A Robust Estimation of Blasting-Induced Flyrock Using Machine Learning Decision Tree Algorithms: Random Forest, Gradient Boosting Machine, and XGBoost

In surface mining, blasting operations may have harmful effects on the nearby environment. One of the several undesirable scenarios that should be avoided is flyrock, which is generated during the rock fragmentation process. This paper presents three machine learning decision tree algorithms that we...

Full description

Saved in:
Bibliographic Details
Published in:Mining, metallurgy & exploration Vol. 42; no. 3; pp. 1609 - 1624
Main Authors: Mohammed, Bouhannache, Hamza, Cheniti
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01.06.2025
Subjects:
ISSN:2524-3462, 2524-3470
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In surface mining, blasting operations may have harmful effects on the nearby environment. One of the several undesirable scenarios that should be avoided is flyrock, which is generated during the rock fragmentation process. This paper presents three machine learning decision tree algorithms that were implemented to predict blasting-induced flyrock. The distinctively developed models are called random forest (RF), gradient boosting machines (GBM), and extreme gradient boosting machines (XGBoost). Accordingly, 61 blasting events were selected from three limestone quarry predestined for cement production in Algeria. Ten controllable parameters are used as the input variables, and the measured flyrock distance is the output variable. The accuracy criteria, including determination coefficient ( R 2 ), root-mean-square error (RMSE), and the variance accounted for (VAF) mean absolute error (MAE), were used for the evaluation of the performance of models. Furthermore, the datasets were also analyzed using the Shapley Additive Explanations (SHAP) method to find out the importance and contribution of parameters to flyrock distance prediction. As a result, the XGBoost and GBM models have demonstrated a comparable high degree of accuracy, with R 2 (0.9935, 1), RMSE (2.04, 0.041), VAF (99.35, 100), and MAE (0.43, 0.016) for the XGBoost model. Followed by nearly the same results from the GBM model with R 2 (0.9935, 1), RMSE (2.05, 0.49), VAF (99.35, 100), and MAE (0.05, 0.049) for both training and test data, while the RF model revealed inferior performance with R 2 (0.86, 0.91), RMSE (9.59, 5.35), VAF (86, 91), and MAE (7.92, 4.42). In addition, the sensitivity analysis indicates that the stemming (ST) parameter had the most significant impact on blasting-induced flyrock prediction.
AbstractList In surface mining, blasting operations may have harmful effects on the nearby environment. One of the several undesirable scenarios that should be avoided is flyrock, which is generated during the rock fragmentation process. This paper presents three machine learning decision tree algorithms that were implemented to predict blasting-induced flyrock. The distinctively developed models are called random forest (RF), gradient boosting machines (GBM), and extreme gradient boosting machines (XGBoost). Accordingly, 61 blasting events were selected from three limestone quarry predestined for cement production in Algeria. Ten controllable parameters are used as the input variables, and the measured flyrock distance is the output variable. The accuracy criteria, including determination coefficient ( R 2 ), root-mean-square error (RMSE), and the variance accounted for (VAF) mean absolute error (MAE), were used for the evaluation of the performance of models. Furthermore, the datasets were also analyzed using the Shapley Additive Explanations (SHAP) method to find out the importance and contribution of parameters to flyrock distance prediction. As a result, the XGBoost and GBM models have demonstrated a comparable high degree of accuracy, with R 2 (0.9935, 1), RMSE (2.04, 0.041), VAF (99.35, 100), and MAE (0.43, 0.016) for the XGBoost model. Followed by nearly the same results from the GBM model with R 2 (0.9935, 1), RMSE (2.05, 0.49), VAF (99.35, 100), and MAE (0.05, 0.049) for both training and test data, while the RF model revealed inferior performance with R 2 (0.86, 0.91), RMSE (9.59, 5.35), VAF (86, 91), and MAE (7.92, 4.42). In addition, the sensitivity analysis indicates that the stemming (ST) parameter had the most significant impact on blasting-induced flyrock prediction.
