Tilt‐Engineered Molecular‐Scale Selector for Enhanced Learning in Artificial Neural Networks

Miniaturization of individual selectors in crossbar‐array‐based artificial neural networks is essential for the advancement of the underlying neuromorphic electronics, as it improves learning, recognition, and prediction accuracies. This study proposes a tilt‐engineered molecular‐scale selector comp...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advanced functional materials Ročník 34; číslo 16
Hlavní autoři: Eo, Jung Sun, Shin, Jaeho, Jeon, Takgyeong, Jang, Jingon, Wang, Gunuk
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken Wiley Subscription Services, Inc 01.04.2024
Témata:
ISSN:1616-301X, 1616-3028
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Miniaturization of individual selectors in crossbar‐array‐based artificial neural networks is essential for the advancement of the underlying neuromorphic electronics, as it improves learning, recognition, and prediction accuracies. This study proposes a tilt‐engineered molecular‐scale selector comprising a heterostructure of biphenyl‐4‐thiol (OPT2) or 1‐octanethiol (C8) molecular layers and an n‐type two‐dimensional MoS2 monolayer (1L‐MoS2) at an approximate contact radius of 3 nm, which is evaluated via conductive atomic force microscopy under various tip‐loading forces. The molecular tilt configuration controlled by the tip‐loading force is used as a rectifying engineer for the OPT2/1L‐MoS2 and C8/1L‐MoS2 heterojunction accuracies. Rectification ratios and conductance levels are significantly influenced by the molecular backbones and tilt angle. The proposed tilt‐engineered selector can aid in controlling undesired neural signals affecting vector–matrix multiplications and adjusting the switching range compatibility of an integrated synaptic device cell, significantly influencing the pattern recognition accuracy. By controlling the tilt angle, the recognition accuracy on the MNIST dataset increases from 78.65% to 86.45% and from 7.74% to 86.09% when using the OPT2/1L‐MoS2 and C8/1L‐MoS2 selector, respectively. The proposed molecular tilt configuration can be used for developing customized molecular‐scale selectors for crossbar‐array‐based artificial neural networks to improve learning while suppressing undesired neural signals. Tailored molecular‐scale selectors engineered by molecular tilt configuration in crossbar array‐based artificial neural networks is presented at the ultimate scale limit (at a contact radius of ≈3 nm). This tilt‐engineering molecular‐scale selector can aid in mitigating undesired neural signals with adjustment of the switching range compatibility of an integrated synaptic device cell which significantly influenced the pattern recognition accuracy.
AbstractList Miniaturization of individual selectors in crossbar‐array‐based artificial neural networks is essential for the advancement of the underlying neuromorphic electronics, as it improves learning, recognition, and prediction accuracies. This study proposes a tilt‐engineered molecular‐scale selector comprising a heterostructure of biphenyl‐4‐thiol (OPT2) or 1‐octanethiol (C8) molecular layers and an n‐type two‐dimensional MoS2 monolayer (1L‐MoS2) at an approximate contact radius of 3 nm, which is evaluated via conductive atomic force microscopy under various tip‐loading forces. The molecular tilt configuration controlled by the tip‐loading force is used as a rectifying engineer for the OPT2/1L‐MoS2 and C8/1L‐MoS2 heterojunction accuracies. Rectification ratios and conductance levels are significantly influenced by the molecular backbones and tilt angle. The proposed tilt‐engineered selector can aid in controlling undesired neural signals affecting vector–matrix multiplications and adjusting the switching range compatibility of an integrated synaptic device cell, significantly influencing the pattern recognition accuracy. By controlling the tilt angle, the recognition accuracy on the MNIST dataset increases from 78.65% to 86.45% and from 7.74% to 86.09% when using the OPT2/1L‐MoS2 and C8/1L‐MoS2 selector, respectively. The proposed molecular tilt configuration can be used for developing customized molecular‐scale selectors for crossbar‐array‐based artificial neural networks to improve learning while suppressing undesired neural signals. Tailored molecular‐scale selectors engineered by molecular tilt configuration in crossbar array‐based artificial neural networks is presented at the ultimate scale limit (at a contact radius of ≈3 nm). This tilt‐engineering molecular‐scale selector can aid in mitigating undesired neural signals with adjustment of the switching range compatibility of an integrated synaptic device cell which significantly influenced the pattern recognition accuracy.
