Forecasting cooling load and water demand of a semi-closed greenhouse using a hybrid modelling approach
Forecasting the greenhouse cooling and water demand is critical for improving the performance, reducing energy consumption, and operating costs throughout the year. This research proposes a hybrid modelling approach by analyzing machine learning models to determine the most suitable algorithm for a...
Gespeichert in:
| Veröffentlicht in: | International journal of ambient energy Jg. 43; H. 1; S. 8046 - 8066 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Taylor & Francis
31.12.2022
|
| Schlagworte: | |
| ISSN: | 0143-0750, 2162-8246 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Forecasting the greenhouse cooling and water demand is critical for improving the performance, reducing energy consumption, and operating costs throughout the year. This research proposes a hybrid modelling approach by analyzing machine learning models to determine the most suitable algorithm for a semi-closed greenhouse. The models were investigated by increasing the time step, excluding the actuator data history, and using data sets based on different seasons to determine the forecasting accuracy. LSTM outperformed both SVMR and MLP with an RMSE and R
2
value of 0.352°C, 0.982 for temperature, and 1.23%, 0.954 for relative humidity. The outputs from LSTM were used as input for the analytical model to forecast the cooling load and water demand. Results illustrated that the greenhouse had a cooling demand of 6.03 and 15.33 MWh for a two-day period in winter and summer. Similarly, the water demand was for winter and summer was 5.85 and 12.48 m
3
. |
|---|---|
| AbstractList | Forecasting the greenhouse cooling and water demand is critical for improving the performance, reducing energy consumption, and operating costs throughout the year. This research proposes a hybrid modelling approach by analyzing machine learning models to determine the most suitable algorithm for a semi-closed greenhouse. The models were investigated by increasing the time step, excluding the actuator data history, and using data sets based on different seasons to determine the forecasting accuracy. LSTM outperformed both SVMR and MLP with an RMSE and R
2
value of 0.352°C, 0.982 for temperature, and 1.23%, 0.954 for relative humidity. The outputs from LSTM were used as input for the analytical model to forecast the cooling load and water demand. Results illustrated that the greenhouse had a cooling demand of 6.03 and 15.33 MWh for a two-day period in winter and summer. Similarly, the water demand was for winter and summer was 5.85 and 12.48 m
3
. |
| Author | Al-Ansari, Tareq Bermak, Amine Govindan, Rajesh Mahmood, Farhat Yang, David |