Author Mohammed, Bouhannache
Hamza, Cheniti
Author_xml – sequence: 1
  givenname: Bouhannache
  surname: Mohammed
  fullname: Mohammed, Bouhannache
  organization: Department of Mining Engineering, Metallurgy, and Materials, National Higher School of Technology and Engineering, Laboratory of Mining, Metallurgy and Materials L3M, Mineral Resources, Geohazards and Environment, National Higher School of Technology and Engineering
– sequence: 2
  givenname: Cheniti
  orcidid: 0000-0001-6544-2537
  surname: Hamza
  fullname: Hamza, Cheniti
  email: h.cheniti@ensti-annaba.dz
  organization: Department of Mining Engineering, Metallurgy, and Materials, National Higher School of Technology and Engineering, Environmental Research Center (CRE)
BookMark eNp9kN1OAjEQhRuDiYi8gFd9AKptt_uDd4CAJBgTAol3Tbc7C6tLa9rlghfhee2CeukkzUxP5pw23y3qGGsAoXtGHxil6aMXXCSMUB4TyniSEnGFujzmgkQipZ2_OeE3qO99lVPBGaOpiLroNMIrmx98g6e-qfaqqazBtsTjWoW72ZKFKQ4aCjyrj87qT7zxQcWvSu8qA3gJyplWeAZd-da7dgB4VG-tq5rd3j_hlTKF3eOZdeCbAZ47VVRgGjy29vzCb9YAh0X8Pj_rd-i6VLWH_k_voc1sup68kOXbfDEZLYnmKWtImZQq0_FQqHJY5AAqA162R6gYeKxzyiiILINQadASziIOOTANeSzUMOohfsnVznrvoJRfLlBwR8mobOHKC1wZ4MozXCmCKbqYfFg2W3Dywx6cCf_8z_UN0KOBlg
Cites_doi 10.1016/B978-0-12-809633-8.20349-X
10.1007/s10064-014-0588-6
10.1007/s11053-023-10259-4
10.1016/j.enbuild.2017.11.039
10.1007/s00366-020-01231-4
10.1007/BF00058655
10.48550/arxiv.1908.08474
10.1016/j.jrmge.2021.07.007
10.1007/s11053-020-09710-7
10.1023/A:1010933404324
10.1007/s11053-019-09611-4
10.1007/s11749-016-0481-7
10.1016/j.jrmge.2014.07.003
10.1007/s11053-020-09794-1
10.1007/s00603-022-02866-z
10.1007/s00366-015-0402-5
10.3390/su15108424
10.1016/j.ssci.2005.07.006
10.1016/j.gsf.2020.11.005
10.1016/j.trc.2015.02.019
10.1007/s10706-018-0457-3
10.1007/s00521-015-1889-9
10.48550/arxiv.2202.05594
10.1007/978-981-16-8237-7
10.1007/s00366-020-01105-9
10.1016/j.jsr.2003.07.003
10.1016/j.enggeo.2007.10.009
10.1007/s00366-021-01393-9
10.1201/9781315139470
10.32604/cmes.2024.048398
10.17159/2411-9717/1873/2022
10.1073/pnas.39.5.349
10.1016/j.ijrmms.2012.03.011
10.1214/aos/1013203451
10.21236/ada800105
10.1016/j.ijrmms.2021.104856
10.3390/su11030660
10.1007/978-1-4899-7641-3_10
10.1145/2939672.2939785
10.1007/s11053-020-09616-4
10.1007/s11600-019-00268-4
ContentType Journal Article
Copyright Society for Mining, Metallurgy & Exploration Inc. 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: Society for Mining, Metallurgy & Exploration Inc. 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s42461-025-01267-4
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2524-3470
EndPage 1624
ExternalDocumentID 10_1007_s42461_025_01267_4
GroupedDBID 0R~
406
7RQ
7WY
883
88I
8AF
8FE
8FG
8FL
8FW
AACDK
AAEWM
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABBRH
ABDBE
ABECU
ABFTV
ABJCF
ABKCH
ABMQK
ABTEG
ABTKH
ABTMW
ABUWG
ABXPI
ACAOD
ACDTI
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADURQ
ADYFF
AEFQL
AEJRE
AEMSY
AESKC
AFDZB
AFKRA
AFOHR
AFQWF
AGDGC
AGJBK
AGMZJ
AGQEE
AHPBZ
AIGIU
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
ATHPR
AXYYD
AYFIA
AZQEC
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CCPQU
CSCUP
D1I
DPUIP
DWQXO
EBLON
EBS
EJD
FIGPU
FINBP
FNLPD
FRNLG
FSGXE
GGCAI
GNUQQ
HCIFZ
IKXTQ
IWAJR
JZLTJ
K60
K6~
KB.