Miniaturization of individual selectors in crossbar‐array‐based artificial neural networks is essential for the advancement of the underlying neuromorphic electronics, as it improves learning, recognition, and prediction accuracies. This study proposes a tilt‐engineered molecular‐scale selector comprising a heterostructure of biphenyl‐4‐thiol (OPT2) or 1‐octanethiol (C8) molecular layers and an n‐type two‐dimensional MoS 2 monolayer (1 L ‐MoS 2 ) at an approximate contact radius of 3 nm, which is evaluated via conductive atomic force microscopy under various tip‐loading forces. The molecular tilt configuration controlled by the tip‐loading force is used as a rectifying engineer for the OPT2/1 L ‐MoS 2 and C8/1 L ‐MoS 2 heterojunction accuracies. Rectification ratios and conductance levels are significantly influenced by the molecular backbones and tilt angle. The proposed tilt‐engineered selector can aid in controlling undesired neural signals affecting vector–matrix multiplications and adjusting the switching range compatibility of an integrated synaptic device cell, significantly influencing the pattern recognition accuracy. By controlling the tilt angle, the recognition accuracy on the MNIST dataset increases from 78.65% to 86.45% and from 7.74% to 86.09% when using the OPT2/1 L ‐MoS 2 and C8/1 L ‐MoS 2 selector, respectively. The proposed molecular tilt configuration can be used for developing customized molecular‐scale selectors for crossbar‐array‐based artificial neural networks to improve learning while suppressing undesired neural signals.
Miniaturization of individual selectors in crossbar‐array‐based artificial neural networks is essential for the advancement of the underlying neuromorphic electronics, as it improves learning, recognition, and prediction accuracies. This study proposes a tilt‐engineered molecular‐scale selector comprising a heterostructure of biphenyl‐4‐thiol (OPT2) or 1‐octanethiol (C8) molecular layers and an n‐type two‐dimensional MoS2 monolayer (1L‐MoS2) at an approximate contact radius of 3 nm, which is evaluated via conductive atomic force microscopy under various tip‐loading forces. The molecular tilt configuration controlled by the tip‐loading force is used as a rectifying engineer for the OPT2/1L‐MoS2 and C8/1L‐MoS2 heterojunction accuracies. Rectification ratios and conductance levels are significantly influenced by the molecular backbones and tilt angle. The proposed tilt‐engineered selector can aid in controlling undesired neural signals affecting vector–matrix multiplications and adjusting the switching range compatibility of an integrated synaptic device cell, significantly influencing the pattern recognition accuracy. By controlling the tilt angle, the recognition accuracy on the MNIST dataset increases from 78.65% to 86.45% and from 7.74% to 86.09% when using the OPT2/1L‐MoS2 and C8/1L‐MoS2 selector, respectively. The proposed molecular tilt configuration can be used for developing customized molecular‐scale selectors for crossbar‐array‐based artificial neural networks to improve learning while suppressing undesired neural signals.
