Distinctive Features of Mesa‐Type Metal/Dielectric Surface Grating Structures Assisting Resonant Enhancement of Thermal Emission at Longitudinal–Optical Phonon Energy

Previously, a longitudinal optical (LO) phonon resonant emission (LORE) at 8.5 THz from Au‐GaAs surface microstructures at 630 K is reported. This emission ascribed to thermally generated electric dipoles by the coherently vibrating charges at Au/GaAs/Au interfaces shows no dependence of the emissio...

Full description

Saved in:
Bibliographic Details
Published in:Physica status solidi. A, Applications and materials science Vol. 221; no. 13
Main Authors: Aye, Hnin Lai Lai, Lin, Bojin, Suzuki, Ikuya, Ishitani, Yoshihiro
Format: Journal Article
Language:English
Published: Weinheim Wiley Subscription Services, Inc 01.07.2024
Subjects:
ISSN:1862-6300, 1862-6319
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Previously, a longitudinal optical (LO) phonon resonant emission (LORE) at 8.5 THz from Au‐GaAs surface microstructures at 630 K is reported. This emission ascribed to thermally generated electric dipoles by the coherently vibrating charges at Au/GaAs/Au interfaces shows no dependence of the emission photon energy on the emission direction, which is different from the property of surface phonon polaritons. Herein, the advantage of surface grating structures with high mesa and narrow window width is shown. The experimental emission properties of samples with 1.4–6.0 μm window width and mesa height up to 2.7 μm and finite difference time domain simulations reveal the increase in mesa height increases the electric dipole moment, while it augments the reabsorption of LORE and the background radiation subject to Planck's law for a wide window width of 6 μm. Reabsorption and the background emission can be reduced by adopting high mesa and narrow windows, which is due to the reduction of both the wire‐grid polarizer function and the distribution of the electric field beyond the LO‐phonon coherence inside the GaAs wafer. Theoretical simulation results suggest that a structure with a window width of 0.75 μm and a mesa height of 2 μm is an effective countermeasure. Thermal emission at 8.5 THz resonating with longitudinal optical phonon is obtained from Au–GaAs surface‐grating structures. Fabricating mesa augments the electric–dipole emission when the height <1 μm, whereas a further increase leads to reabsorption and augments background radiation. Window width of <1 μm and high mesa are effective in suppressing the reabsorption while maintaining dipole moment.
AbstractList Previously, a longitudinal optical (LO) phonon resonant emission (LORE) at 8.5 THz from Au‐GaAs surface microstructures at 630 K is reported. This emission ascribed to thermally generated electric dipoles by the coherently vibrating charges at Au/GaAs/Au interfaces shows no dependence of the emission photon energy on the emission direction, which is different from the property of surface phonon polaritons. Herein, the advantage of surface grating structures with high mesa and narrow window width is shown. The experimental emission properties of samples with 1.4–6.0 μm window width and mesa height up to 2.7 μm and finite difference time domain simulations reveal the increase in mesa height increases the electric dipole moment, while it augments the reabsorption of LORE and the background radiation subject to Planck's law for a wide window width of 6 μm. Reabsorption and the background emission can be reduced by adopting high mesa and narrow windows, which is due to the reduction of both the wire‐grid polarizer function and the distribution of the electric field beyond the LO‐phonon coherence inside the GaAs wafer. Theoretical simulation results suggest that a structure with a window width of 0.75 μm and a mesa height of 2 μm is an effective countermeasure.
Previously, a longitudinal optical (LO) phonon resonant emission (LORE) at 8.5 THz from Au‐GaAs surface microstructures at 630 K is reported. This emission ascribed to thermally generated electric dipoles by the coherently vibrating charges at Au/GaAs/Au interfaces shows no dependence of the emission photon energy on the emission direction, which is different from the property of surface phonon polaritons. Herein, the advantage of surface grating structures with high mesa and narrow window width is shown. The experimental emission properties of samples with 1.4–6.0 μm window width and mesa height up to 2.7 μm and finite difference time domain simulations reveal the increase in mesa height increases the electric dipole moment, while it augments the reabsorption of LORE and the background radiation subject to Planck's law for a wide window width of 6 μm. Reabsorption and the background emission can be reduced by adopting high mesa and narrow windows, which is due to the reduction of both the wire‐grid polarizer function and the distribution of the electric field beyond the LO‐phonon coherence inside the GaAs wafer. Theoretical simulation results suggest that a structure with a window width of 0.75 μm and a mesa height of 2 μm is an effective countermeasure. Thermal emission at 8.5 THz resonating with longitudinal optical phonon is obtained from Au–GaAs surface‐grating structures. Fabricating mesa augments the electric–dipole emission when the height <1 μm, whereas a further increase leads to reabsorption and augments background radiation. Window width of <1 μm and high mesa are effective in suppressing the reabsorption while maintaining dipole moment.
Author Aye, Hnin Lai Lai
Lin, Bojin
Suzuki, Ikuya
Ishitani, Yoshihiro
Author_xml – sequence: 1
  givenname: Hnin Lai Lai
  orcidid: 0000-0002-1278-7061
  surname: Aye
  fullname: Aye, Hnin Lai Lai
  organization: Chiba University
– sequence: 2
  givenname: Bojin
  surname: Lin
  fullname: Lin, Bojin
  organization: Chiba University
– sequence: 3
  givenname: Ikuya
  surname: Suzuki
  fullname: Suzuki, Ikuya
  organization: Chiba University
– sequence: 4
  givenname: Yoshihiro
  orcidid: 0000-0001-6445-2565
  surname: Ishitani
  fullname: Ishitani, Yoshihiro
  email: ishitani@faculty.chiba-u.jp
  organization: Chiba University
BookMark eNqFkU1u2zAQhYkgBfLTbLMm0LVtkqL-lobtpAFcJIjdtTCiRjYDmVRJKoV3PkKB3iLHyknK1EWy7Gre4n0PM_MuyKmxBgm55mzMGROT3nsYCyYSxtJCnpBzXmRilCW8PH3XjJ2RC--fGJOpzPk5eZlrH7RRQT8jvUEIg0NPbUu_oYfXw6_1vseoA3STucYOVXBa0dXgWlBIbx1EeENXwQ3qiE69_5u4oY_orQET6MJswSjcYdQxeb1Ft4OOLnY6eq2hEOjSmo0OQ6MNdK-H3_d90CpaHrY2HhkD0G32n8mnFjqPV__mJfl-s1jPvo6W97d3s-lypEQu5AiKsixT2TSpajNey0LUspSo6jJNcp6VvM0kL-oWeZ6KtogvgYJB3UDW5MAFJJfkyzG3d_bHgD5UT3ZwcTFfJSwvGOPxj9E1PrqUs947bKve6R24fcVZ9dZH9dZH9d5HBMoj8FN3uP-Pu3pYraYf7B9w2JaM
Cites_doi 10.1103/PhysRev.130.2193
10.1063/1.5010805
10.1364/OE.16.005305
10.1103/PhysRevB.69.235208
10.1103/PhysRevB.100.205419
10.1515/nanoph-2014-0003
10.1021/ph500143u
10.1103/PhysRevB.76.045427
10.1016/j.jqsrt.2018.05.010
10.1063/1.5047458
10.1016/j.infrared.2023.104924
10.1103/PhysRevB.43.12049
10.1103/PhysRevB.91.235316
10.1038/srep40071
10.1103/PhysRevB.55.10105
10.1002/pssb.2221950110
10.1103/PhysRevB.86.035316
10.1016/j.mssp.2022.106726
10.1038/416061a
10.1002/pssa.202200538
10.1088/1361-6463/aa9918
10.1063/1.3497645
10.1088/1742-6596/993/1/012012
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/pssa.202300584
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1862-6319
EndPage n/a
ExternalDocumentID 10_1002_pssa_202300584
PSSA202300584
Genre article
GrantInformation_xml – fundername: Science Research on Innovative Areas
  funderid: JP16H06425
– fundername: Iketani Science and Technology Foundation
  funderid: 0321087-A
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1OC
33P
3SF
3WU
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
V2E
W8V
W99
WBKPD
WGJPS
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XG1
XV2
~IA
~WT
AAYXX
CITATION
O8X
1OB
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c2724-a899954dd5cf61b482b494ecb95371691f6418bfe1752f8300a80abda6d7a12a3
IEDL.DBID DRFUL
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001129653200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1862-6300
IngestDate Wed Aug 13 05:48:36 EDT 2025
Sat Nov 29 02:05:23 EST 2025
Sun Jul 06 04:44:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2724-a899954dd5cf61b482b494ecb95371691f6418bfe1752f8300a80abda6d7a12a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6445-2565
0000-0002-1278-7061
PQID 3078001630
PQPubID 1036347
PageCount 10
ParticipantIDs proquest_journals_3078001630
crossref_primary_10_1002_pssa_202300584
wiley_primary_10_1002_pssa_202300584_PSSA202300584
PublicationCentury 2000
PublicationDate July 2024
2024-07-00
20240701
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Physica status solidi. A, Applications and materials science
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014; 1
2017; 7
2010; 97
1963; 130
2015; 4
1997; 55
2018; 216
1991; 43
2018; 993
2018; 113
2004; 69
2018; 112
2023; 134
2008; 16
2023; 220
1996; 195
2018; 51
2002; 416
2015; 91
2024; 57
2007; 76
2019; 100
2012; 86
2022; 147
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_24_1
e_1_2_8_14_1
e_1_2_8_25_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_22_1
e_1_2_8_12_1
e_1_2_8_23_1
Lin B. (e_1_2_8_21_1) 2024; 57
References_xml – volume: 112
  start-page: 011103
  year: 2018
  publication-title: Appl. Phys. Lett.
– volume: 7
  start-page: 40071
  year: 2017
  publication-title: Sci. Rep.
– volume: 993
  start-page: 012012
  year: 2018
  publication-title: J. Phys.: Conf. Ser.
– volume: 134
  start-page: 104924
  year: 2023
  publication-title: Infrared Phys. Technol.
– volume: 1
  start-page: 718
  year: 2014
  publication-title: ACS Photonics
– volume: 220
  start-page: 2200538
  year: 2023
  publication-title: Phys. Status Solidi A
– volume: 100
  start-page: 205419
  year: 2019
  publication-title: Phys. Rev. B
– volume: 91
  start-page: 235316
  year: 2015
  publication-title: Phys. Rev. B
– volume: 57
  start-page: 03510
  year: 2024
  publication-title: J. Phys. D
– volume: 147
  start-page: 106726
  year: 2022
  publication-title: Mater. Sci. Sem. Proc.
– volume: 130
  start-page: 2193
  year: 1963
  publication-title: Phys. Rev.
– volume: 16
  start-page: 5305
  year: 2008
  publication-title: Opt. Express
– volume: 86
  start-page: 035316
  year: 2012
  publication-title: Phys. Rev. B
– volume: 51
  start-page: 015105
  year: 2018
  publication-title: J. Phys. D
– volume: 195
  start-page: 85
  year: 1996
  publication-title: Phys. Status Solidi B
– volume: 416
  start-page: 61
  year: 2002
  publication-title: Nature
– volume: 55
  start-page: 10105
  year: 1997
  publication-title: Phys. Rev. B
– volume: 216
  start-page: 99
  year: 2018
  publication-title: J. Quant. Spectrosc. Radiat. Transfer
– volume: 4
  start-page: 44
  year: 2015
  publication-title: Nanophotonics
– volume: 97
  start-page: 161101
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 43
  start-page: 12049
  year: 1991
  publication-title: Phys. Rev. B
– volume: 69
  start-page: 235208
  year: 2004
  publication-title: Phys. Rev. B
– volume: 76
  start-page: 045427
  year: 2007
  publication-title: Phys. Rev. B
– volume: 113
  start-page: 192105
  year: 2018
  publication-title: Appl. Phys. Lett.
– ident: e_1_2_8_2_1
  doi: 10.1103/PhysRev.130.2193
– ident: e_1_2_8_8_1
  doi: 10.1063/1.5010805
– ident: e_1_2_8_12_1
  doi: 10.1364/OE.16.005305
– ident: e_1_2_8_24_1
  doi: 10.1103/PhysRevB.69.235208
– ident: e_1_2_8_10_1
  doi: 10.1103/PhysRevB.100.205419
– ident: e_1_2_8_15_1
  doi: 10.1515/nanoph-2014-0003
– ident: e_1_2_8_9_1
  doi: 10.1021/ph500143u
– ident: e_1_2_8_11_1
  doi: 10.1103/PhysRevB.76.045427
– ident: e_1_2_8_14_1
  doi: 10.1016/j.jqsrt.2018.05.010
– ident: e_1_2_8_17_1
  doi: 10.1063/1.5047458
– ident: e_1_2_8_19_1
  doi: 10.1016/j.infrared.2023.104924
– ident: e_1_2_8_25_1
  doi: 10.1103/PhysRevB.43.12049
– ident: e_1_2_8_7_1
  doi: 10.1103/PhysRevB.91.235316
– ident: e_1_2_8_16_1
  doi: 10.1038/srep40071
– ident: e_1_2_8_3_1
  doi: 10.1103/PhysRevB.55.10105
– ident: e_1_2_8_23_1
  doi: 10.1002/pssb.2221950110
– ident: e_1_2_8_13_1
  doi: 10.1103/PhysRevB.86.035316
– ident: e_1_2_8_20_1
  doi: 10.1016/j.mssp.2022.106726
– volume: 57
  start-page: 03510
  year: 2024
  ident: e_1_2_8_21_1
  publication-title: J. Phys. D
– ident: e_1_2_8_4_1
  doi: 10.1038/416061a
– ident: e_1_2_8_18_1
  doi: 10.1002/pssa.202200538
– ident: e_1_2_8_22_1
  doi: 10.1088/1361-6463/aa9918
– ident: e_1_2_8_5_1
  doi: 10.1063/1.3497645
– ident: e_1_2_8_6_1
  doi: 10.1088/1742-6596/993/1/012012
SSID ssj0045471
Score 2.4159615
Snippet Previously, a longitudinal optical (LO) phonon resonant emission (LORE) at 8.5 THz from Au‐GaAs surface microstructures at 630 K is reported. This emission...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Background radiation
Computational grids
Dipole moments
Electric dipoles
Electric fields
Finite difference time domain method
Gold
Height
longitudinal optical phonons
mesa structures
mid‐infrared thermal emissions
Phonons
Polaritons
radiation intensity mechanisms
Thermal emission
Title Distinctive Features of Mesa‐Type Metal/Dielectric Surface Grating Structures Assisting Resonant Enhancement of Thermal Emission at Longitudinal–Optical Phonon Energy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpssa.202300584
https://www.proquest.com/docview/3078001630
Volume 221
WOSCitedRecordID wos001129653200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1862-6319
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0045471
  issn: 1862-6300
  databaseCode: DRFUL
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTttAEB6VABKXtvyJtFDtAaknC3u9jtdH1CTtIaVRUyRu1v5CJOREmHDmEZB4Cx6LJ-nMOglwQoKbLXnH1s7_ePYbgEOjitS6QkcanUEkdCwjxW0SOZ3lSpkk8Uk4KDzIT07k2VkxfHaKv8GHWBbcSDOCvSYFV7o-egINndY14QZxwluXYgVWOQpv1oLV7t_-6WBhjQmvKiRdGLlHBC-1AG6M-dFLCi8d01O0-TxmDU6n_-n9n_sZPs4DTnbcSMgmfHDVFqyHxk9Tb8NDl5S8ClaPUTw4w_ybTTz77Wr1eHtHeSpeU7dpd9zMzBkbNppdeWUc-0nyU52zUUChDUuR34HiOaM_A9Rmw3rVBckW1SGJMkomeoNL1kMRo1odU9dsMKG5STNLM7oeb-__TEOJnQ0vJhU-0AsHFHfgtN_79-NXNJ_fEBmecxEpzOWKTFibGd9JtJBci0I4o4ssDSA9viMSqb3DEIZ7iTujZKy0VR2bq4SrdBda-BK3B8zG2oo0pvENHilkMvGpjJ3PBeHXyKIN3xfMK6cNTEfZADLzkna-XO58G_YXvC3n6lqXaOgkBb9p3AYeuPgKlXI4Gh0v7768ZdFX2MBr0bT-7kMLGeUOYM3cXI_rq29zMf4P7gH5Eg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEB5BCyoX_quGFtgDEier9nodr49Vk1CEGyLSSr1Z-9tGQk5UNz33EZB4Cx6rT8LM2knpCQlxsy17bO38j2e_AfhgVJFaV-hIozOIhI5lpLhNIqezXCmTJD4JG4XLfDyWZ2fFpOsmpL0wLT7EuuBGmhHsNSk4FaT371BDF01DwEGcANeleAibAmUJhXxz8G10Wq7MMQFWhawLQ_eI8KVWyI0x379P4b5nugs3_wxag9cZPfsP3_scnnYhJztoZeQFPHD1S3gcWj9N8wp-DUjN62D3GEWES8zA2dyzY9eo25sflKniMfWbDmbt1JyZYdPlpVfGsU8kQfU5mwYc2vAocjxQPGf0b4AabdiwviDpokokUUbZRH_wnQ1RyKhax9QVK-c0OWlpaUrX7c3Pr4tQZGeTi3mNNwzDFsXXcDoanhweRd0Eh8jwnItIYTZXZMLazPh-ooXkWhTCGV1kaYDp8X2RSO0dBjHcS1wZJWOlrerbXCVcpduwgS9xO8BsrK1IYxrg4JFCJhOfytj5XBCCjSx68HHFvWrRAnVULSQzr2jlq_XK92BvxdyqU9imQlMnKfxN4x7wwMa_UKkm0-nB-uzNvzz0HraOTo7Lqvw8_rILT_C6aBuB92ADmebewiNzfTVrLt91Mv0b0I_9Ag
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEB5BCqgXKFBEoNA9IHGyaq_X8fpYkaRUDWnUUKk3a3_bSMiJ6qbnPgISb8Fj9UmYWTspPVVC3GzLHls7_-PZbwA-GVWk1hU60ugMIqFjGSluk8jpLFfKJIlPwkbhUT4ey7OzYtJ2E9JemAYfYl1wI80I9poU3C2s37tDDV3UNQEHcQJcl-IxbAiaJNOBjf7J8HS0MscEWBWyLgzdI8KXWiE3xnzvPoX7nuku3Pw7aA1eZ_jiP3zvFjxvQ06238jIS3jkqlfwNLR-mvo1_O6TmlfB7jGKCJeYgbO5Z99crW5vflKmisfUb9qfNVNzZoZNl5deGccOSIKqczYNOLThUeR4oHjO6N8ANdqwQXVB0kWVSKKMson-4AcboJBRtY6pKzaa0-SkpaUpXbc3v44XocjOJhfzCm8YhC2K23A6HHz_8jVqJzhEhudcRAqzuSIT1mbG9xItJNeiEM7oIksDTI_viURq7zCI4V7iyigZK21Vz-Yq4Sp9Ax18iXsLzMbaijSmAQ4eKWQy8amMnc8FIdjIogufV9wrFw1QR9lAMvOSVr5cr3wXdlbMLVuFrUs0dZLC3zTuAg9sfIBKOZlO99dn7_7loV14NukPy9Hh-Og9bOJl0fQB70AHeeY-wBNzfTWrLz-2Iv0HYWb8fQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distinctive+Features+of+Mesa%E2%80%90Type+Metal%2FDielectric+Surface+Grating+Structures+Assisting+Resonant+Enhancement+of+Thermal+Emission+at+Longitudinal%E2%80%93Optical+Phonon+Energy&rft.jtitle=Physica+status+solidi.+A%2C+Applications+and+materials+science&rft.au=Aye%2C+Hnin+Lai+Lai&rft.au=Lin%2C+Bojin&rft.au=Suzuki%2C+Ikuya&rft.au=Ishitani%2C+Yoshihiro&rft.date=2024-07-01&rft.issn=1862-6300&rft.eissn=1862-6319&rft.volume=221&rft.issue=13&rft_id=info:doi/10.1002%2Fpssa.202300584&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_pssa_202300584
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-6300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-6300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-6300&client=summon