KOV
LLZTM
M0F
M2P
M2Q
M4Y
NPVJJ
NQJWS
NU0
PDBOC
PHGZM
PHGZT
PMFND
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
ROL
RSV
S0X
SCLPG
SCV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
STPWE
TSG
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
AAYXX
ABRTQ
AEUYN
AFFHD
BHPHI
BKSAR
CITATION
M0C
PCBAR
PQGLB
ID FETCH-LOGICAL-c271t-f6fa8c594af9dbeea8e2f8e2f4a5e25cb010e488eeee74a562132ebe1ceb54a93
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001482063100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2524-3462
IngestDate Sat Nov 29 07:51:23 EST 2025
Thu Jun 12 01:45:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Random forest
Gradient boosting machine
Decision trees
Blasting
Flyrock
Extreme gradient boosting machines
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c271t-f6fa8c594af9dbeea8e2f8e2f4a5e25cb010e488eeee74a562132ebe1ceb54a93
ORCID 0000-0001-6544-2537
PageCount 16
ParticipantIDs crossref_primary_10_1007_s42461_025_01267_4
springer_journals_10_1007_s42461_025_01267_4
PublicationCentury 2000
PublicationDate 20250600
2025-06-00
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 6
  year: 2025
  text: 20250600
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationSubtitle An Official International Peer-reviewed Journal of the Society
PublicationTitle Mining, metallurgy & exploration
PublicationTitleAbbrev Mining, Metallurgy & Exploration
PublicationYear 2025
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References AK Raina (1267_CR16) 2007; 87
N Lundborg (1267_CR14) 1975; 176
H Nguyen (1267_CR4) 2019; 67
S Touzani (1267_CR45) 2017; 158
1267_CR15
T Szendrei (1267_CR21) 2023; 122
1267_CR17
JH Friedman (1267_CR37) 2001; 29
TS Bajpayee (1267_CR10) 2004; 35
K Zorlu (1267_CR44) 2007; 96
H Fattahi (1267_CR27) 2021; 38
1267_CR32
K Cao (1267_CR43) 2019; 11
R Trivedi (1267_CR19) 2014; 6
M Jamei (1267_CR23) 2021; 13
1267_CR34
Y Zhang (1267_CR39) 2015; 58
1267_CR13
H Han (1267_CR35) 2020; 29
D Li (1267_CR5) 2021; 30
TR Rehak (1267_CR11) 2001; 1
DJ Armaghani (1267_CR20) 2015; 32
ET Mohamad (1267_CR8) 2018; 36
L Breiman (1267_CR33) 2001; 45
V Kecojevic (1267_CR9) 2005; 43
L Breiman (1267_CR31) 2017
H Nguyen (1267_CR6) 2020; 30
M Hasanipanah (1267_CR29) 2020; 38
M Yari (1267_CR22) 2015; 27
E Ghasemi (1267_CR12) 2012; 52
C Li (1267_CR26) 2023; 32
S Hosseini (1267_CR3) 2022; 55
1267_CR48
X Ding (1267_CR28) 2023; 15
C Xie (1267_CR38) 2020; 12
1267_CR2
RN Gupta (1267_CR18) 1980
L Breiman (1267_CR30) 1996; 24
H Shapley (1267_CR46) 1953; 39
1267_CR1
1267_CR40
1267_CR42
Y Qiu (1267_CR41) 2021; 38
1267_CR47
AK Raina (1267_CR7) 2014; 73
J Zhou (1267_CR25) 2024; 140
G Biau (1267_CR36) 2016; 25
M Hasanipanah (1267_CR24) 2020; 29
References_xml – start-page: 23
  volume-title: Surface blasting and its impact on environment
  year: 1980
  ident: 1267_CR18
– ident: 1267_CR42