| Author_xml | – sequence: 1 givenname: Farhat surname: Mahmood fullname: Mahmood, Farhat organization: Hamad Bin Khalifa University, Qatar Foundation – sequence: 2 givenname: Rajesh surname: Govindan fullname: Govindan, Rajesh organization: Hamad Bin Khalifa University, Qatar Foundation – sequence: 3 givenname: David surname: Yang fullname: Yang, David organization: Hamad Bin Khalifa University, Qatar Foundation – sequence: 4 givenname: Amine surname: Bermak fullname: Bermak, Amine organization: Hamad Bin Khalifa University, Qatar Foundation – sequence: 5 givenname: Tareq surname: Al-Ansari fullname: Al-Ansari, Tareq email: talansari@hbku.edu.qa organization: Hamad Bin Khalifa University, Qatar Foundation |
| BookMark | eNqFkM1KAzEURoNUsNY-gpAXmJpkZpIMbpRiVSi40XW4zU8byUxKMqX07e3YunGhd3EvF77zLc41GnWxswjdUjKjRJI7QquSiJrMGGHsuKTkVFygMaOcFZJVfITGQ6YYQldomvMnOU7VkEaQMVovYrIacu-7NdYxhuGGCAZDZ_Aeepuwse3wRIcBZ9v6QoeYrcHrZG23ibts8S4PHODNYZW8wW00NnxXwXabIujNDbp0ELKdnu8EfSye3ucvxfLt-XX-uCw0E0wUKyNqtmp0SSvKa9rUvDSydhygdAIck5Jobbmh3ImGGC61c1W1EgJY1fDGlBNUn3p1ijkn69Q2-RbSQVGiBmHqR5gahKmzsCN3_4vTvofex65P4MO_9MOJ9p2LqYV9TMGoHg4hJpeg0z6r8u-KL3LVhnw |
| CitedBy_id | crossref_primary_10_1016_j_biosystemseng_2024_06_005 crossref_primary_10_1080_01430750_2025_2458748 crossref_primary_10_1016_j_ecmx_2025_100939 crossref_primary_10_1016_j_prime_2025_100944 crossref_primary_10_3390_agronomy14122808 crossref_primary_10_3390_w14213424 |
| Cites_doi | 10.1016/j.enbuild.2020.110372 10.3390/agriculture7020012 10.1016/j.agwat.2016.08.008 10.1016/j.compag.2017.03.024 10.1016/j.scienta.2015.09.047 10.1016/j.rser.2019.109480 10.3390/app10113835 10.1109/ICMA.2018.8484456 10.17660/actahortic.2020.1296.55 10.1016/j.compag.2019.105197 10.1016/j.inpa.2018.01.003 10.3390/electronics11010013 10.1016/j.apenergy.2016.11.069 10.1016/j.jksus.2015.12.002 10.1016/j.scienta.2011.10.016 10.1063/5.0003171 10.1016/j.aoas.2011.05.001 10.3390/su13074059 10.1016/j.compag.2018.02.016 10.1016/j.desal.2020.114769 10.1016/j.renene.2017.09.089 10.1016/j.renene.2005.07.011 10.3390/en11010065 10.21105/joss.00884 10.15666/aeer/1501_767778 10.1177/875647939000600106 10.1162/neco.1997.9.8.1735 10.1016/j.biosystemseng.2011.11.015 10.1016/S0168-1923(99)00082-9 10.1119/1.14178 10.1177/0142331216670235 10.1016/j.jclepro.2020.124843 10.1016/B978-0-12-815739-8.00007-9 10.3390/s20113246 10.1109/PC.2019.8815057 10.1016/j.compag.2016.01.019 10.5154/r.rchsh.2018.07.014 10.3182/20130828-2-SF-3019.00026 10.1142/S1469026820500133 10.1016/j.solener.2019.02.006 10.1016/j.compag.2020.105402 10.1016/j.compag.2018.02.017 |
| ContentType | Journal Article |
| Copyright | 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2022 |
| Copyright_xml | – notice: 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2022 |
| DBID | 0YH AAYXX CITATION |
| DOI | 10.1080/01430750.2022.2088617 |