Author Jeon, Takgyeong
Shin, Jaeho
Eo, Jung Sun
Wang, Gunuk
Jang, Jingon
Author_xml – sequence: 1
  givenname: Jung Sun
  orcidid: 0000-0003-2086-2882
  surname: Eo
  fullname: Eo, Jung Sun
  organization: Korea University
– sequence: 2
  givenname: Jaeho
  orcidid: 0000-0002-7739-7195
  surname: Shin
  fullname: Shin, Jaeho
  organization: Rice University
– sequence: 3
  givenname: Takgyeong
  orcidid: 0000-0002-8878-6305
  surname: Jeon
  fullname: Jeon, Takgyeong
  organization: Korea University
– sequence: 4
  givenname: Jingon
  orcidid: 0000-0002-1992-177X
  surname: Jang
  fullname: Jang, Jingon
  email: jangjg@korea.ac.kr
  organization: Korea University
– sequence: 5
  givenname: Gunuk
  orcidid: 0000-0001-6059-0530
  surname: Wang
  fullname: Wang, Gunuk
  email: gunukwang@korea.ac.kr
  organization: Korea Institute of Science and Technology
BookMark eNqFkM1OAjEUhRuDiYBuXU_ievD2h5ZZEgQ1GXQBJu5qZ2ixOHSwMxPCzkfwGX0Sixhcurg5NyffuTc5HdRypdMIXWLoYQByrRZm3SNAKMYY6AlqY455TIEMWscdP5-hTlWtALAQlLXRy9wW9dfH59gtrdPa60U0LQudN4XywZ7lqtDRTAenLn1kwozdq3J54FKtvLNuGVkXDX1tjc2tKqIH3fgfqbelf6vO0alRRaUvfrWLnibj-eguTh9v70fDNM6JIDReZJxlgmR9nJFMGANmwBJQjGZEJGA415hwCD4HThnHoIwxfUYTlYgcFKFddHW4u_Hle6OrWq7KxrvwUlJggAeCsSRQvQOV-7KqvDZy4-1a-Z3EIPctyn2L8thiCCSHwNYWevcPLYc3k-lf9hvOBnmL
Cites_doi 10.1109/TNANO.2002.1005426
10.1021/acsami.9b08166
10.1038/nmat4703
10.1038/nnano.2017.110
10.1016/j.colsurfa.2005.11.052
10.1021/ja202178k
10.1038/s41565-018-0302-0
10.1038/s41928-020-00473-w
10.1016/j.mejo.2012.10.001
10.1109/5.752515
10.1021/acsnano.1c00002
10.1002/advs.202101390
10.1038/nmat3778
10.1021/jp3041204
10.1126/science.278.5336.252
10.1002/adma.202002092
10.1021/ja207751w
10.1109/MSP.2012.2211477
10.1109/TED.2012.2193129
10.1021/acs.jpcc.2c09086
10.1002/smtd.202200646
10.1021/acs.nanolett.2c00922
10.1038/s41427-018-0101-y
10.1038/s41377-019-0151-0
10.1038/nnano.2012.238
10.1038/nature14441
10.1002/adfm.201600680
10.1007/s40747-021-00282-4
10.1126/science.1137149
10.1109/TED.2012.2225147
10.3390/ma13225089
10.1007/s00339-011-6294-3
10.1038/ncomms7324
10.1002/adfm.201303520
10.1016/j.mtnano.2023.100319
10.1002/adfm.201808376
10.1021/acsnano.8b00538
10.1109/TED.2017.2776085
10.1038/nnano.2014.150
10.1038/s41467-020-15144-9
10.1021/ja900773h
10.1016/0169-7439(93)80052-J
10.1002/aisy.202000149
10.1021/nl9021094
10.1038/s42256-019-0089-1
10.1002/aelm.202100558
10.1038/s41467-018-04484-2
10.1109/LED.2011.2163697
10.1002/adma.201102395
10.1016/j.orgel.2011.08.017
10.1016/j.rinp.2018.12.092
10.1021/acsnano.6b07159
10.1002/aelm.201600326
10.1007/s40820-023-01035-3
10.1088/0957-4484/21/7/075501
10.1021/acs.nanolett.5b02190
10.1023/A:1018966222807
10.1002/adma.201302047
10.1038/nnano.2012.240
10.1021/jp204340w
10.1039/D0NA00100G
10.1021/acsami.2c11016
10.1002/adma.201405110
10.1021/cm5014784
10.1038/s41467-023-39033-z
10.1021/nl503897h
10.1021/jacs.8b13370
10.1002/admt.202200193
10.1021/acs.nanolett.8b01294
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202311103
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202311103
ADFM202311103
Genre article
GrantInformation_xml – fundername: National R&D program administered by the National Research Foundation (NRF) of Korea and funded by Ministry of Science and ICT (MIST) of Korea government
  funderid: RS‐2023‐00220077; 2022M3H4A1A01009526; 2022R1A2B5B02001455; 2022M3H4A1A01009656; RS‐2023‐00245664
– fundername: Korea University Research Grant
– fundername: Korea University‐Korea Institute of Science and Technology (KU‐KIST) Graduate School Program of Korea University
– fundername: Korea Institute of Science and Technology (KIST) Institutional Program
  funderid: 2E32491‐23‐112
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAMMB
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