  doi: 10.1016/B978-0-12-809633-8.20349-X
– volume: 73
  start-page: 1199
  year: 2014
  ident: 1267_CR7
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-014-0588-6
– volume: 32
  start-page: 2995
  year: 2023
  ident: 1267_CR26
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-023-10259-4
– volume: 158
  start-page: 1533
  year: 2017
  ident: 1267_CR45
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2017.11.039
– volume: 38
  start-page: 2619
  year: 2021
  ident: 1267_CR27
  publication-title: Eng Comput
  doi: 10.1007/s00366-020-01231-4
– volume: 24
  start-page: 123
  year: 1996
  ident: 1267_CR30
  publication-title: Mach Learn
  doi: 10.1007/BF00058655
– ident: 1267_CR47
  doi: 10.48550/arxiv.1908.08474
– volume: 13
  start-page: 1438
  year: 2021
  ident: 1267_CR23
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2021.07.007
– volume: 30
  start-page: 191
  year: 2020
  ident: 1267_CR6
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-020-09710-7
– volume: 45
  start-page: 5
  year: 2001
  ident: 1267_CR33
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 29
  start-page: 655
  year: 2020
  ident: 1267_CR35
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-019-09611-4
– volume: 25
  start-page: 197
  year: 2016
  ident: 1267_CR36
  publication-title: TEST
  doi: 10.1007/s11749-016-0481-7
– ident: 1267_CR13
– volume: 6
  start-page: 447
  year: 2014
  ident: 1267_CR19
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2014.07.003
– volume: 30
  start-page: 1905
  year: 2021
  ident: 1267_CR5
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-020-09794-1
– ident: 1267_CR17
– ident: 1267_CR34
– volume: 55
  start-page: 4373
  year: 2022
  ident: 1267_CR3
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-022-02866-z
– volume: 32
  start-page: 109
  year: 2015
  ident: 1267_CR20
  publication-title: Eng Comput
  doi: 10.1007/s00366-015-0402-5
– volume: 87
  start-page: 13
  year: 2007
  ident: 1267_CR16
  publication-title: J Inst Eng India
– volume: 15
  start-page: 8424
  year: 2023
  ident: 1267_CR28
  publication-title: Sustain
  doi: 10.3390/su15108424
– volume: 43
  start-page: 739
  year: 2005
  ident: 1267_CR9
  publication-title: Saf Sci
  doi: 10.1016/j.ssci.2005.07.006
– volume: 12
  start-page: 101108
  year: 2020
  ident: 1267_CR38
  publication-title: Geosci Front
  doi: 10.1016/j.gsf.2020.11.005
– volume: 58
  start-page: 308
  year: 2015
  ident: 1267_CR39
  publication-title: Transp Res Part C Emerg Technol
  doi: 10.1016/j.trc.2015.02.019
– volume: 36
  start-page: 2217
  year: 2018
  ident: 1267_CR8
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-018-0457-3
– volume: 27
  start-page: 699
  year: 2015
  ident: 1267_CR22
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1889-9
– volume: 176
  start-page: 95
  year: 1975
  ident: 1267_CR14
  publication-title: Eng Min J
– ident: 1267_CR48
  doi: 10.48550/arxiv.2202.05594
– ident: 1267_CR1
  doi: 10.1007/978-981-16-8237-7
– volume: 38
  start-page: 1257
  year: 2020
  ident: 1267_CR29
  publication-title: Eng Comput
  doi: 10.1007/s00366-020-01105-9
– volume: 35
  start-page: 47
  year: 2004
  ident: 1267_CR10
  publication-title: J Saf Res
  doi: 10.1016/j.jsr.2003.07.003
– volume: 96
  start-page: 141
  year: 2007
  ident: 1267_CR44
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2007.10.009
– volume: 38
  start-page: 4145
  year: 2021
  ident: 1267_CR41
  publication-title: Eng Comput
  doi: 10.1007/s00366-021-01393-9
– year: 2017
  ident: 1267_CR31
  publication-title: Routledge eBooks
  doi: 10.1201/9781315139470
– volume: 140
  start-page: 1595
  year: 2024
  ident: 1267_CR25
  publication-title: Comput Model Eng Sci
  doi: 10.32604/cmes.2024.048398
– volume: 122
  start-page: 725
  year: 2023
  ident: 1267_CR21
  publication-title: J S Afr Inst Min Metall
  doi: 10.17159/2411-9717/1873/2022
– volume: 39
  start-page: 349
  year: 1953
  ident: 1267_CR46
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.39.5.349
– volume: 52
  start-page: 163
  year: 2012
  ident: 1267_CR12
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2012.03.011
– volume: 29
  start-page: 1189
  year: 2001
  ident: 1267_CR37
  publication-title: Ann Stat
  doi: 10.1214/aos/1013203451
– ident: 1267_CR15
  doi: 10.21236/ada800105
– ident: 1267_CR2
  doi: 10.1016/j.ijrmms.2021.104856
– volume: 11
  start-page: 660
  year: 2019
  ident: 1267_CR43
  publication-title: China Sustain
  doi: 10.3390/su11030660
– ident: 1267_CR32
  doi: 10.1007/978-1-4899-7641-3_10
– volume: 1
  start-page: 165
  year: 2001
  ident: 1267_CR11
  publication-title: Florida. Int Soc Explos Eng, Cleveland (OH)
– ident: 1267_CR40
  doi: 10.1145/2939672.2939785
– volume: 29
  start-page: 669
  year: 2020
  ident: 1267_CR24
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-020-09616-4
– volume: 67
  start-page: 477
  year: 2019
  ident: 1267_CR4
  publication-title: Acta Geophys
  doi: 10.1007/s11600-019-00268-4
SSID ssib042110743
ssj0002144478
Score 2.3000672
Snippet In surface mining, blasting operations may have harmful effects on the nearby environment. One of the several undesirable scenarios that should be avoided is...
SourceID crossref
springer
SourceType Index Database
Publisher
StartPage 1609
SubjectTerms Engineering
Materials Engineering
Metallic Materials
Mineral Resources
Title A Robust Estimation of Blasting-Induced Flyrock Using Machine Learning Decision Tree Algorithms: Random Forest, Gradient Boosting Machine, and XGBoost
URI https://link.springer.com/article/10.1007/s42461-025-01267-4
Volume 42
WOSCitedRecordID wos001482063100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Standard Collection