| DatabaseName | Taylor & Francis Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Agriculture |
| EISSN | 2162-8246 |
| EndPage | 8066 |
| ExternalDocumentID | 10_1080_01430750_2022_2088617 2088617 |
| Genre | Research Article |
| GrantInformation_xml | – fundername: Qatar National Research Fund grantid: MME01-0922-190049 |
| GroupedDBID | .7F .QJ 0BK 0R~ 0YH 30N 4.4 AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGFS ACTIO ADCVX ADGTB AEISY AEOZL AEPSL AEYOC AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG DGEBU DKSSO E~A E~B GTTXZ H13 HF~ HZ~ H~P J.P KYCEM LJTGL M4Z NA5 NX~ O9- P2P RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TTHFI TUROJ UT5 UU3 ZGOLN ~S~ AAYXX CITATION |
| ID | FETCH-LOGICAL-c2727-bd752b9c31416519563d85f6aa3f7af2880cce6d16f790d68cff44b77a24969d3 |
| IEDL.DBID | 0YH |
| ISSN | 0143-0750 |
| IngestDate | Tue Nov 18 21:56:40 EST 2025 Sat Nov 29 08:09:11 EST 2025 Mon Oct 20 23:47:45 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | open-access: http://creativecommons.org/licenses/by-nc-nd/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2727-bd752b9c31416519563d85f6aa3f7af2880cce6d16f790d68cff44b77a24969d3 |
| OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/01430750.2022.2088617 |
| PageCount | 21 |
| ParticipantIDs | crossref_primary_10_1080_01430750_2022_2088617 crossref_citationtrail_10_1080_01430750_2022_2088617 informaworld_taylorfrancis_310_1080_01430750_2022_2088617 |
| PublicationCentury | 2000 |
| PublicationDate | 12/31/2022 |
| PublicationDateYYYYMMDD | 2022-12-31 |
| PublicationDate_xml | – month: 12 year: 2022 text: 12/31/2022 day: 31 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of ambient energy |
| PublicationYear | 2022 |
| Publisher | Taylor & Francis |
| Publisher_xml | – name: Taylor & Francis |
| References | e_1_3_3_30_1 Stanghellini Cecilia. (e_1_3_3_36_1) 1987; 150 e_1_3_3_18_1 e_1_3_3_17_1 e_1_3_3_39_1 e_1_3_3_19_1 Kingma Diederik P. (e_1_3_3_22_1) 2015 e_1_3_3_14_1 e_1_3_3_37_1 e_1_3_3_13_1 e_1_3_3_38_1 e_1_3_3_16_1 e_1_3_3_35_1 e_1_3_3_15_1 e_1_3_3_10_1 e_1_3_3_33_1 e_1_3_3_34_1 e_1_3_3_12_1 e_1_3_3_31_1 e_1_3_3_11_1 e_1_3_3_32_1 e_1_3_3_40_1 e_1_3_3_41_1 e_1_3_3_7_1 e_1_3_3_6_1 e_1_3_3_9_1 e_1_3_3_8_1 e_1_3_3_29_1 e_1_3_3_28_1 e_1_3_3_25_1 e_1_3_3_24_1 e_1_3_3_27_1 e_1_3_3_46_1 e_1_3_3_26_1 e_1_3_3_3_1 e_1_3_3_21_1 e_1_3_3_44_1 e_1_3_3_2_1 e_1_3_3_20_1 e_1_3_3_45_1 e_1_3_3_5_1 e_1_3_3_23_1 e_1_3_3_42_1 e_1_3_3_4_1 e_1_3_3_43_1 |