O8X
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c2723-db64b72b51b2b7ff0f8490a43b2790f66e1260ff060634610afff5439a97c0a23
IEDL.DBID DRFUL
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001133196600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1616-301X
IngestDate Sun Jul 13 04:57:48 EDT 2025
Sat Nov 29 07:24:48 EST 2025
Wed Jan 22 17:21:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2723-db64b72b51b2b7ff0f8490a43b2790f66e1260ff060634610afff5439a97c0a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8878-6305
0000-0003-2086-2882
0000-0002-7739-7195
0000-0002-1992-177X
0000-0001-6059-0530
PQID 3040187449
PQPubID 2045204
PageCount 11
ParticipantIDs proquest_journals_3040187449
crossref_primary_10_1002_adfm_202311103
wiley_primary_10_1002_adfm_202311103_ADFM202311103
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1997; 278
2012; 60
2011; 115
2013; 25
2019; 11
2019; 12
2019; 14
2014; 26
1999; 87
2014; 24
2020; 13
2011; 12
2020; 11
2012; 59
2022; 22
2013; 8
2018; 9
2010; 21
2020; 3
2023; 22
2020; 2
2006; 284
1985
2019; 29
2014; 13
2012; 29
2011; 23
2014; 9
2019; 8
2021; 8
2021; 7
2015; 15
2015; 6
2023; 14
2013; 44
2011
2023; 15
2015; 521
2019; 1
2017; 65
2002; 1
2023; 127
2011; 32
2020; 32
2009; 131
2019; 141
2011; 133
2018; 18
2021; 15
2015; 27
1993; 18
2016; 2
2007; 315
2023
2022
2021
2017; 16
2022; 6
2022; 7
2017; 11
2022; 8
1993; 10
2017; 12
2018
2022; 14
2009; 9
2013
2018; 12
2018; 10
2012; 116
2016; 26
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
Cassuto Y. (e_1_2_8_20_1) 2013
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_43_1
e_1_2_8_66_1
Li Y. (e_1_2_8_25_1) 2013
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
Lee K. (e_1_2_8_9_1) 2022
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_65_1
Kim T. H. (e_1_2_8_52_1) 2023
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
Cho H. (e_1_2_8_68_1) 2023
e_1_2_8_18_1
e_1_2_8_39_1
Khan M. U. (e_1_2_8_3_1) 2021
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_79_1
Huang J.‐J. (e_1_2_8_69_1) 2011
Park G. W. Y. (e_1_2_8_23_1) 2023
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – year: 1985
– volume: 22
  start-page: 4429
  year: 2022
  publication-title: Nano Lett.
– volume: 87
  start-page: 537
  year: 1999
  publication-title: Proc. IEEE
– volume: 9
  start-page: 676
  year: 2014
  publication-title: Nat. Nanotechonol.
– volume: 3
  start-page: 638
  year: 2020
  publication-title: Nat. Electon.
– volume: 10
  start-page: 1097
  year: 2018
  publication-title: NPG Asia Mater
– volume: 6
  year: 2022
  publication-title: Small Methods
– volume: 7
  year: 2021
  publication-title: Adv. Electron. Mater.
– volume: 131
  start-page: 5980
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 22
  year: 2023
  publication-title: Mater. Today Nano
– volume: 12
  start-page: 797
  year: 2017
  publication-title: Nat. Nanotechonol.
– volume: 15
  start-page: 1031
  year: 2015
  publication-title: Nano Lett.
– volume: 6
  start-page: 6324
  year: 2015
  publication-title: Nat. Commun.
– year: 2018
– volume: 1
  start-page: 56
  year: 2002
  publication-title: IEEE Trans. Nanotechnol.
– volume: 65
  start-page: 122
  year: 2017
  publication-title: IEEE Trans. Electron Devices
– volume: 27
  start-page: 1426
  year: 2015
  publication-title: Adv. Mater.
– volume: 284
  start-page: 583
  year: 2006
  publication-title: Colloids Surf. A: Physicochem. Eng. Asp.
– year: 2023
  publication-title: Jpn. J. Appl. Phys.
– volume: 116
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 2
  start-page: 1811
  year: 2020
  publication-title: Nanoscale Adv
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– start-page: 109
  year: 2011
  publication-title: J. Appl. Phys.
