CAE-MAS: Convolutional Autoencoder Interference Cancellation for Multiperson Activity Sensing With FMCW Microwave Radar

Human activity sensing is a crucial component of health monitoring and smart environment applications. Frequency-modulated continuous-wave (FMCW) radars can be used for target tracking, but their collected data are usually accompanied by a significant amount of interference, especially in indoor env...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement Jg. 73; S. 1 - 10
Hauptverfasser: Raeis, Hossein, Kazemi, Mohammad, Shirmohammadi, Shervin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Schlagworte:
ISSN:0018-9456, 1557-9662
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Human activity sensing is a crucial component of health monitoring and smart environment applications. Frequency-modulated continuous-wave (FMCW) radars can be used for target tracking, but their collected data are usually accompanied by a significant amount of interference, especially in indoor environments hosting multiple human subjects, leading to a decrease in accuracy. In this article, we propose a method that compensates that interference and can detect individual activities of multiple humans, overcoming existing methods’ limitation of detecting single human activities. To this end, a range–Doppler map of the data is extracted with an FWCW radar, and the interference effect of this map is mitigated by a convolutional autoencoder (CAE). The CAE network learns to attenuate false-positive regions to strengthen the target areas. This is followed by a Gaussian filter, and then the targets are revealed by applying derivatives on both dimensions of the map. Evaluation results show that our method reaches activity recognition accuracies of 97.13% and 73.37% in the cases of one and two humans, respectively.
AbstractList Human activity sensing is a crucial component of health monitoring and smart environment applications. Frequency-modulated continuous-wave (FMCW) radars can be used for target tracking, but their collected data are usually accompanied by a significant amount of interference, especially in indoor environments hosting multiple human subjects, leading to a decrease in accuracy. In this article, we propose a method that compensates that interference and can detect individual activities of multiple humans, overcoming existing methods’ limitation of detecting single human activities. To this end, a range–Doppler map of the data is extracted with an FWCW radar, and the interference effect of this map is mitigated by a convolutional autoencoder (CAE). The CAE network learns to attenuate false-positive regions to strengthen the target areas. This is followed by a Gaussian filter, and then the targets are revealed by applying derivatives on both dimensions of the map. Evaluation results show that our method reaches activity recognition accuracies of 97.13% and 73.37% in the cases of one and two humans, respectively.
Author Raeis, Hossein
Shirmohammadi, Shervin
Kazemi, Mohammad
Author_xml – sequence: 1
  givenname: Hossein
  orcidid: 0000-0002-4447-377X
  surname: Raeis
  fullname: Raeis, Hossein
  organization: Department of Electrical Engineering, University of Isfahan, Isfahan, Iran
– sequence: 2
  givenname: Mohammad
  orcidid: 0000-0003-1139-3076
  surname: Kazemi
  fullname: Kazemi, Mohammad
  organization: Department of Electrical Engineering, University of Isfahan, Isfahan, Iran
– sequence: 3
  givenname: Shervin
  orcidid: 0000-0002-3973-4445
  surname: Shirmohammadi
  fullname: Shirmohammadi, Shervin
  organization: DISCOVER Laboratory, School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON, Canada
