International+journal+of+ambient+energy&rft.au=Mahmood%2C+Farhat&rft.au=Govindan%2C+Rajesh&rft.au=Yang%2C+David&rft.au=Bermak%2C+Amine&rft.date=2022-12-31&rft.issn=0143-0750&rft.eissn=2162-8246&rft.volume=43&rft.issue=1&rft.spage=8046&rft.epage=8066&rft_id=info:doi/10.1080%2F01430750.2022.2088617&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_01430750_2022_2088617
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-0750&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-0750&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-0750&client=summon