– volume: 315
  start-page: 1568
  year: 2007
  publication-title: Science
– volume: 141
  start-page: 3670
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 2
  year: 2020
  publication-title: Adv. Intel. Syst.
– volume: 2
  year: 2016
  publication-title: Adv. Electron. Mater.
– volume: 15
  start-page: 8484
  year: 2021
  publication-title: ACS Nano
– volume: 21
  year: 2010
  publication-title: Nanotechnology
– volume: 44
  start-page: 176
  year: 2013
  publication-title: Microelectron. J.
– volume: 8
  start-page: 42
  year: 2019
  publication-title: Light Sci. Appl.
– volume: 13
  start-page: 50
  year: 2014
  publication-title: Nat. Mater.
– volume: 15
  start-page: 6009
  year: 2015
  publication-title: Nano Lett.
– volume: 23
  start-page: 4063
  year: 2011
  publication-title: Adv. Mater.
– volume: 14
  start-page: 35
  year: 2019
  publication-title: Nat. Nanotechonol.
– start-page: 156
  year: 2013
  publication-title: IEEE Int. Sympo. Inf. Theory
– volume: 11
  start-page: 1412
  year: 2020
  publication-title: Nat. Commun.
– volume: 59
  start-page: 1813
  year: 2012
  publication-title: IEEE Trans. Electron Devices
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– start-page: 64
  year: 2013
  publication-title: IEEE/ACM Int. Symp. Nanoscale Arch. (NANOARCH)
– volume: 7
  year: 2022
  publication-title: Adv. Mater. Technol.
– volume: 1
  start-page: 434
  year: 2019
  publication-title: Nat. Mach. Intell.
– year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 14
  start-page: 3285
  year: 2023
  publication-title: Nat. Commun.
– volume: 15
  start-page: 69
  year: 2023
  publication-title: Nanomicro Lett
– year: 2011
  publication-title: Int. Electron Devices Meeting
– volume: 12
  start-page: 2144
  year: 2011
  publication-title: Org. Electron.
– volume: 60
  start-page: 420
  year: 2012
  publication-title: IEEE Trans. Electron Devices
– volume: 127
  start-page: 6025
  year: 2023
  publication-title: J. Phys. Chem. C
– volume: 115
  year: 2011
  publication-title: J. Phys. Chem. C
– volume: 13
  start-page: 5089
  year: 2020
  publication-title: Materials
– volume: 10
  start-page: 165
  year: 1993
  publication-title: Pharm. Res.
– volume: 26
  start-page: 5290
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 32
  start-page: 1579
  year: 2011
  publication-title: IEEE Electron Device Lett.
– volume: 133
  start-page: 8838
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 3551
  year: 2018
  publication-title: ACS Nano
– volume: 8
  start-page: 113
  year: 2013
  publication-title: Nat. Nanotechonol.
– volume: 18
  start-page: 4322
  year: 2018
  publication-title: Nano Lett.
– volume: 9
  start-page: 3909
  year: 2009
  publication-title: Nano Lett.
– volume: 18
  start-page: 115
  year: 1993
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 14
  year: 2022
  publication-title: ACS Appl. Mater. Int.
– start-page: 6, 619
  year: 2023
  publication-title: Nat. Electron.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 2385
  year: 2018
  publication-title: Nat. Commun.
– volume: 24
  start-page: 5316
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 278
  start-page: 252
  year: 1997
  publication-title: Science
– volume: 521
  start-page: 61
  year: 2015
  publication-title: Nature
– volume: 8
  start-page: 787
  year: 2022
  publication-title: Complex Intell. Syst.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 25
  start-page: 4789
  year: 2013
  publication-title: Adv. Mater.
– volume: 133
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 3938
  year: 2014
  publication-title: Chem. Mater.
– volume: 11
  start-page: 1588
  year: 2017
  publication-title: ACS Nano
– volume: 12
  start-page: 1091
  year: 2019
  publication-title: Results Phys
– start-page: 10
  year: 2022
  publication-title: APL Mater
– volume: 16
  start-page: 170
  year: 2017
  publication-title: Nat. Mater.
– volume: 8
  start-page: 13
  year: 2013
  publication-title: Nat. Nanotechonol.
– start-page: 1
  year: 2021
  publication-title: ICAME21, Int. Conf. Adv. Mech. Eng.