BookMark eNp1kM1LAzEQxYNUsK3ePQY8b81-JNl4W5ZWC10EW-lxSbNZTVmTmmRb-t-b2p4ELzM8eG948xuBgTZaAnAfo0kcI_a4mleTBCXZJE0JwRRfgWGMMY0YIckADBGK84hlmNyAkXNbhBAlGR2CQ1lMo6pYPsHS6L3peq-M5h0sem-kFqaRFs61l7aVNmgJSx5m1_GTD7bGwqrvvNpJ64IuhFd75Y9wKbVT-gOulf-Es6pcw0oJaw58L-Ebb7i9Bdct75y8u-wxeJ9NV-VLtHh9npfFIhIJjX2ECc2ozEVK8yTNs6ZJGoTz0D3dZAyJhiC-abggXHDBNoxRQUUcLGnbNi1neToGD-e7O2u-e-l8vTW9DR-6OmEpYpjh5ORCZ1fo6JyVbb2z6ovbYx2j-oS3DnjrE976gjdEyJ-IUP6Xirdcdf8HfwAqUYG7
CitedBy_id crossref_primary_10_3390_electronics14112181
crossref_primary_10_1007_s40747_025_01848_2
crossref_primary_10_1109_TIM_2025_3550240
crossref_primary_10_1109_TIM_2025_3576952
crossref_primary_10_1109_TIM_2025_3565041
crossref_primary_10_3390_pr13030747
crossref_primary_10_1177_00405175241261401
crossref_primary_10_3390_s25072268
crossref_primary_10_3390_rs16142572
Cites_doi 10.1109/TAES.2018.2799758
10.1109/JSEN.2020.3006386
10.3390/rs11111270
10.1109/JSEN.2018.2834739
10.1109/MIM.2020.9200875
10.1109/MIM.2021.9513637
10.3390/rs11091068
10.3390/s22155552
10.1109/RADAR42522.2020.9114719
10.1109/RADAR.2018.8378705
10.1049/icp.2021.0589
10.1109/JSEN.2019.2910810
10.1109/LGRS.2015.2452946
10.1109/I2MTC48687.2022.9806694
10.1007/s12652-019-01260-y
10.3390/s21113881
10.1109/ICASSP39728.2021.9414686
10.1109/WoWMoM.2019.8793019
10.1109/TMTT.2022.3148403
10.1109/JIOT.2019.2915989
10.1109/ICMLA.2019.00035
10.1109/JSEN.2018.2872849
10.1016/j.patrec.2018.02.010
10.1109/I2MTC48687.2022.9806622
10.1109/ACCESS.2019.2912956
10.1145/3137133.3137166
10.1109/LSENS.2019.2953022
10.1109/WiSNet53095.2022.9721355
10.1109/TAP.2019.2905712
10.1145/3552484.3555753
10.1109/IMaRC45935.2019.9118706
10.1109/LSENS.2018.2852263
10.1109/JSEN.2021.3068388
10.1109/ACCESS.2020.3017869
10.1109/RADAR41533.2019.171307
10.1109/TGRS.2019.2908758
10.1109/JSEN.2020.2967100
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2024.3366575
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 10
ExternalDocumentID 10_1109_TIM_2024_3366575
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AASAJ
AAWTH
AAYXX
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CITATION
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
7SP
7U5
8FD
AARMG
ABAZT
L7M
ID FETCH-LOGICAL-c271t-56747e8c3782384dd2d0580763b490cd60abdac6acac9b997c7c1d053ffdfa983
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001175139800015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9456
IngestDate Mon Jun 30 08:32:38 EDT 2025
Sat Nov 29 04:38:45 EST 2025
Tue Nov 18 22:18:25 EST 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c271t-56747e8c3782384dd2d0580763b490cd60abdac6acac9b997c7c1d053ffdfa983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1139-3076
0000-0002-3973-4445
0000-0002-4447-377X
PQID 2930959528
PQPubID 85462
PageCount 10
ParticipantIDs proquest_journals_2930959528
crossref_primary_10_1109_TIM_2024_3366575
crossref_citationtrail_10_1109_TIM_2024_3366575
PublicationCentury 2000
PublicationDate 2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationYear 2024
Publisher The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref36
ref31
(ref38) 2022
ref30
ref11
ref33
ref10
ref32
ref2
ref1
Raeis (ref39) 2023
ref17
ref16
ref18
Richards (ref26) 2014
ref24
ref23
Rosen (ref19) 2022
ref25
ref20
ref42
ref41
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Krizhevsky (ref14)
ref40
References_xml – ident: ref31
  doi: 10.1109/TAES.2018.2799758
– ident: ref24
  doi: 10.1109/JSEN.2020.3006386
– ident: ref27
  doi: 10.3390/rs11111270
– ident: ref17
  doi: 10.1109/JSEN.2018.2834739
– ident: ref20
  doi: 10.1109/MIM.2020.9200875
– ident: ref12
  doi: 10.1109/MIM.2021.9513637
– ident: ref21
  doi: 10.3390/rs11091068
– volume-title: Multiple Individual Human Activity Recognition Using Microwave FMCW Radar
  year: 2023
  ident: ref39
– year: 2022
  ident: ref19
  article-title: CHARM: A hierarchical deep learning model for classification of complex human activities using motion sensors