| References_xml | – ident: e_1_3_3_11_1 doi: 10.1016/j.enbuild.2020.110372 – ident: e_1_3_3_31_1 doi: 10.3390/agriculture7020012 – ident: e_1_3_3_2_1 – ident: e_1_3_3_29_1 doi: 10.1016/j.agwat.2016.08.008 – ident: e_1_3_3_7_1 doi: 10.1016/j.compag.2017.03.024 – ident: e_1_3_3_8_1 doi: 10.1016/j.scienta.2015.09.047 – ident: e_1_3_3_18_1 doi: 10.1016/j.rser.2019.109480 – ident: e_1_3_3_10_1 doi: 10.3390/app10113835 – ident: e_1_3_3_45_1 doi: 10.1109/ICMA.2018.8484456 – ident: e_1_3_3_3_1 doi: 10.17660/actahortic.2020.1296.55 – ident: e_1_3_3_4_1 doi: 10.1016/j.compag.2019.105197 – ident: e_1_3_3_38_1 doi: 10.1016/j.inpa.2018.01.003 – ident: e_1_3_3_42_1 doi: 10.3390/electronics11010013 – ident: e_1_3_3_12_1 doi: 10.1016/j.apenergy.2016.11.069 – ident: e_1_3_3_27_1 doi: 10.1016/j.jksus.2015.12.002 – ident: e_1_3_3_40_1 doi: 10.1016/j.scienta.2011.10.016 – ident: e_1_3_3_17_1 doi: 10.1063/5.0003171 – ident: e_1_3_3_15_1 doi: 10.1016/j.aoas.2011.05.001 – ident: e_1_3_3_21_1 doi: 10.3390/su13074059 – ident: e_1_3_3_20_1 doi: 10.1016/j.compag.2018.02.016 – ident: e_1_3_3_25_1 doi: 10.1016/j.desal.2020.114769 – ident: e_1_3_3_24_1 doi: 10.1016/j.renene.2017.09.089 – ident: e_1_3_3_34_1 doi: 10.1016/j.renene.2005.07.011 – volume: 150 year: 1987 ident: e_1_3_3_36_1 article-title: Transpiration of Greenhouse Crops an Aid to Climate Management publication-title: Agricultural Engineering – ident: e_1_3_3_33_1 doi: 10.3390/en11010065 – ident: e_1_3_3_43_1 doi: 10.21105/joss.00884 – ident: e_1_3_3_35_1 doi: 10.15666/aeer/1501_767778 – ident: e_1_3_3_39_1 doi: 10.1177/875647939000600106 – ident: e_1_3_3_16_1 doi: 10.1162/neco.1997.9.8.1735 – ident: e_1_3_3_41_1 doi: 10.1016/j.biosystemseng.2011.11.015 – ident: e_1_3_3_6_1 doi: 10.1016/S0168-1923(99)00082-9 – ident: e_1_3_3_9_1 doi: 10.1119/1.14178 – ident: e_1_3_3_26_1 doi: 10.1177/0142331216670235 – volume-title: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings year: 2015 ident: e_1_3_3_22_1 – ident: e_1_3_3_14_1 doi: 10.1016/j.jclepro.2020.124843 – ident: e_1_3_3_46_1 doi: 10.1016/B978-0-12-815739-8.00007-9 – ident: e_1_3_3_23_1 doi: 10.3390/s20113246 – ident: e_1_3_3_37_1 doi: 10.1109/PC.2019.8815057 – ident: e_1_3_3_44_1 doi: 10.1016/j.compag.2016.01.019 – ident: e_1_3_3_32_1 doi: 10.5154/r.rchsh.2018.07.014 – ident: e_1_3_3_5_1 doi: 10.3182/20130828-2-SF-3019.00026 – ident: e_1_3_3_13_1 doi: 10.1142/S1469026820500133 – ident: e_1_3_3_28_1 doi: 10.1016/j.solener.2019.02.006 – ident: e_1_3_3_19_1 doi: 10.1016/j.compag.2020.105402 – ident: e_1_3_3_30_1 doi: 10.1016/j.compag.2018.02.017 |
| SSID | ssj0000490970 |
| Score | 2.3128555 |
| Snippet | Forecasting the greenhouse cooling and water demand is critical for improving the performance, reducing energy consumption, and operating costs throughout the... |
| SourceID | crossref informaworld |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 8046 |
| SubjectTerms | agriculture Food security forecasting greenhouse machine learning |
| Title | Forecasting cooling load and water demand of a semi-closed greenhouse using a hybrid modelling approach |
| URI | https://www.tandfonline.com/doi/abs/10.1080/01430750.2022.2088617 |
| Volume | 43 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor and Francis Online Journals customDbUrl: eissn: 2162-8246 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000490970 issn: 0143-0750 databaseCode: TFW dateStart: 19800101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagMMDAG1Fe8sBqyNv2WCGqDqhiKKJMkeNHWqltUNKC-Pf48qjaARhgiXSKzrLOju_Oufs-hG54KADGTRAvcX0SsDAhTPuaRMamQJppG4KUjcKPtN9nwyF_qqsJi7qsEnJoUwFFlGc1fNwiKZqKuDuApANPZ7M7D3qpGLNueBNteTY1gfzLee0tr1ngxxYvKeNAi4Ba08fz3UhrHmoNv3TF83T3_2HOB2ivDjtxp9onh2hDz47QbifNa-gNbaUVaMJjlAJnpxQFVEVjmQG1T4onmVDYTgF_2Ag1x0pPQcgMFrjQ0zGRk6zQCqdQyzPKFoXGUFaf2tejT-gMwyXvTjlUg2V-gp67D4P7HqlJGYj0bKxDEkVDL-HSd20oB9A0ka9YaCIhfEOF8ex5IKWOlBsZyh0VMWlMECSUCpvoRVz5p6g1y2b6DGEWcWO0Z5gQNBBJKISmTDo2xKNumGinjYJmIWJZI5YDccYkdhtg09qqMVg1rq3aRrdLtbcKsuM3Bb66yvG8vCsxFbFJ7P-oe_4H3Qu0A2IFG3mJWvN8oa_Qtnyfj4v8utzH9jnovnwBCnrt2g |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagIAEDb0R5emA1NC_bGStEVUTpVES3yHHstFLboKQF8e_x5VGlAzDAaFlnWWfH98jd9yF043sCYNwEsUPLIS73QsKVowjVJgRSXBkXJG8U7rF-nw-Hfr0XBsoqIYbWBVBE_lbDxw3J6Kok7g4w6cDUmfDOhmYqzo0dXkcbnrG1gJ8_6Lwu8yzwZ8vPOeNAioBY1cjz3UorJmoFwLRmejp7_7HpfbRbOp64XdyUA7SmZodopx2nJfiGMqMaOOERioG1U4oM6qKxTIDcJ8aTRETY7AF_GB81xZGawiDRWOBMTcdETpJMRTiGap5RssgUhsL62EyPPqE3DOfMO_lSFZr5MXrpPAzuu6SkZSDSNt4OCSPm2aEvHcs4cwBOQ52Ie5oK4WgmtG1eBCkVjSyqmd-KKJdau27ImDChHvUj5wQ1ZslMnSLMqa-1sjUXgrki9IRQjMuWcfKY5YWq1URudRKBLDHLgTpjElgVtGmp1QC0GpRabaLbpdhbAdrxm4BfP-ZgnmdLdEFtEjg_yp79QfYabXUHz72g99h_OkfbMFWASF6gxjxdqEu0Kd_n4yy9yi_1FxDf8PI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELWgIAQHdkRZfeBqaDbbOVZABQJVPRTRW-R4SSuVBiUtiL_HkwW1B-AAR8say7Idzxtn5j2ELsJAAI2bIG7seMTnQUy49jShxoZAmmsLQYpC4UfW7fLBIOxV2YR5lVYJMbQpiSKKuxo-7ldl6oy4K6CkA09nozsXaqk4t254Ga1Y6EzhkPc7z1_PLPBjKywk48CKgFldx_PdSAseaoG_dM7zdLb-Yc7baLOCnbhdnpMdtKQnu2ijnWQV9Ya2rTlqwj2UgGanFDlkRWOZgrRPgsepUNhOAb9bhJphpV-gkRoscK5fRkSO01wrnEAuzzCd5RpDWn1iu4cfUBmGC92dYqiay3wfPXVu-9d3pBJlINK1WIfEigVuHErPsVAOqGmop3hgqBCeYcK49j6QUlPlUMPClqJcGuP7MWPCBno0VN4BakzSiT5EmNPQGO0aLgTzRRwIoRmXLQvxmBPEutVEfr0RkawYy0E4Yxw5NbFptaoRrGpUrWoTXX6ZvZaUHb8ZhPO7HE2LtxJTCptE3o-2R3-wPUdrvZtO9HjffThG69BTMkieoMY0m-lTtCrfpqM8OyuO9Cc72e-k |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+cooling+load+and+water+demand+of+a+semi-closed+greenhouse+using+a+hybrid+modelling+approach&rft.jtitle=International+journal+of+ambient+energy&rft.au=Mahmood%2C+Farhat&rft.au=Govindan%2C+Rajesh&rft.au=Yang%2C+David&rft.au=Bermak%2C+Amine&rft.date=2022-12-31&rft.issn=0143-0750&rft.eissn=2162-8246&rft.volume=43&rft.issue=1&rft.spage=8046&rft.epage=8066&rft_id=info:doi/10.1080%2F01430750.2022.2088617&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_01430750_2022_2088617 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-0750&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-0750&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-0750&client=summon |