– volume: 29
  start-page: 141
  year: 2012
  publication-title: IEEE Signal Process. Mag.
– ident: e_1_2_8_2_1
  doi: 10.1109/TNANO.2002.1005426
– ident: e_1_2_8_38_1
  doi: 10.1021/acsami.9b08166
– ident: e_1_2_8_10_1
  doi: 10.1038/nmat4703
– ident: e_1_2_8_45_1
  doi: 10.1038/nnano.2017.110
– ident: e_1_2_8_65_1
  doi: 10.1016/j.colsurfa.2005.11.052
– year: 2023
  ident: e_1_2_8_52_1
  publication-title: Jpn. J. Appl. Phys.
– start-page: 10
  year: 2022
  ident: e_1_2_8_9_1
  publication-title: APL Mater
– ident: e_1_2_8_58_1
  doi: 10.1021/ja202178k
– ident: e_1_2_8_7_1
  doi: 10.1038/s41565-018-0302-0
– ident: e_1_2_8_12_1
  doi: 10.1038/s41928-020-00473-w
– ident: e_1_2_8_22_1
  doi: 10.1016/j.mejo.2012.10.001
– ident: e_1_2_8_1_1
  doi: 10.1109/5.752515
– ident: e_1_2_8_37_1
  doi: 10.1021/acsnano.1c00002
– ident: e_1_2_8_47_1
  doi: 10.1002/advs.202101390
– start-page: 6, 619
  year: 2023
  ident: e_1_2_8_68_1
  publication-title: Nat. Electron.
– ident: e_1_2_8_35_1
  doi: 10.1038/nmat3778
– ident: e_1_2_8_60_1
  doi: 10.1021/jp3041204
– ident: e_1_2_8_50_1
  doi: 10.1126/science.278.5336.252
– ident: e_1_2_8_17_1
  doi: 10.1002/adma.202002092
– ident: e_1_2_8_63_1
– ident: e_1_2_8_64_1
  doi: 10.1021/ja207751w
– ident: e_1_2_8_78_1
  doi: 10.1109/MSP.2012.2211477
– ident: e_1_2_8_4_1
  doi: 10.1109/TED.2012.2193129
– ident: e_1_2_8_51_1
  doi: 10.1021/acs.jpcc.2c09086
– ident: e_1_2_8_48_1
  doi: 10.1002/smtd.202200646
– ident: e_1_2_8_36_1
  doi: 10.1021/acs.nanolett.2c00922
– ident: e_1_2_8_16_1
  doi: 10.1038/s41427-018-0101-y
– ident: e_1_2_8_11_1
  doi: 10.1038/s41377-019-0151-0
– year: 2011
  ident: e_1_2_8_69_1
  publication-title: Int. Electron Devices Meeting
– ident: e_1_2_8_49_1
  doi: 10.1038/nnano.2012.238
– ident: e_1_2_8_72_1
  doi: 10.1038/nature14441
– start-page: 156
  year: 2013
  ident: e_1_2_8_20_1
  publication-title: IEEE Int. Sympo. Inf. Theory
– ident: e_1_2_8_5_1
  doi: 10.1002/adfm.201600680
– ident: e_1_2_8_15_1
  doi: 10.1007/s40747-021-00282-4
– ident: e_1_2_8_59_1
  doi: 10.1126/science.1137149
– year: 2023
  ident: e_1_2_8_23_1
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_8_26_1
  doi: 10.1109/TED.2012.2225147
– ident: e_1_2_8_61_1
  doi: 10.3390/ma13225089
– ident: e_1_2_8_31_1
  doi: 10.1007/s00339-011-6294-3
– ident: e_1_2_8_46_1
  doi: 10.1038/ncomms7324
– ident: e_1_2_8_28_1
  doi: 10.1002/adfm.201303520
– ident: e_1_2_8_8_1
  doi: 10.1016/j.mtnano.2023.100319
– ident: e_1_2_8_29_1
  doi: 10.1002/adfm.201808376
– ident: e_1_2_8_33_1
  doi: 10.1021/acsnano.8b00538
– ident: e_1_2_8_44_1
  doi: 10.1109/TED.2017.2776085
– ident: e_1_2_8_6_1
– ident: e_1_2_8_34_1
  doi: 10.1038/nnano.2014.150
– ident: e_1_2_8_41_1
  doi: 10.1038/s41467-020-15144-9
– ident: e_1_2_8_55_1
  doi: 10.1021/ja900773h
– ident: e_1_2_8_74_1
  doi: 10.1016/0169-7439(93)80052-J
– ident: e_1_2_8_27_1
  doi: 10.1002/aisy.202000149
– ident: e_1_2_8_66_1
  doi: 10.1021/nl9021094
– ident: e_1_2_8_77_1
  doi: 10.1038/s42256-019-0089-1
– ident: e_1_2_8_14_1
  doi: 10.1002/aelm.202100558
– ident: e_1_2_8_75_1
  doi: 10.1038/s41467-018-04484-2
– ident: e_1_2_8_43_1
  doi: 10.1109/LED.2011.2163697
– ident: e_1_2_8_30_1
  doi: 10.1002/adma.201102395
– ident: e_1_2_8_53_1
  doi: 10.1016/j.orgel.2011.08.017
– ident: e_1_2_8_70_1
  doi: 10.1016/j.rinp.2018.12.092
– ident: e_1_2_8_67_1
  doi: 10.1021/acsnano.6b07159
– ident: e_1_2_8_71_1
  doi: 10.1002/aelm.201600326
– ident: e_1_2_8_18_1
  doi: 10.1007/s40820-023-01035-3
– ident: e_1_2_8_79_1
  doi: 10.1088/0957-4484/21/7/075501
– ident: e_1_2_8_21_1
  doi: 10.1021/acs.nanolett.5b02190
– ident: e_1_2_8_76_1
  doi: 10.1023/A:1018966222807
– ident: e_1_2_8_24_1
  doi: 10.1002/adma.201302047
– ident: e_1_2_8_73_1
  doi: 10.1038/nnano.2012.240
– ident: e_1_2_8_54_1
  doi: 10.1021/jp204340w
– start-page: 1
  year: 2021
  ident: e_1_2_8_3_1
  publication-title: ICAME21, Int. Conf. Adv. Mech. Eng.
– ident: e_1_2_8_32_1
  doi: 10.1039/D0NA00100G
– ident: e_1_2_8_42_1
  doi: 10.1021/acsami.2c11016
– ident: e_1_2_8_40_1
  doi: 10.1002/adma.201405110
– ident: e_1_2_8_57_1
  doi: 10.1021/cm5014784
– ident: e_1_2_8_13_1
  doi: 10.1038/s41467-023-39033-z
– start-page: 64
  year: 2013
  ident: e_1_2_8_25_1
  publication-title: IEEE/ACM Int. Symp. Nanoscale Arch. (NANOARCH)
– ident: e_1_2_8_39_1
  doi: 10.1021/nl503897h
– ident: e_1_2_8_62_1
  doi: 10.1021/jacs.8b13370
– ident: e_1_2_8_19_1
  doi: 10.1002/admt.202200193
– ident: e_1_2_8_56_1
  doi: 10.1021/acs.nanolett.8b01294
SSID ssj0017734
Score 2.4525354
Snippet Miniaturization of individual selectors in crossbar‐array‐based artificial neural networks is essential for the advancement of the underlying neuromorphic...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Arrays
artificial neural network
Artificial neural networks
Atomic radius
Configurations
crossbar array
Heterojunctions
Heterostructures
Learning
Mathematical analysis
molecular heterojunction
molecular tilt configuration
molecular‐scale selector
Molybdenum disulfide
Neural networks
Pattern recognition
Selectors
Title Tilt‐Engineered Molecular‐Scale Selector for Enhanced Learning in Artificial Neural Networks