  publication-title: arXiv:2207.07806
– ident: ref28
  doi: 10.3390/s22155552
– ident: ref29
  doi: 10.1109/RADAR42522.2020.9114719
– start-page: 1097
  volume-title: Proc. NIPS
  ident: ref14
  article-title: ImageNet classification with deep convolutional neural networks
– ident: ref37
  doi: 10.1109/RADAR.2018.8378705
– ident: ref16
  doi: 10.1049/icp.2021.0589
– ident: ref30
  doi: 10.1109/JSEN.2019.2910810
– ident: ref41
  doi: 10.1109/LGRS.2015.2452946
– ident: ref1
  doi: 10.1109/I2MTC48687.2022.9806694
– ident: ref42
  doi: 10.1007/s12652-019-01260-y
– ident: ref22
  doi: 10.3390/s21113881
– ident: ref40
  doi: 10.1109/ICASSP39728.2021.9414686
– ident: ref35
  doi: 10.1109/WoWMoM.2019.8793019
– ident: ref8
  doi: 10.1109/TMTT.2022.3148403
– ident: ref34
  doi: 10.1109/JIOT.2019.2915989
– ident: ref5
  doi: 10.1109/ICMLA.2019.00035
– ident: ref15
  doi: 10.1109/JSEN.2018.2872849
– ident: ref18
  doi: 10.1016/j.patrec.2018.02.010
– ident: ref32
  doi: 10.1109/I2MTC48687.2022.9806622
– ident: ref36
  doi: 10.1109/ACCESS.2019.2912956
– ident: ref3
  doi: 10.1145/3137133.3137166
– ident: ref9
  doi: 10.1109/LSENS.2019.2953022
– ident: ref33
  doi: 10.1109/WiSNet53095.2022.9721355
– ident: ref6
  doi: 10.1109/TAP.2019.2905712
– ident: ref11
  doi: 10.1145/3552484.3555753
– ident: ref7
  doi: 10.1109/IMaRC45935.2019.9118706
– volume-title: Fundamentals of Radar Signal Processing
  year: 2014
  ident: ref26
– ident: ref4
  doi: 10.1109/LSENS.2018.2852263
– ident: ref23
  doi: 10.1109/JSEN.2021.3068388
– ident: ref10
  doi: 10.1109/ACCESS.2020.3017869
– ident: ref13
  doi: 10.1109/RADAR41533.2019.171307
– ident: ref25
  doi: 10.1109/TGRS.2019.2908758
– volume-title: Demo Position2go
  year: 2022
  ident: ref38
– ident: ref2
  doi: 10.1109/JSEN.2020.2967100
SSID ssj0007647
Score 2.4543974
Snippet Human activity sensing is a crucial component of health monitoring and smart environment applications. Frequency-modulated continuous-wave (FMCW) radars can be...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1
SubjectTerms Activity recognition
Continuous radiation
Data collection
Indoor environments
Interference
Tracking
Title CAE-MAS: Convolutional Autoencoder Interference Cancellation for Multiperson Activity Sensing With FMCW Microwave Radar
URI https://www.proquest.com/docview/2930959528
Volume 73
WOSCitedRecordID wos001175139800015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKAAkOCAaIwUA-cEFTtnzWNrcq2jQOnRArYrfIsR1aqUmrtpSJv4w_j_cc56NDIHbgErWR47R5v7wvP_8eIW99FUmwItqTXEOAYmLtceErL8wTsG5Cxr7SttkEu7jgV1fi42Dws9kLs52zquLX12L5X0UN50DYuHX2FuJuJ4UT8BmEDkcQOxz_SfDp6NQbjy4x1E8X1dbdCyXxbbNA2kpkj7CJwIZiNkXJz-dd2aHdlbu0vvjRSLn-EpdY6l59BT2ymR6djdMvWHIPQTy2L_oktVz1_VyMIbH9RNOL3C5KzCxbbel2O9VV0GWXo-yWnExNfHAOBtzMujIB-cOUtvhgvJjKspS6TQ9NZ6vSnbMDkHBy6650KY16D3WjoAPQv3Hi2LGdTk4YkojuKG0W9bRu0DPfdZHs74bB8qpOPoyP8YbHUWRXnDoj2Cz837CNbcWijZV8kcEMGc6QuRnukLshSwSvdw62PgAbxjVbq_s7zQK5L05u_oZdh2jXH7BOzuQxeeSiEzqqUfWEDEy1Tx72OCv3yX1bM6zWT8l3h7T3dAdntIcz2scZ7eOMAs5oD2e0wRl1OKOIM4o4oy3OqMXZM_L57HSSnnuuj4enQhZsvGQIMavhKgJvNOKx1qH2Ew7PKMpj0At66MtcSzWUSiqRC8EUUwEMiYpCF1Lw6DnZqxaVeUFoHqpAJgyiGgOxCAwvGBcYVAd5boKkOCAnzcPMlCO5x14r8-xPAjwg79orljXBy1_GHjbyydwbv85A02EuPQn5y1tM9Yo8wK91Mu-Q7MHrZ16Te2q7ma1XbyyYfgFFZqmK
linkProvider IEEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CAE-MAS%3A+Convolutional+Autoencoder+Interference+Cancellation+for+Multiperson+Activity+Sensing+With+FMCW+Microwave+Radar&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Raeis%2C+Hossein&rft.au=Kazemi%2C+Mohammad&rft.au=Shirmohammadi%2C+Shervin&rft.date=2024&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=73&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FTIM.2024.3366575&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2024_3366575
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon