Virtual Analyzers for MI and Density Based on Neural Networks Improved through an Integrated Strategy Involving a Constructive Algorithm and Definition of Initial Weights

This work presents the development and validation of two virtual analyzers (density and Melt Index (MI)) for quality monitoring and control of the final product in an industrial unit of Linear Polyethylene (LPE). Both models are based on Feedforward Neural Networks which are improved through a strat...

Full description

Saved in:
Bibliographic Details
Published in:Macromolecular reaction engineering Vol. 17; no. 4
Main Authors: da Silva, Adilton Lopes, Fontes, Cristiano Hora, Embiruçu, Marcelo
Format: Journal Article
Language:English
Published: Weinheim Wiley Subscription Services, Inc 01.08.2023
Subjects:
ISSN:1862-832X, 1862-8338
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This work presents the development and validation of two virtual analyzers (density and Melt Index (MI)) for quality monitoring and control of the final product in an industrial unit of Linear Polyethylene (LPE). Both models are based on Feedforward Neural Networks which are improved through a strategy involving the initial estimation of weights and a constructive algorithm to define the number of hidden units. The initialization strategy is based on linearization of the neural model with only one hidden unit (nonlinear model) and subsequent optimization of this model by maximizing its similarity to the standard linear regression model whose solution is obtained analytically. The Initial Neural Model (INM) is then used as a starting point for a gradual increase in the number of hidden units. In a validation test involving MI and density values collected over 2 years of operation, the neural model is able to predict these properties with mean percentage errors equal to 0.81% (MI) and 0.04% (density) and determination coefficients equal to 0.970 (MI) and 0.983 (density). The population coefficient estimated in all tests involving grade transitions (0.96) shows a strong linear correlation between the proposed model and laboratory measurements. Two virtual analyzers (density and Melt Index) for quality monitoring and control of the final product in an industrial unit of Linear Polyethylene are developed and validated. Both models are based on Feedforward Neural Networks which are improved through a systematic strategy involving the initial estimation of weights and a constructive algorithm to define the number of hidden units.
AbstractList This work presents the development and validation of two virtual analyzers (density and Melt Index (MI)) for quality monitoring and control of the final product in an industrial unit of Linear Polyethylene (LPE). Both models are based on Feedforward Neural Networks which are improved through a strategy involving the initial estimation of weights and a constructive algorithm to define the number of hidden units. The initialization strategy is based on linearization of the neural model with only one hidden unit (nonlinear model) and subsequent optimization of this model by maximizing its similarity to the standard linear regression model whose solution is obtained analytically. The Initial Neural Model (INM) is then used as a starting point for a gradual increase in the number of hidden units. In a validation test involving MI and density values collected over 2 years of operation, the neural model is able to predict these properties with mean percentage errors equal to 0.81% (MI) and 0.04% (density) and determination coefficients equal to 0.970 (MI) and 0.983 (density). The population coefficient estimated in all tests involving grade transitions (0.96) shows a strong linear correlation between the proposed model and laboratory measurements.
This work presents the development and validation of two virtual analyzers (density and Melt Index (MI)) for quality monitoring and control of the final product in an industrial unit of Linear Polyethylene (LPE). Both models are based on Feedforward Neural Networks which are improved through a strategy involving the initial estimation of weights and a constructive algorithm to define the number of hidden units. The initialization strategy is based on linearization of the neural model with only one hidden unit (nonlinear model) and subsequent optimization of this model by maximizing its similarity to the standard linear regression model whose solution is obtained analytically. The Initial Neural Model (INM) is then used as a starting point for a gradual increase in the number of hidden units. In a validation test involving MI and density values collected over 2 years of operation, the neural model is able to predict these properties with mean percentage errors equal to 0.81% (MI) and 0.04% (density) and determination coefficients equal to 0.970 (MI) and 0.983 (density). The population coefficient estimated in all tests involving grade transitions (0.96) shows a strong linear correlation between the proposed model and laboratory measurements. Two virtual analyzers (density and Melt Index) for quality monitoring and control of the final product in an industrial unit of Linear Polyethylene are developed and validated. Both models are based on Feedforward Neural Networks which are improved through a systematic strategy involving the initial estimation of weights and a constructive algorithm to define the number of hidden units.
Author Fontes, Cristiano Hora
da Silva, Adilton Lopes
Embiruçu, Marcelo
Author_xml – sequence: 1
  givenname: Adilton Lopes
  surname: da Silva
  fullname: da Silva, Adilton Lopes
  organization: Universidade Federal da Bahia (Federal University of Bahia)
– sequence: 2
  givenname: Cristiano Hora
  orcidid: 0000-0001-8020-6815
  surname: Fontes
  fullname: Fontes, Cristiano Hora
  email: cfontes@ufba.br
  organization: Universidade Federal da Bahia (Federal University of Bahia)
– sequence: 3
  givenname: Marcelo
  orcidid: 0000-0002-8453-1014
  surname: Embiruçu
  fullname: Embiruçu, Marcelo
  organization: Universidade Federal da Bahia (Federal University of Bahia)
BookMark eNqFkU9PwjAYxhuDiYBePTfxDLYd67ojIioJYOL_21K2bhRHi203Mj-Sn9ISCB7toe-bt8-vT9qnA1pKKwHAJUZ9jBC5Xhuh-gQRghCi9AS0MaOkx4KAtY49-TgDHWtXCIV-xW3w8yaNq3gJh4qXzbcwFubawNkEcpXBW6GsdA284VZkUCs4F5Xx4rlwW20-LZysN0bX_swtja6KpafgRDlRGO789NntatH4Wa3LWqoCcjjSyjpTpU7WAg7LQhvpluuDXy6VdNI76dxDvvVu70IWS2fPwWnOSysuDrULXu_GL6OH3vTxfjIaTnspiQjtLVLC44EIKcsWjMaYxmmAshzHaEFpHnAa-x0FEV2EUYazAfMUDhBKOQtZxEnQBVf7e_3TviphXbLSlfHfYxPCQsJwFKKdqr9XpUZba0SebIxcc9MkGCW7PJJdHskxDw_Ee2ArS9H8o05mT-P5H_sL4SiTWQ
Cites_doi 10.1016/j.compchemeng.2021.107469
10.1016/j.chemolab.2019.103813
10.1016/j.procs.2020.03.321
10.1213/ANE.0000000000002864
10.1016/j.neucom.2017.08.040
10.1016/j.asoc.2021.107100
10.1016/j.asoc.2020.106622
10.1016/j.ifacol.2022.07.552
10.1016/j.chemolab.2018.01.008
10.1016/j.cjche.2016.05.030
10.1016/j.cie.2017.01.030
10.1016/j.neucom.2021.11.029
10.1108/IMDS-07-2019-0361
10.1016/j.neucom.2014.03.056
10.1016/j.jmsy.2020.12.016
10.1108/IMDS-06-2019-0351
10.1016/0893-6080(89)90020-8
10.1016/j.engappai.2021.104495
10.1016/j.engappai.2022.105242
10.1016/j.matpr.2020.09.238
10.1016/j.neucom.2013.10.006
10.1016/j.jprocont.2013.02.008
10.1016/j.chemolab.2013.04.018
10.1016/j.matpr.2022.02.037
10.1016/B978-0-323-85159-6.50287-6
10.1016/j.compchemeng.2019.106664
10.1016/j.chemolab.2012.12.003
10.1016/j.aej.2022.04.032
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
DOI 10.1002/mren.202200066
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1862-8338
EndPage n/a
ExternalDocumentID 10_1002_mren_202200066
MREN202200066
Genre article
GroupedDBID 05W
0R~
1OC
31~
33P
3SF
4.4
52U
53G
5GY
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DRFUL
DRSTM
EBS
EJD
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
I-F
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
ROL
SUPJJ
TUS
WBKPD
WFSAM
WIH
WIK
WOHZO
WXSBR
WYISQ
WYJ
XV2
ZZTAW
~S-
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
ID FETCH-LOGICAL-c2726-bc2a94e568db869169c30df190b66f3a696f30376b57d1d482721300ca8587a23
IEDL.DBID DRFUL
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000906705300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1862-832X
IngestDate Fri Jul 25 11:13:39 EDT 2025
Sat Nov 29 01:32:42 EST 2025
Wed Jan 22 16:17:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2726-bc2a94e568db869169c30df190b66f3a696f30376b57d1d482721300ca8587a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8453-1014
0000-0001-8020-6815
PQID 2852817502
PQPubID 1016393
PageCount 9
ParticipantIDs proquest_journals_2852817502
crossref_primary_10_1002_mren_202200066
wiley_primary_10_1002_mren_202200066_MREN202200066
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
20230801
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Macromolecular reaction engineering
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1989; 2
2019; 192
2021; 42
2021; 102
2020; 120
2013; 23
2021; 106
2013; 126
2018; 126
2013; 122
2022; 63
2020; 167
2021; 482
2014; 131
2022; 49
2022; 115
2018; 25
2021; 58
2018; 174
2018; 275
2013; 119
2020; 96
2022; 61
2020
2020; 133
2022; 55
2021; 154
2014; 142
2016; 24
2017; 106
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_12_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
Belciug S. (e_1_2_9_30_1) 2020
e_1_2_9_20_1
Vahidi O. (e_1_2_9_3_1) 2018; 25
e_1_2_9_22_1
e_1_2_9_21_1
Jiang H. (e_1_2_9_6_1) 2013; 119
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 275
  start-page: 278
  year: 2018
  publication-title: Neurocomputing
– volume: 61
  year: 2022
  publication-title: Alexandria Eng. J.
– volume: 167
  start-page: 2606
  year: 2020
  publication-title: Procedia Comput. Sci.
– volume: 102
  year: 2021
  publication-title: Appl. Soft Comput. J.
– volume: 106
  year: 2021
  publication-title: Eng. Appl. Artif. Intell.
– volume: 126
  start-page: 83
  year: 2013
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 154
  year: 2021
  publication-title: Comput. Chem. Eng.
– volume: 96
  year: 2020
  publication-title: Appl. Soft Comput. J.
– volume: 133
  year: 2020
  publication-title: Comput. Chem. Eng.
– volume: 106
  start-page: 123
  year: 2017
  publication-title: Comput. Ind. Eng.
– volume: 23
  start-page: 664
  year: 2013
  publication-title: J. Process Control
– volume: 482
  start-page: 139
  year: 2021
  publication-title: Neurocomputing
– volume: 122
  start-page: 12
  year: 2013
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 126
  start-page: 1763
  year: 2018
  publication-title: Anesth. Analg.
– volume: 142
  start-page: 291
  year: 2014
  publication-title: Neurocomputing
– volume: 120
  start-page: 164
  year: 2020
  publication-title: Ind. Manag. Data Syst.
– volume: 174
  start-page: 15
  year: 2018
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 119
  start-page: 468
  year: 2013
  publication-title: Neurocomputing
– volume: 49
  start-page: 1723
  year: 2022
  publication-title: Comput.‐Aided Chem. Eng.
– volume: 25
  start-page: 21
  year: 2018
  publication-title: Indian J. Chem. Technol.
– volume: 58
  start-page: 335
  year: 2021
  publication-title: J. Manuf. Syst.
– volume: 2
  start-page: 359
  year: 1989
  publication-title: Neural Networks
– year: 2020
– volume: 120
  start-page: 128
  year: 2020
  publication-title: Ind. Manag. Data Syst.
– volume: 131
  start-page: 368
  year: 2014
  publication-title: Neurocomputing
– volume: 192
  year: 2019
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 42
  start-page: 39
  year: 2021
  publication-title: Mater. Today: Proc.
– volume: 24
  start-page: 1013
  year: 2016
  publication-title: Chin. J. Chem. Eng.
– volume: 63
  start-page: S95
  year: 2022
  publication-title: Mater. Today: Proc.
– volume: 55
  start-page: 857
  year: 2022
  publication-title: IFAC‐PapersOnLine
– volume: 115
  year: 2022
  publication-title: Eng. Appl. Artif. Intell.
– ident: e_1_2_9_16_1
  doi: 10.1016/j.compchemeng.2021.107469
– ident: e_1_2_9_15_1
  doi: 10.1016/j.chemolab.2019.103813
– ident: e_1_2_9_24_1
  doi: 10.1016/j.procs.2020.03.321
– ident: e_1_2_9_29_1
  doi: 10.1213/ANE.0000000000002864
– ident: e_1_2_9_21_1
  doi: 10.1016/j.neucom.2017.08.040
– volume: 25
  start-page: 21
  year: 2018
  ident: e_1_2_9_3_1
  publication-title: Indian J. Chem. Technol.
– ident: e_1_2_9_22_1
  doi: 10.1016/j.asoc.2021.107100
– ident: e_1_2_9_23_1
  doi: 10.1016/j.asoc.2020.106622
– ident: e_1_2_9_9_1
  doi: 10.1016/j.ifacol.2022.07.552
– ident: e_1_2_9_14_1
  doi: 10.1016/j.chemolab.2018.01.008
– ident: e_1_2_9_13_1
  doi: 10.1016/j.cjche.2016.05.030
– ident: e_1_2_9_2_1
  doi: 10.1016/j.cie.2017.01.030
– ident: e_1_2_9_25_1
  doi: 10.1016/j.neucom.2021.11.029
– ident: e_1_2_9_27_1
  doi: 10.1108/IMDS-07-2019-0361
– ident: e_1_2_9_12_1
  doi: 10.1016/j.neucom.2014.03.056
– ident: e_1_2_9_7_1
  doi: 10.1016/j.jmsy.2020.12.016
– ident: e_1_2_9_26_1
  doi: 10.1108/IMDS-06-2019-0351
– ident: e_1_2_9_28_1
  doi: 10.1016/0893-6080(89)90020-8
– ident: e_1_2_9_19_1
  doi: 10.1016/j.engappai.2021.104495
– ident: e_1_2_9_20_1
  doi: 10.1016/j.engappai.2022.105242
– volume-title: Artificial Intelligence in Cancer: Diagnostic to Tailored Treatment
  year: 2020
  ident: e_1_2_9_30_1
– ident: e_1_2_9_18_1
  doi: 10.1016/j.matpr.2020.09.238
– ident: e_1_2_9_11_1
  doi: 10.1016/j.neucom.2013.10.006
– volume: 119
  start-page: 468
  year: 2013
  ident: e_1_2_9_6_1
  publication-title: Neurocomputing
– ident: e_1_2_9_5_1
  doi: 10.1016/j.jprocont.2013.02.008
– ident: e_1_2_9_10_1
  doi: 10.1016/j.chemolab.2013.04.018
– ident: e_1_2_9_17_1
  doi: 10.1016/j.matpr.2022.02.037
– ident: e_1_2_9_8_1
  doi: 10.1016/B978-0-323-85159-6.50287-6
– ident: e_1_2_9_1_1
  doi: 10.1016/j.compchemeng.2019.106664
– ident: e_1_2_9_31_1
  doi: 10.1016/j.chemolab.2012.12.003
– ident: e_1_2_9_4_1
  doi: 10.1016/j.aej.2022.04.032
SSID ssj0055559
Score 2.283446
Snippet This work presents the development and validation of two virtual analyzers (density and Melt Index (MI)) for quality monitoring and control of the final...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Algorithms
Analyzers
Artificial neural networks
constructive algorithm
Density
feedforward neural network
linear polyethylene
Neural networks
Optimization
quality parameters
Regression models
virtual analyser
Title Virtual Analyzers for MI and Density Based on Neural Networks Improved through an Integrated Strategy Involving a Constructive Algorithm and Definition of Initial Weights
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmren.202200066
https://www.proquest.com/docview/2852817502
Volume 17
WOSCitedRecordID wos000906705300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1862-8338
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055559
  issn: 1862-832X
  databaseCode: DRFUL
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50FfTiW1xfzEHwVOymTdoefS0Kuoj42FvJq7qgXdkugv4kf6WTPlY9CdpDadomKclk5mM6-QZgj2k_sswmXmJj44Uq7HjSCO5lhL0l960JSofb3UXU68X9fnL1bRd_xQ8xcbi5lVHqa7fApSoOvkhDn0fW8Zeycq-JmIYZRsIbtmDm5Lp7e9FoY06Hg8AdQu4eSW-_IW702cHPFn4api-0-R2zlkanu_j_z12ChRpw4mElIcswZfMVmDtu8rytwsfdYOQ2kWDJT_JOcBAJyOLlOcrc4IkLcB-_4RFZO4PDHB2bB73cq8LHC6y8EvSszvhDtfC84aAwWLPfvtE9UoTOe4ESXZbQirf21eLh08NwNBg_Ptf9ZYO8DCPDYUaV6JJ6uy8duMUa3HZPb47PvDqDg6dZxISnNJNJaLmIjYoFIdFEB77JCIQoIbJAioTOPuk4xSPTMY6SlLn_a1rGPI4kC9ahlQ9zuwHoa6ZEEgQq4CJUXKpQ2FBrX0hLoEyLNuw305e-VEQdaUXJzFI39ulk7Nuw3cxuWi_YImUxZzFBKZ-1gZXz-Esr6eX1aW9S2vxLpS2Yd8nrq3DCbWjRwNsdmNWv40Ex2q0F-RNn2PYt
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB7RgASX8mhRAxTmUImThbP2ru1jGoiISKwKAc3N2pchUnFQEiHBT-qv7KwfoZyQED5YXtu7a-3Mzn4az34D8INpP7LMJl5iY-OFKux40gju5YS9JfetCUqH280wStN4PE5-1dGEbi9MxQ-xdLi5mVHaazfBnUP65IU19H5mHYEpKzebiE-wGpIu8Rasnl72r4eNOeZ0OAzcIejukfqOG-ZGn528buH1yvQCN_8HreWq09_8gO_dgs815MRupSPbsGKLHVjvNZnevsDfm8nMbSPBkqHkmQAhEpTF0QBlYfDUhbgvnvAnrXcGpwU6Pg96Oa0CyOdY-SXoWZ3zh2rhoGGhMFjz3z7RPTKFzn-BEl2e0Iq59tFi98_tdDZZ3N3X_eWTogwkw2lOleiSevtdunDnX-G6f3bVO_fqHA6eZhETntJMJqHlIjYqFoRFEx34JicYooTIAykSOvtk5RSPTMc4UlLm_rBpGfM4kizYhVYxLew3QF8zJZIgUAEXoeJShcKGWvtCWoJlWrThuJFf9lBRdWQVKTPL3Nhny7Fvw0Ej3qyesvOMxZzFBKZ81gZWCvKNVrLR5Vm6LO29p9IRrJ9fjYbZcJBe7MOGS2VfBRceQIuEYL_Dmn5cTOazw1qr_wEoc_od
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwEB7xEnBZHruIsjzmgMQpInViJzkCpaKiRAjx6C3yK2wlSFFbIcFP2l-54zzKclppRQ5RnMR25PGMP03G3wAcMu1HltnES2xsvFCFbU8awb2csLfkvjVB6XC770dpGg8GyXUdTej2wlT8EDOHm9OM0l47BbcvJj_-YA19HltHYMrKzSZiHhZDngjSzcXOTfeu35hjTofDwG2C7h5N30HD3Oiz488tfF6ZPuDm36C1XHW6a1_wvevwrYaceFLNkQ2Ys8UmrJw1md6-w-_74dhtI8GSoeSdACESlMWrHsrCYMeFuE_f8JTWO4OjAh2fB72cVgHkE6z8EvSszvlDtbDXsFAYrPlv3-gemULnv0CJLk9oxVz7avHk6XE0Hk5_Pdf95cOiDCTDUU6V6JJ6eyhduJMfcNc9vz278OocDp5mEROe0kwmoeUiNioWhEUTHfgmJxiihMgDKRI6-2TlFI9M2zhSUub-sGkZ8ziSLNiChWJU2G1AXzMlkiBQAReh4lKFwoZa-0JagmVatOCokV_2UlF1ZBUpM8vc2GezsW_BbiPerFbZScZizmICUz5rASsF-Y9Wsqub83RW2vmfSgewfN3pZv1eevkTVl0m-yq2cBcWSAZ2D5b063Q4Ge_Xk_oPu875mA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Virtual+Analyzers+for+MI+and+Density+Based+on+Neural+Networks+Improved+through+an+Integrated+Strategy+Involving+a+Constructive+Algorithm+and+Definition+of+Initial+Weights&rft.jtitle=Macromolecular+reaction+engineering&rft.au=da+Silva%2C+Adilton+Lopes&rft.au=Fontes%2C+Cristiano+Hora&rft.au=Embiru%C3%A7u%2C+Marcelo&rft.date=2023-08-01&rft.issn=1862-832X&rft.eissn=1862-8338&rft.volume=17&rft.issue=4&rft_id=info:doi/10.1002%2Fmren.202200066&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mren_202200066
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-832X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-832X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-832X&client=summon