  customDbUrl:
  eissn: 2524-3470
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002144478
  issn: 2524-3462
  databaseCode: RSV
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6-DnrwLb6Zgzc34KbpNvW26u56UWRdZW8lSScq6lbaKvhH_L0m2VZcEEELvYSQlsw7mfmGkAMWKJMGJqJpEIQ2QIkMVU2uqaWHEUcYiCiVvtlEdHkphsP4qioKK-ps9_pK0mvqr2I37qDPqGu_apWqQ-ueJrPW3Aknjv3r25qLuA9pKpApp48dKBj3KpmFjNOAt1hVPfPzspMWavJ61Fud7tL__neZLFZeJrTHbLFCpnC0Sha-YQ-ukY829DP1WpTQsVI-LmCEzMCJdaddKjR1TT00ptB9erdG7hF8cgFc-ORLhAqX9Q7OqiY9MMgRof10l-UP5f1zcQx9OUqzZ3DNP4uyAb3cZ5eVcJJl_gv1Wg2wE2HY8-Pr5KbbGZye06pJA9UsapbUtIwUOoy5NHGqEKVAZtzLZYgs1MoGfGi1BNonsmMtZuNfyzlNjSrkMg42yMwoG-EmAdSSaRWo0FifQ8VKKCFasRA8lgYNii1yWBMmeRljcSRfqMt-txO724nf7YRvkUZNl6SSy-KX6dt_m75D5pknrTuP2SUzZf6Ke2ROv5UPRb7vGfITxnjbMA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9swEBdbO1j30O5fWdpuu4e9LYJFkmO5b0nbtGNJGFk28mYk-dSVNfaw3UK_SD9vJcUOLYzBZvCLOGRzd7rTSXe_I-QD49pm3MY04zxyAUpsqe4JQ508rPyEXMaZCs0m4ulULhbJ16YorGqz3dsryWCp18VuwkOfUd9-1RlVj9b9mGwK57F8It_s249Wi0QIaRqQKW-PPSiYCCaZRUxQLvqsqZ7587QPPdTD69HgdUY7__e_z8l2s8uEwUotXpBHmL8kz-5hD74itwOYFfqqquHErfJVASMUFoZuO-1Toalv6mEwg9HljXNyvyAkF8AkJF8iNLis53DcNOmBeYkIg8vzoryofy6rQ5ipPCuW4Jt_VnUXTsuQXVbDsCjCF9q5uuAIYXEaxl-T76OT-dEZbZo0UMPiXk1t3yppokQom2QaUUlk1r9CRcgio13Ah85KoHtiN9ZnLv51mtMzqCOhEr5LNvIixzcE0ChmNNeRdXsOnWippewnUopEWbQoO-RjK5j09wqLI12jLgdup47baeB2Kjqk28olbdZl9RfyvX8jf0-ens0n43T8efpln2yxIGZ_NnNANuryCt-SJ-a6vqjKd0E57wAVrN4U
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELagIAQPAwaI8vMeeKPWVsdJnL11a7tNG1VVtqlvke2cS8WWVEmGxD-yvxfbTaZOmpAQkfJiWU50dz777LvvI-QLC5TJAhPTLAhCG6DEhqo-19Tqw4hdDEScSU82EU8mYj5PphtV_D7bvb2SXNc0OJSmvN5ZZWbntvCNOxg06qhYrYN1yN0PySPuSINcvP79orUo7sObBnDK-WYHEMa9e2Yh4zTgEWsqae4f9u5qdfeq1K9A4-f__-8vyFaz-4TB2lxekgeYb5NnG5iEr8jNAGaFuq5qGNnZvy5shMLAvt1muxRp6sg-NGYwvvxtF7-f4JMO4JtPykRo8FoXMGzIe-CsRITB5aIol_WPq2oPZjLPiitwpKBV3YPD0med1bBfFP4L7Vg9sB1hfujbX5Pz8ejs4Ig25A1Us7hfUxMZKXSYcGmSTCFKgcy4l8sQWaiVDQTReg-0T2zbImbjYmtRfY0q5DIJ3pBOXuT4lgBqybQKVGjsXkQlSighokQInkiDBkWXfG2VlK7WGB3pLRqzl3ZqpZ16aae8S3qtjtJmvlZ_6f7u37p_Jk-mw3F6ejw5eU-eMq9ld2TzgXTq8ho_ksf6V72syk_eTv8ABjfm-A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Robust+Estimation+of+Blasting-Induced+Flyrock+Using+Machine+Learning+Decision+Tree+Algorithms%3A+Random+Forest%2C+Gradient+Boosting+Machine%2C+and+XGBoost&rft.jtitle=Mining%2C+metallurgy+%26+exploration&rft.au=Mohammed%2C+Bouhannache&rft.au=Hamza%2C+Cheniti&rft.date=2025-06-01&rft.pub=Springer+International+Publishing&rft.issn=2524-3462&rft.eissn=2524-3470&rft.volume=42&rft.issue=3&rft.spage=1609&rft.epage=1624&rft_id=info:doi/10.1007%2Fs42461-025-01267-4&rft.externalDocID=10_1007_s42461_025_01267_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2524-3462&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2524-3462&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2524-3462&client=summon