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202311103
https://www.proquest.com/docview/3040187449
Volume 34
WOSCitedRecordID wos001133196600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1616-3028
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017734
  issn: 1616-301X
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwED5BywAD_4hCQR6QmKImthM3Y0VbMdAK0VbqFuzEhkoooKYw8wg8I0-C7fy0nZBgSnJSnOh8Z39nn78DuPJDFZjkJ4cQKh0qWegI5icO5jHVRu2pWFme2Ts2HLan0_B-5RR_zg9RLbgZz7DjtXFwLrLWkjSUJ8qcJNf4RM9gZBPqWBsvrUG9-9Cf3FU7CYzlO8uBZ3K8vGlJ3Oji1noL6xPTEm2uYlY76fT3_v-7-7BbAE7UyS3kADZkegg7KzSER_A4nr0svj-_SqFM0KCsmqvFI92NEo1kvsCPNMpFvfTZZg6ggp71Cc1S-4mcjwIZyg97sTnm2TFM-r3xza1TVF5wYswwcRIRUMGw8D2BBVPKVW0aupwSgVnoqiCQno6DtFyHP8QwtnOllK-xDQ9Z7HJMTqCWvqbyFJBwhUulJ3T4i6k2W64BCaciIImSiZ_4Dbgu1R695QQbUU6ljCOjs6jSWQOaZa9EhaNlEdGDkCkrSMMGYKv_X1qJOt3-oHo6-8tL57Ct74v8nSbUFvN3eQFb8cdils0vCwP8AUF23Nc
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1dS8MwFL3oJqgPfovTqXkQfCprk7RZH4dbmdgNcRvsrTZtogOpsk2f_Qn-Rn-JSb-2PQniU-mFpOXem-QkOTkBuLJd6Wjyk0EIFQYVzDU4s2MDhxFVSW3JSKY6sz7r95vjsXufswn1WZhMH6JccNMtI-2vdQPXC9KNhWpoGEt9lFwBFDWEkXWoUpVLdgWq7Qdv5JdbCYxlW8uOpUle1rhQbjRxY7WG1ZFpATeXQWs66ni7__C_e7CTQ07UynJkH9ZEcgDbS0KEh_A4nLzMvz-_CqOIUa-4N1eZByqQAg1EtsSPFM5FneQ55Q6gXKD1CU2S9BOZIgXSoh_pI2WZz45g5HWGN10jv3vBiDDDxIi5QznD3LY45kxKUzapa4aUcMxcUzqOsNRMSNnVBIhozfZQSmkrdBO6LDJDTI6hkrwm4gQQN7lJhcXVBBhTlbihgiQh5Q6JpYjt2K7BdeH34C2T2AgyMWUcaJ8Fpc9qUC_CEuRNbRYQ1Q3piwWpWwOcBuCXWoJW2-uVb6d_KXQJm91hzw_82_7dGWwpe87mqUNlPn0X57ARfcwns-lFno0_h4Dgxw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEB60FdGDb7FaNQfB0-Jukt00x2K7KLal2BZ6Wze7iRZkLW317E_wN_pLTPbRx0kQT8sOJLtMZjLfJJMvAFcuV54pfrIIodKiknFLMDe2cBhRbdSOilTKM9tinU5tOOTdvJrQnIXJ-CHmC27GM9L52ji4HMfqZsEaGsbKHCXXAEWHMLIOZepyT_tmufHoD1rzrQTGsq1lzzFFXs6wYG608c1qD6uRaQE3l0FrGnX83X_43z3YySEnqmc2sg9rMjmA7SUiwkN46o9eZ9-fX4VQxqhd3JurxT09kBL1ZLbEjzTORc3kJa0dQDlB6zMaJeknMkYKZEg_0kdaZT49goHf7N_eWfndC1aEGSZWLDwqGBauI7BgStmqRrkdUiIw47byPOnoTEjLdQJEDGd7qJRyNboJOYvsEJNjKCVviTwBJGxhU-kInQBjqg031JAkpMIjsZKxG7sVuC70Howzio0gI1PGgdFZMNdZBarFsAS5q00Doqchc7Eg5RXA6QD80ktQb_jt-dvpXxpdwma34Qet-87DGWxpcV7MU4XSbPIuz2Ej-piNppOL3Bh_AD_F4EI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tilt%E2%80%90Engineered+Molecular%E2%80%90Scale+Selector+for+Enhanced+Learning+in+Artificial+Neural+Networks&rft.jtitle=Advanced+functional+materials&rft.au=Jung+Sun+Eo&rft.au=Shin%2C+Jaeho&rft.au=Jeon%2C+Takgyeong&rft.au=Jang%2C+Jingon&rft.date=2024-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=16&rft_id=info:doi/10.1002%2Fadfm.202311103&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon