Iterated dilated convolutional neural networks for word segmentation
The latest development of neural word segmentation is governed by bi-directional Long Short-Term Memory Networks (Bi-LSTMs) that utilize Recurrent Neural Networks (RNNs) as standard sequence tagging models, resulting in expressive and accurate performance on large-scale dataset. However, RNNs are no...
Uložené v:
| Vydané v: | Neural network world Ročník 30; číslo 5; s. 333 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Prague
Czech Technical University in Prague, Faculty of Transportation Sciences
01.01.2020
|
| Predmet: | |
| ISSN: | 1210-0552, 2336-4335 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The latest development of neural word segmentation is governed by bi-directional Long Short-Term Memory Networks (Bi-LSTMs) that utilize Recurrent Neural Networks (RNNs) as standard sequence tagging models, resulting in expressive and accurate performance on large-scale dataset. However, RNNs are not adapted to fully exploit the parallelism capability of Graphics Processing Unit (GPU), limiting their computational efficiency in both learning and inferring phases. This paper proposes a novel approach adopting Iterated Dilated Convolutional Neural Networks (ID-CNNs) to supersede Bi-LSTMs for faster computation while retaining accuracy. Our implementation has achieved state-of-the-art result on SIGHAN Bakeoff 2005 datasets. Extensive experiments showed that our approach with ID-CNNs enables 3x training time speedups with no accuracy loss, achieving better accuracy compared to the prevailing Bi-LSTMs. Source code and corpora of this paper have been made publicly available on GitHub. |
|---|---|
| AbstractList | The latest development of neural word segmentation is governed by bi-directional Long Short-Term Memory Networks (Bi-LSTMs) that utilize Recurrent Neural Networks (RNNs) as standard sequence tagging models, resulting in expressive and accurate performance on large-scale dataset. However, RNNs are not adapted to fully exploit the parallelism capability of Graphics Processing Unit (GPU), limiting their computational efficiency in both learning and inferring phases. This paper proposes a novel approach adopting Iterated Dilated Convolutional Neural Networks (ID-CNNs) to supersede Bi-LSTMs for faster computation while retaining accuracy. Our implementation has achieved state-of-the-art result on SIGHAN Bakeoff 2005 datasets. Extensive experiments showed that our approach with ID-CNNs enables 3x training time speedups with no accuracy loss, achieving better accuracy compared to the prevailing Bi-LSTMs. Source code and corpora of this paper have been made publicly available on GitHub. |
| Author | Wang, G Wu L. He. H. Yang, X |
| Author_xml | – sequence: 1 fullname: He. H. – sequence: 2 givenname: X surname: Yang fullname: Yang, X – sequence: 3 fullname: Wu L. – sequence: 4 givenname: G surname: Wang fullname: Wang, G |
| BookMark | eNotzjFPwzAQBWALFYm0sDNGYk7w-ewkHlGBUqkSC8zVxbmglmBD7NC_TylM3xuent5czHzwLMQ1yBI0Atx6fyiVVLJEWUqlzkSmEKtCI5qZyECBLKQx6kLMY9xLqY1tdCbu14lHStzl3W446YL_DsOUdsHTkHuexhPpEMb3mPdhzI-pyyO_fbBP9Nu7FOc9DZGv_l2I18eHl-VTsXlerZd3m8KpGlLhOrZEqJoauGIAamtoGmKwfaWIrNaulY4sAxnbIlLX9eD6tqqcddZYXIibv93PMXxNHNN2H6bxeDNula4tYl01Bn8ApaFQ-g |
| CitedBy_id | crossref_primary_10_3390_app13053245 crossref_primary_10_3390_mi14030531 |
| ContentType | Journal Article |
| Copyright | Copyright Czech Technical University in Prague, Faculty of Transportation Sciences 2020 |
| Copyright_xml | – notice: Copyright Czech Technical University in Prague, Faculty of Transportation Sciences 2020 |
| DBID | 3V. 4T- 4U- 7SC 7XB 88I 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BYOGL CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N M2P P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U |
| DOI | 10.14311/nnw.2020.30.022 |
| DatabaseName | ProQuest Central (Corporate) Docstoc University Readers Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection East Europe, Central Europe Database (ProQuest) ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (ProQuest) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic |
| DatabaseTitle | ProQuest One Psychology University Readers Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition East Europe, Central Europe Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Docstoc ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | ProQuest One Psychology |
| Database_xml | – sequence: 1 dbid: BYOGL name: East Europe, Central Europe Database url: https://search.proquest.com/eastcentraleurope sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2336-4335 |
| GroupedDBID | 123 188 29N 3V. 4T- 4U- 53G 7SC 7XB 88I 8AL 8FD 8FE 8FG 8FK 8R4 8R5 ABUWG ACGOD ADMLS AENEX AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ BPHCQ BYOGL CCPQU DWQXO EOJEC GNUQQ HCIFZ JQ2 K6V K7- L7M L~C L~D M0N M2P OBODZ P2P P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC PSYQQ PUEGO Q2X Q9U TUS UZ4 |
| ID | FETCH-LOGICAL-c271t-cde9aa32871e6e11ab7188ae19f62aa944cb0ca9e1a59b33addf1cfb66c9c9593 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000606815700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1210-0552 |
| IngestDate | Sun Sep 07 03:28:17 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c271t-cde9aa32871e6e11ab7188ae19f62aa944cb0ca9e1a59b33addf1cfb66c9c9593 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2479337685 |
| PQPubID | 2036027 |
| ParticipantIDs | proquest_journals_2479337685 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Prague |
| PublicationPlace_xml | – name: Prague |
| PublicationSubtitle | International Journal on Neural and Mass - Parallel Computing and Information Systems |
| PublicationTitle | Neural network world |
| PublicationYear | 2020 |
| Publisher | Czech Technical University in Prague, Faculty of Transportation Sciences |
| Publisher_xml | – name: Czech Technical University in Prague, Faculty of Transportation Sciences |
| SSID | ssj0045984 |
| Score | 2.1685014 |
| Snippet | The latest development of neural word segmentation is governed by bi-directional Long Short-Term Memory Networks (Bi-LSTMs) that utilize Recurrent Neural... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| StartPage | 333 |
| SubjectTerms | Accuracy Artificial neural networks Datasets Graphics processing units Neural networks Recurrent neural networks Segmentation Source code |
| Title | Iterated dilated convolutional neural networks for word segmentation |
| URI | https://www.proquest.com/docview/2479337685 |
| Volume | 30 |
| WOSCitedRecordID | wos000606815700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2336-4335 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0045984 issn: 1210-0552 databaseCode: P5Z dateStart: 20130701 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2336-4335 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0045984 issn: 1210-0552 databaseCode: K7- dateStart: 20130701 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: East Europe, Central Europe Database customDbUrl: eissn: 2336-4335 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0045984 issn: 1210-0552 databaseCode: BYOGL dateStart: 20130701 isFulltext: true titleUrlDefault: https://search.proquest.com/eastcentraleurope providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2336-4335 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0045984 issn: 1210-0552 databaseCode: BENPR dateStart: 20130701 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2336-4335 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0045984 issn: 1210-0552 databaseCode: M2P dateStart: 20130701 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7aevBifeKjlj14jd1ks5vNSXy0KGpZRKV4KXnMSkG32q36903SFMGDFy_JwsKyZGa-yUwm8yF0ZAgwUjKBpXVOmCUSsFSGY51yIDJW2vh8x-MNHwzy4VAUIeFWh7LKBSZ6oDYT7XLkXepSQNYa8vTk7R071ih3uhooNJZRk1BKnJ5fc7xAYpYKzzjsemThOE1pOKa0PpN0q-rLRofUBq3xceyoc39Bsfcv_dZ__2wdrYWdZXQ6V4UNtATVJmotWBuiYMRb6OLKN1IGE5nxi59d5XnQQPsB1-HST74-vI7srjayTyaq4fk13FSqttFDv3d_fokDlwLWlJMZ1gaElImLjyADQqSyTimXQESZUSkFY1rFWgoroFSoJLGwVxJdqizTQrvmxTuoUU0q2EURV2UWG6Op0gnjXEueEckAhEWHWOewh9qLdRoFg6hHP4u0__frA7TqxDLPcrRRYzb9gEO0oj9n43raQc2z3qC463g52_GWFnYs0qdvNuG07w |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwED6VggQL5SkeBTLAaBo7zsMDQohStWqpOhRUsRTHdlAlSKEpVPwpfiO2mwiJga0Dk4dIlp27-853Pt8HcCqxojihDHHtnBD1uEI8liESfqgwd2Mhbb7jvhN2u9FgwHol-CrewpiyygITLVDLsTA58hoxKSBtDZF_-fqGDGuUuV0tKDTmatFWnzMdsmUXrbqW7xkhjZv-dRPlrAJIkBBPkZCKce6ZSEEFCmMea3iOuMIsCQjnjFIRu4IzvVSfxZ6nASDBIomDQDBh2vjqeZdgmVIdLGn76fkPBfJTn1mGY9OTC7m-T_JrUe2jcS1NZzoaJTpIds9dQ9X7C_qtP2tU_tuf2ID1_OTsXM1VfRNKKt2CSsFK4eQgtQ31lm0UraQjR892NJX1uYXpCUwHTzvY-vfM0ad2x-zCydTTS_4SK92Bu4XsZRfK6ThVe-CEcRK4UgoSC4-GoeBhgDlVimn0c0Wk9qFayGWYG3w2_BHKwd-fT2C12b_tDDutbvsQ1oxKzDM6VShPJ-_qCFbEx3SUTY6tbjnwuGgRfgN88xHM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwED6VghAL5SkeBTLAaBonThwPCCFKRdWq6gCoYimO7aBKkEJTqPhr_Dps1xESAxsDk4dIlp27-853Pt8HcCyxIjgjDHHtnBAJuUI8lRSJiCrM_VRIm--469JeLxkMWL8Cn-VbGFNWWWKiBWo5FiZH3ghMCkhbQxI1MlcW0W-2zl9ekWGQMjetJZ3GXEU66mOmw7firN3Usj4JgtbVzeU1cgwDSAQUT5GQinEemqhBxQpjnmqoTrjCLIsDzhkhIvUFZ3rZEUvDUINBhkWWxrFgwrT01fMuwCLVMaYJ_PrRfekFSMQs27Hpz4X8KArcFan217iR5zMdmQY6YPZPfUPb-8MNWN_Wqv3nv7IGq-5E7V3MTWAdKirfgFrJVuE58NqEZts2kFbSk6MnO5qKe2d5egLT2dMOti6-8PRp3jO78Ar1-OxeaOVbcPsne9mGaj7O1Q54NM1iX0oRpCIklApOY8yJUkyjoi8StQv1UkZDBwTF8FtAe79_PoJlLblht93r7MOK0Y55oqcO1enkTR3AknifjorJoVUzDx7-WoJfgPAaoA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iterated+dilated+convolutional+neural+networks+for+word+segmentation&rft.jtitle=Neural+network+world&rft.au=He.+H.&rft.au=Yang%2C+X&rft.au=Wu+L.&rft.au=Wang%2C+G&rft.date=2020-01-01&rft.pub=Czech+Technical+University+in+Prague%2C+Faculty+of+Transportation+Sciences&rft.issn=1210-0552&rft.eissn=2336-4335&rft.volume=30&rft.issue=5&rft.spage=333&rft_id=info:doi/10.14311%2Fnnw.2020.30.022&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1210-0552&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1210-0552&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1210-0552&client=summon |