Distinctive Features of Mesa‐Type Metal/Dielectric Surface Grating Structures Assisting Resonant Enhancement of Thermal Emission at Longitudinal–Optical Phonon Energy
Previously, a longitudinal optical (LO) phonon resonant emission (LORE) at 8.5 THz from Au‐GaAs surface microstructures at 630 K is reported. This emission ascribed to thermally generated electric dipoles by the coherently vibrating charges at Au/GaAs/Au interfaces shows no dependence of the emissio...
Saved in:
| Published in: | Physica status solidi. A, Applications and materials science Vol. 221; no. 13 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Weinheim
Wiley Subscription Services, Inc
01.07.2024
|
| Subjects: | |
| ISSN: | 1862-6300, 1862-6319 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Previously, a longitudinal optical (LO) phonon resonant emission (LORE) at 8.5 THz from Au‐GaAs surface microstructures at 630 K is reported. This emission ascribed to thermally generated electric dipoles by the coherently vibrating charges at Au/GaAs/Au interfaces shows no dependence of the emission photon energy on the emission direction, which is different from the property of surface phonon polaritons. Herein, the advantage of surface grating structures with high mesa and narrow window width is shown. The experimental emission properties of samples with 1.4–6.0 μm window width and mesa height up to 2.7 μm and finite difference time domain simulations reveal the increase in mesa height increases the electric dipole moment, while it augments the reabsorption of LORE and the background radiation subject to Planck's law for a wide window width of 6 μm. Reabsorption and the background emission can be reduced by adopting high mesa and narrow windows, which is due to the reduction of both the wire‐grid polarizer function and the distribution of the electric field beyond the LO‐phonon coherence inside the GaAs wafer. Theoretical simulation results suggest that a structure with a window width of 0.75 μm and a mesa height of 2 μm is an effective countermeasure.
Thermal emission at 8.5 THz resonating with longitudinal optical phonon is obtained from Au–GaAs surface‐grating structures. Fabricating mesa augments the electric–dipole emission when the height <1 μm, whereas a further increase leads to reabsorption and augments background radiation. Window width of <1 μm and high mesa are effective in suppressing the reabsorption while maintaining dipole moment. |
|---|---|
| AbstractList | Previously, a longitudinal optical (LO) phonon resonant emission (LORE) at 8.5 THz from Au‐GaAs surface microstructures at 630 K is reported. This emission ascribed to thermally generated electric dipoles by the coherently vibrating charges at Au/GaAs/Au interfaces shows no dependence of the emission photon energy on the emission direction, which is different from the property of surface phonon polaritons. Herein, the advantage of surface grating structures with high mesa and narrow window width is shown. The experimental emission properties of samples with 1.4–6.0 μm window width and mesa height up to 2.7 μm and finite difference time domain simulations reveal the increase in mesa height increases the electric dipole moment, while it augments the reabsorption of LORE and the background radiation subject to Planck's law for a wide window width of 6 μm. Reabsorption and the background emission can be reduced by adopting high mesa and narrow windows, which is due to the reduction of both the wire‐grid polarizer function and the distribution of the electric field beyond the LO‐phonon coherence inside the GaAs wafer. Theoretical simulation results suggest that a structure with a window width of 0.75 μm and a mesa height of 2 μm is an effective countermeasure. Previously, a longitudinal optical (LO) phonon resonant emission (LORE) at 8.5 THz from Au‐GaAs surface microstructures at 630 K is reported. This emission ascribed to thermally generated electric dipoles by the coherently vibrating charges at Au/GaAs/Au interfaces shows no dependence of the emission photon energy on the emission direction, which is different from the property of surface phonon polaritons. Herein, the advantage of surface grating structures with high mesa and narrow window width is shown. The experimental emission properties of samples with 1.4–6.0 μm window width and mesa height up to 2.7 μm and finite difference time domain simulations reveal the increase in mesa height increases the electric dipole moment, while it augments the reabsorption of LORE and the background radiation subject to Planck's law for a wide window width of 6 μm. Reabsorption and the background emission can be reduced by adopting high mesa and narrow windows, which is due to the reduction of both the wire‐grid polarizer function and the distribution of the electric field beyond the LO‐phonon coherence inside the GaAs wafer. Theoretical simulation results suggest that a structure with a window width of 0.75 μm and a mesa height of 2 μm is an effective countermeasure. Thermal emission at 8.5 THz resonating with longitudinal optical phonon is obtained from Au–GaAs surface‐grating structures. Fabricating mesa augments the electric–dipole emission when the height <1 μm, whereas a further increase leads to reabsorption and augments background radiation. Window width of <1 μm and high mesa are effective in suppressing the reabsorption while maintaining dipole moment. |
| Author | Aye, Hnin Lai Lai Lin, Bojin Suzuki, Ikuya Ishitani, Yoshihiro |
| Author_xml | – sequence: 1 givenname: Hnin Lai Lai orcidid: 0000-0002-1278-7061 surname: Aye fullname: Aye, Hnin Lai Lai organization: Chiba University – sequence: 2 givenname: Bojin surname: Lin fullname: Lin, Bojin organization: Chiba University – sequence: 3 givenname: Ikuya surname: Suzuki fullname: Suzuki, Ikuya organization: Chiba University – sequence: 4 givenname: Yoshihiro orcidid: 0000-0001-6445-2565 surname: Ishitani fullname: Ishitani, Yoshihiro email: ishitani@faculty.chiba-u.jp organization: Chiba University |
| BookMark | eNqFkU1u2zAQhYkgBfLTbLMm0LVtkqL-lobtpAFcJIjdtTCiRjYDmVRJKoV3PkKB3iLHyknK1EWy7Gre4n0PM_MuyKmxBgm55mzMGROT3nsYCyYSxtJCnpBzXmRilCW8PH3XjJ2RC--fGJOpzPk5eZlrH7RRQT8jvUEIg0NPbUu_oYfXw6_1vseoA3STucYOVXBa0dXgWlBIbx1EeENXwQ3qiE69_5u4oY_orQET6MJswSjcYdQxeb1Ft4OOLnY6eq2hEOjSmo0OQ6MNdK-H3_d90CpaHrY2HhkD0G32n8mnFjqPV__mJfl-s1jPvo6W97d3s-lypEQu5AiKsixT2TSpajNey0LUspSo6jJNcp6VvM0kL-oWeZ6KtogvgYJB3UDW5MAFJJfkyzG3d_bHgD5UT3ZwcTFfJSwvGOPxj9E1PrqUs947bKve6R24fcVZ9dZH9dZH9d5HBMoj8FN3uP-Pu3pYraYf7B9w2JaM |
| Cites_doi | 10.1103/PhysRev.130.2193 10.1063/1.5010805 10.1364/OE.16.005305 10.1103/PhysRevB.69.235208 10.1103/PhysRevB.100.205419 10.1515/nanoph-2014-0003 10.1021/ph500143u 10.1103/PhysRevB.76.045427 10.1016/j.jqsrt.2018.05.010 10.1063/1.5047458 10.1016/j.infrared.2023.104924 10.1103/PhysRevB.43.12049 10.1103/PhysRevB.91.235316 10.1038/srep40071 10.1103/PhysRevB.55.10105 10.1002/pssb.2221950110 10.1103/PhysRevB.86.035316 10.1016/j.mssp.2022.106726 10.1038/416061a 10.1002/pssa.202200538 10.1088/1361-6463/aa9918 10.1063/1.3497645 10.1088/1742-6596/993/1/012012 |
| ContentType | Journal Article |
| Copyright | 2023 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH |
| Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH |
| DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| DOI | 10.1002/pssa.202300584 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | Materials Research Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1862-6319 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_pssa_202300584 PSSA202300584 |
| Genre | article |
| GrantInformation_xml | – fundername: Science Research on Innovative Areas funderid: JP16H06425 – fundername: Iketani Science and Technology Foundation funderid: 0321087-A |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1OC 33P 3SF 3WU 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADZMN AEIGN AEIMD AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFWVQ AFZJQ AGQPQ AGYGG AHBTC AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BHBCM BMNLL BNHUX BROTX BRXPI BY8 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ V2E W8V W99 WBKPD WGJPS WIH WIK WOHZO WQJ WXSBR WYISQ XG1 XV2 ~IA ~WT AAYXX CITATION O8X 1OB 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| ID | FETCH-LOGICAL-c2724-a899954dd5cf61b482b494ecb95371691f6418bfe1752f8300a80abda6d7a12a3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001129653200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1862-6300 |
| IngestDate | Wed Aug 13 05:48:36 EDT 2025 Sat Nov 29 02:05:23 EST 2025 Sun Jul 06 04:44:58 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2724-a899954dd5cf61b482b494ecb95371691f6418bfe1752f8300a80abda6d7a12a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6445-2565 0000-0002-1278-7061 |
| PQID | 3078001630 |
| PQPubID | 1036347 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_3078001630 crossref_primary_10_1002_pssa_202300584 wiley_primary_10_1002_pssa_202300584_PSSA202300584 |
| PublicationCentury | 2000 |
| PublicationDate | July 2024 2024-07-00 20240701 |
| PublicationDateYYYYMMDD | 2024-07-01 |
| PublicationDate_xml | – month: 07 year: 2024 text: July 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim |
| PublicationTitle | Physica status solidi. A, Applications and materials science |
| PublicationYear | 2024 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2014; 1 2017; 7 2010; 97 1963; 130 2015; 4 1997; 55 2018; 216 1991; 43 2018; 993 2018; 113 2004; 69 2018; 112 2023; 134 2008; 16 2023; 220 1996; 195 2018; 51 2002; 416 2015; 91 2024; 57 2007; 76 2019; 100 2012; 86 2022; 147 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_24_1 e_1_2_8_14_1 e_1_2_8_25_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_10_1 e_1_2_8_11_1 e_1_2_8_22_1 e_1_2_8_12_1 e_1_2_8_23_1 Lin B. (e_1_2_8_21_1) 2024; 57 |
| References_xml | – volume: 112 start-page: 011103 year: 2018 publication-title: Appl. Phys. Lett. – volume: 7 start-page: 40071 year: 2017 publication-title: Sci. Rep. – volume: 993 start-page: 012012 year: 2018 publication-title: J. Phys.: Conf. Ser. – volume: 134 start-page: 104924 year: 2023 publication-title: Infrared Phys. Technol. – volume: 1 start-page: 718 year: 2014 publication-title: ACS Photonics – volume: 220 start-page: 2200538 year: 2023 publication-title: Phys. Status Solidi A – volume: 100 start-page: 205419 year: 2019 publication-title: Phys. Rev. B – volume: 91 start-page: 235316 year: 2015 publication-title: Phys. Rev. B – volume: 57 start-page: 03510 year: 2024 publication-title: J. Phys. D – volume: 147 start-page: 106726 year: 2022 publication-title: Mater. Sci. Sem. Proc. – volume: 130 start-page: 2193 year: 1963 publication-title: Phys. Rev. – volume: 16 start-page: 5305 year: 2008 publication-title: Opt. Express – volume: 86 start-page: 035316 year: 2012 publication-title: Phys. Rev. B – volume: 51 start-page: 015105 year: 2018 publication-title: J. Phys. D – volume: 195 start-page: 85 year: 1996 publication-title: Phys. Status Solidi B – volume: 416 start-page: 61 year: 2002 publication-title: Nature – volume: 55 start-page: 10105 year: 1997 publication-title: Phys. Rev. B – volume: 216 start-page: 99 year: 2018 publication-title: J. Quant. Spectrosc. Radiat. Transfer – volume: 4 start-page: 44 year: 2015 publication-title: Nanophotonics – volume: 97 start-page: 161101 year: 2010 publication-title: Appl. Phys. Lett. – volume: 43 start-page: 12049 year: 1991 publication-title: Phys. Rev. B – volume: 69 start-page: 235208 year: 2004 publication-title: Phys. Rev. B – volume: 76 start-page: 045427 year: 2007 publication-title: Phys. Rev. B – volume: 113 start-page: 192105 year: 2018 publication-title: Appl. Phys. Lett. – ident: e_1_2_8_2_1 doi: 10.1103/PhysRev.130.2193 – ident: e_1_2_8_8_1 doi: 10.1063/1.5010805 – ident: e_1_2_8_12_1 doi: 10.1364/OE.16.005305 – ident: e_1_2_8_24_1 doi: 10.1103/PhysRevB.69.235208 – ident: e_1_2_8_10_1 doi: 10.1103/PhysRevB.100.205419 – ident: e_1_2_8_15_1 doi: 10.1515/nanoph-2014-0003 – ident: e_1_2_8_9_1 doi: 10.1021/ph500143u – ident: e_1_2_8_11_1 doi: 10.1103/PhysRevB.76.045427 – ident: e_1_2_8_14_1 doi: 10.1016/j.jqsrt.2018.05.010 – ident: e_1_2_8_17_1 doi: 10.1063/1.5047458 – ident: e_1_2_8_19_1 doi: 10.1016/j.infrared.2023.104924 – ident: e_1_2_8_25_1 doi: 10.1103/PhysRevB.43.12049 – ident: e_1_2_8_7_1 doi: 10.1103/PhysRevB.91.235316 – ident: e_1_2_8_16_1 doi: 10.1038/srep40071 – ident: e_1_2_8_3_1 doi: 10.1103/PhysRevB.55.10105 – ident: e_1_2_8_23_1 doi: 10.1002/pssb.2221950110 – ident: e_1_2_8_13_1 doi: 10.1103/PhysRevB.86.035316 – ident: e_1_2_8_20_1 doi: 10.1016/j.mssp.2022.106726 – volume: 57 start-page: 03510 year: 2024 ident: e_1_2_8_21_1 publication-title: J. Phys. D – ident: e_1_2_8_4_1 doi: 10.1038/416061a – ident: e_1_2_8_18_1 doi: 10.1002/pssa.202200538 – ident: e_1_2_8_22_1 doi: 10.1088/1361-6463/aa9918 – ident: e_1_2_8_5_1 doi: 10.1063/1.3497645 – ident: e_1_2_8_6_1 doi: 10.1088/1742-6596/993/1/012012 |
| SSID | ssj0045471 |
| Score | 2.4159615 |
| Snippet | Previously, a longitudinal optical (LO) phonon resonant emission (LORE) at 8.5 THz from Au‐GaAs surface microstructures at 630 K is reported. This emission... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Index Database Publisher |
| SubjectTerms | Background radiation Computational grids Dipole moments Electric dipoles Electric fields Finite difference time domain method Gold Height longitudinal optical phonons mesa structures mid‐infrared thermal emissions Phonons Polaritons radiation intensity mechanisms Thermal emission |
| Title | Distinctive Features of Mesa‐Type Metal/Dielectric Surface Grating Structures Assisting Resonant Enhancement of Thermal Emission at Longitudinal–Optical Phonon Energy |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpssa.202300584 https://www.proquest.com/docview/3078001630 |
| Volume | 221 |
| WOSCitedRecordID | wos001129653200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1862-6319 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0045471 issn: 1862-6300 databaseCode: DRFUL dateStart: 20050101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTttAEB6VABKXtvyJtFDtAaknC3u9jtdH1CTtIaVRUyRu1v5CJOREmHDmEZB4Cx6LJ-nMOglwQoKbLXnH1s7_ePYbgEOjitS6QkcanUEkdCwjxW0SOZ3lSpkk8Uk4KDzIT07k2VkxfHaKv8GHWBbcSDOCvSYFV7o-egINndY14QZxwluXYgVWOQpv1oLV7t_-6WBhjQmvKiRdGLlHBC-1AG6M-dFLCi8d01O0-TxmDU6n_-n9n_sZPs4DTnbcSMgmfHDVFqyHxk9Tb8NDl5S8ClaPUTw4w_ybTTz77Wr1eHtHeSpeU7dpd9zMzBkbNppdeWUc-0nyU52zUUChDUuR34HiOaM_A9Rmw3rVBckW1SGJMkomeoNL1kMRo1odU9dsMKG5STNLM7oeb-__TEOJnQ0vJhU-0AsHFHfgtN_79-NXNJ_fEBmecxEpzOWKTFibGd9JtJBci0I4o4ssDSA9viMSqb3DEIZ7iTujZKy0VR2bq4SrdBda-BK3B8zG2oo0pvENHilkMvGpjJ3PBeHXyKIN3xfMK6cNTEfZADLzkna-XO58G_YXvC3n6lqXaOgkBb9p3AYeuPgKlXI4Gh0v7768ZdFX2MBr0bT-7kMLGeUOYM3cXI_rq29zMf4P7gH5Eg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEB5BCyoX_quGFtgDEier9nodr49Vk1CEGyLSSr1Z-9tGQk5UNz33EZB4Cx6rT8LM2knpCQlxsy17bO38j2e_AfhgVJFaV-hIozOIhI5lpLhNIqezXCmTJD4JG4XLfDyWZ2fFpOsmpL0wLT7EuuBGmhHsNSk4FaT371BDF01DwEGcANeleAibAmUJhXxz8G10Wq7MMQFWhawLQ_eI8KVWyI0x379P4b5nugs3_wxag9cZPfsP3_scnnYhJztoZeQFPHD1S3gcWj9N8wp-DUjN62D3GEWES8zA2dyzY9eo25sflKniMfWbDmbt1JyZYdPlpVfGsU8kQfU5mwYc2vAocjxQPGf0b4AabdiwviDpokokUUbZRH_wnQ1RyKhax9QVK-c0OWlpaUrX7c3Pr4tQZGeTi3mNNwzDFsXXcDoanhweRd0Eh8jwnItIYTZXZMLazPh-ooXkWhTCGV1kaYDp8X2RSO0dBjHcS1wZJWOlrerbXCVcpduwgS9xO8BsrK1IYxrg4JFCJhOfytj5XBCCjSx68HHFvWrRAnVULSQzr2jlq_XK92BvxdyqU9imQlMnKfxN4x7wwMa_UKkm0-nB-uzNvzz0HraOTo7Lqvw8_rILT_C6aBuB92ADmebewiNzfTVrLt91Mv0b0I_9Ag |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEB5BCqgXKFBEoNA9IHGyaq_X8fpYkaRUDWnUUKk3a3_bSMiJ6qbnPgISb8Fj9UmYWTspPVVC3GzLHls7_-PZbwA-GVWk1hU60ugMIqFjGSluk8jpLFfKJIlPwkbhUT4ey7OzYtJ2E9JemAYfYl1wI80I9poU3C2s37tDDV3UNQEHcQJcl-IxbAiaJNOBjf7J8HS0MscEWBWyLgzdI8KXWiE3xnzvPoX7nuku3Pw7aA1eZ_jiP3zvFjxvQ06238jIS3jkqlfwNLR-mvo1_O6TmlfB7jGKCJeYgbO5Z99crW5vflKmisfUb9qfNVNzZoZNl5deGccOSIKqczYNOLThUeR4oHjO6N8ANdqwQXVB0kWVSKKMson-4AcboJBRtY6pKzaa0-SkpaUpXbc3v44XocjOJhfzCm8YhC2K23A6HHz_8jVqJzhEhudcRAqzuSIT1mbG9xItJNeiEM7oIksDTI_viURq7zCI4V7iyigZK21Vz-Yq4Sp9Ax18iXsLzMbaijSmAQ4eKWQy8amMnc8FIdjIogufV9wrFw1QR9lAMvOSVr5cr3wXdlbMLVuFrUs0dZLC3zTuAg9sfIBKOZlO99dn7_7loV14NukPy9Hh-Og9bOJl0fQB70AHeeY-wBNzfTWrLz-2Iv0HYWb8fQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distinctive+Features+of+Mesa%E2%80%90Type+Metal%2FDielectric+Surface+Grating+Structures+Assisting+Resonant+Enhancement+of+Thermal+Emission+at+Longitudinal%E2%80%93Optical+Phonon+Energy&rft.jtitle=Physica+status+solidi.+A%2C+Applications+and+materials+science&rft.au=Aye%2C+Hnin+Lai+Lai&rft.au=Lin%2C+Bojin&rft.au=Suzuki%2C+Ikuya&rft.au=Ishitani%2C+Yoshihiro&rft.date=2024-07-01&rft.issn=1862-6300&rft.eissn=1862-6319&rft.volume=221&rft.issue=13&rft_id=info:doi/10.1002%2Fpssa.202300584&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_pssa_202300584 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-6300&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-6300&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-6300&client=summon |