Dynamic cyclic kitting part-feeding scheduling for mixed-model assembly line by a hybrid quantum-behaved particle swarm optimization

PurposeThe purpose of this paper is to cut down energy consumption and eliminate production waste on mixed-model assembly lines. Therefore, a supermarket integrated dynamic cyclic kitting system with the application of electric vehicles (EVs) is introduced. The system resorts to just-in-time (JIT) a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Assembly automation Jg. 43; H. 3; S. 267 - 289
Hauptverfasser: Zhou, Binghai, Huang, Yufan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Bingley Emerald Group Publishing Limited 23.06.2023
Schlagworte:
ISSN:2754-6969, 2754-6977
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract PurposeThe purpose of this paper is to cut down energy consumption and eliminate production waste on mixed-model assembly lines. Therefore, a supermarket integrated dynamic cyclic kitting system with the application of electric vehicles (EVs) is introduced. The system resorts to just-in-time (JIT) and segmented sub-line assignment strategies, with the objectives of minimizing line-side inventory and energy consumption.Design/methodology/approachHybrid opposition-based learning and variable neighborhood search (HOVMQPSO), a multi-objective meta-heuristics algorithm based on quantum particle swarm optimization is proposed, which hybridizes opposition-based learning methodology as well as a variable neighborhood search mechanism. Such algorithm extends the search space and is capable of obtaining more high-quality solutions.FindingsComputational experiments demonstrated the outstanding performance of HOVQMPSO in solving the proposed part-feeding problem over the two benchmark algorithms non-dominated sorting genetic algorithm-II and quantum-behaved multi-objective particle swarm optimization. Additionally, using modified real-life assembly data, case studies are carried out, which imply HOVQMPSO of having good stability and great competitiveness in scheduling problems.Research limitations/implicationsThe feeding problem is based on static settings in a stable manufacturing system with determined material requirements, without considering the occurrence of uncertain incidents. Current study contributes to assembly line feeding with EV assignment and could be modified to allow cooperation between EVs.Originality/valueThe dynamic cyclic kitting problem with sub-line assignment applying EVs and supermarkets is solved by an innovative HOVMQPSO, providing both novel part-feeding strategy and effective intelligent algorithm for industrial engineering.
AbstractList PurposeThe purpose of this paper is to cut down energy consumption and eliminate production waste on mixed-model assembly lines. Therefore, a supermarket integrated dynamic cyclic kitting system with the application of electric vehicles (EVs) is introduced. The system resorts to just-in-time (JIT) and segmented sub-line assignment strategies, with the objectives of minimizing line-side inventory and energy consumption.Design/methodology/approachHybrid opposition-based learning and variable neighborhood search (HOVMQPSO), a multi-objective meta-heuristics algorithm based on quantum particle swarm optimization is proposed, which hybridizes opposition-based learning methodology as well as a variable neighborhood search mechanism. Such algorithm extends the search space and is capable of obtaining more high-quality solutions.FindingsComputational experiments demonstrated the outstanding performance of HOVQMPSO in solving the proposed part-feeding problem over the two benchmark algorithms non-dominated sorting genetic algorithm-II and quantum-behaved multi-objective particle swarm optimization. Additionally, using modified real-life assembly data, case studies are carried out, which imply HOVQMPSO of having good stability and great competitiveness in scheduling problems.Research limitations/implicationsThe feeding problem is based on static settings in a stable manufacturing system with determined material requirements, without considering the occurrence of uncertain incidents. Current study contributes to assembly line feeding with EV assignment and could be modified to allow cooperation between EVs.Originality/valueThe dynamic cyclic kitting problem with sub-line assignment applying EVs and supermarkets is solved by an innovative HOVMQPSO, providing both novel part-feeding strategy and effective intelligent algorithm for industrial engineering.
Author Zhou, Binghai
Huang, Yufan
Author_xml – sequence: 1
  givenname: Binghai
  surname: Zhou
  fullname: Zhou, Binghai
– sequence: 2
  givenname: Yufan
  surname: Huang
  fullname: Huang, Yufan
BookMark eNp1UE1PAyEQJaYm1tq7RxLPKFAK9NjUryZNTIyeCQuspe5HC6y6nv3h7rbGg4mneZN5783MOwWDqq4cAOcEXxKC5dXjco6wQBRTijCR8ggMqZgyxGdCDH4xn52AcYwbjDGVmGExHYKv67bSpTfQtKboyqtPyVcvcKtDQrlztm-iWTvbFD3M6wBL_-EsKmvrCqhjdGVWtLCbOpi1UMN1mwVv4a7RVWpKlLm1fnN27-hN4WB816GE9Tb50n_q5OvqDBznuohu_FNH4Pn25mlxj1YPd8vFfIUMFSSh7mJmJoRPLc2sdsxioQnFhnNtWc6lJNISmkkuDZ1ZYYXOJRNUCJ5ZJnM9GYGLg-821LvGxaQ2dROqbqWaEEYZxXLGOxY-sEyoYwwuV9vgSx1aRbDq41Zd3AoL1cet-rg7Cf8jMT7tX0tB--J_4TeahohI
CitedBy_id crossref_primary_10_1080_0951192X_2025_2544558
crossref_primary_10_1016_j_ijpe_2024_109176
Cites_doi 10.3390/futuretransp3010012
10.23055/ijietap.2019.26.5.2810
10.1049/iet-its.2017.0008
10.1080/00207543.2012.751516
10.1108/02635571111099749
10.1016/j.ijpe.2011.07.022
10.1016/j.jclepro.2018.04.251
10.1080/24725854.2018.1479899
10.1080/00207543.2014.944630
10.1108/AA-05-2014-047
10.1109/ROBIO.2015.7419049
10.1080/00207543.2012.657806
10.1108/AA-06-2014-053
10.1109/CEC.2004.1330875
10.1080/00207549308956903
10.1108/AA-09-2016-114
10.1080/00207543.2020.1851793
10.1108/AA-08-2017-102
10.1007/s10479-020-03902-3
10.1016/j.eswa.2009.06.085
10.1080/00207540802456802
10.1016/j.ijpe.2018.07.016
10.1080/00207543.2020.1836421
10.1108/01445151211244357
10.1007/s42524-021-0157-1
10.1080/00207543.2015.1090032
10.1080/00207543.2014.993046
10.1080/00207543.2011.588625
10.1016/j.cor.2013.05.007
10.1016/j.cie.2012.10.002
10.23055/ijietap.2017.24.1.2890
10.1177/0954405417752510
10.1108/AA-06-2020-0081
10.1016/j.ejor.2014.05.029
10.1016/j.swevo.2015.08.002
10.1016/j.cie.2020.106268
10.1016/j.compind.2015.10.001
10.11591/ijra.v9i4.pp256-270
10.1080/0951192X.2018.1493229
ContentType Journal Article
Copyright Emerald Publishing Limited.
Copyright_xml – notice: Emerald Publishing Limited.
DBID AAYXX
CITATION
7SC
7SP
7TB
7WY
7WZ
7XB
8AO
8FD
8FE
8FG
ABJCF
AFKRA
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
F28
FR3
F~G
HCIFZ
JQ2
K6~
L.-
L.0
L6V
L7M
L~C
L~D
M0C
M7S
PHGZM
PHGZT
PKEHL
PQBIZ
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1108/RIA-07-2022-0188
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ABI/INFORM Global (Corporate)
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ABI/INFORM Professional Standard
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2754-6977
EndPage 289
ExternalDocumentID 10_1108_RIA_07_2022_0188
GroupedDBID 7WY
8AO
AAGBP
AATHL
AAYXX
ABJCF
ABYQI
ACZLT
AFKRA
AHMHQ
ALMA_UNASSIGNED_HOLDINGS
AODMV
BENPR
BEZIV
BGLVJ
CCPQU
CITATION
DWQXO
EBS
ECCUG
GEI
GQ.
HCIFZ
M0C
M42
M7S
PHGZM
PHGZT
PQBIZ
PQGLB
PTHSS
S0W
0R~
23N
4.4
5GY
5VS
6J9
70U
7SC
7SP
7TB
7XB
8FD
8FE
8FG
8FW
8R4
8R5
9E0
AAMCF
AAUDR
ABIJV
ABJNI
ABKQV
ABSDC
ACGFS
ACIWK
ADFRT
ADOMW
AEBZA
AENEX
AFYHH
AFZLO
AJEBP
ASMFL
BPHCQ
CS3
F28
FNNZZ
FR3
GEL
HZ~
IPNFZ
J1Y
JI-
JL0
JQ2
K6~
KBGRL
L.-
L.0
L6V
L7M
L~C
L~D
MS~
O9-
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PROAC
Q2X
Q9U
RIG
U5U
UNMZH
ID FETCH-LOGICAL-c271t-4074c3165d2bdae4d07a120c66ad4f68818d12b868c29d7d7af8472776bd48fa3
IEDL.DBID 7WY
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001002286500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2754-6969
IngestDate Mon Jun 30 10:58:28 EDT 2025
Sat Nov 29 07:40:52 EST 2025
Tue Nov 18 22:36:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://www.emerald.com/insight/site-policies
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c271t-4074c3165d2bdae4d07a120c66ad4f68818d12b868c29d7d7af8472776bd48fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3142420896
PQPubID 31809
PageCount 23
ParticipantIDs proquest_journals_3142420896
crossref_primary_10_1108_RIA_07_2022_0188
crossref_citationtrail_10_1108_RIA_07_2022_0188
PublicationCentury 2000
PublicationDate 2023-06-23
PublicationDateYYYYMMDD 2023-06-23
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-23
  day: 23
PublicationDecade 2020
PublicationPlace Bingley
PublicationPlace_xml – name: Bingley
PublicationTitle Assembly automation
PublicationYear 2023
Publisher Emerald Group Publishing Limited
Publisher_xml – name: Emerald Group Publishing Limited
References (key2023062305000631400_ref001) 2016; 26
(key2023062305000631400_ref046) 2018; 31
(key2023062305000631400_ref049) 2021; 41
(key2023062305000631400_ref047) 2019; 233
(key2023062305000631400_ref027) 2022
(key2023062305000631400_ref0230) 2015
(key2023062305000631400_ref044) 2020; 140
(key2023062305000631400_ref032) 2021; 59
(key2023062305000631400_ref010) 2013; 64
(key2023062305000631400_ref014) 2019; 50
(key2023062305000631400_ref050) 2021; 1
(key2023062305000631400_ref023) 2020; 9
(key2023062305000631400_ref002) 2015; 35
(key2023062305000631400_ref031) 2013; 40
(key2023062305000631400_ref007) 2012; 135
(key2023062305000631400_ref021) 2012; 50
(key2023062305000631400_ref034) 2018; 12
(key2023062305000631400_ref011) 2014; 75
(key2023062305000631400_ref019) 2012; 32
(key2023062305000631400_ref026) 2023; 3
(key2023062305000631400_ref042) 2018; 203
(key2023062305000631400_ref012) 2016; 54
(key2023062305000631400_ref022) 2010; 37
(key2023062305000631400_ref038) 2021
(key2023062305000631400_ref020) 2015; 35
(key2023062305000631400_ref003) 2014; 239
(key2023062305000631400_ref013) 2015; 53
(key2023062305000631400_ref036) 2016; 81
(key2023062305000631400_ref024) 2019
(key2023062305000631400_ref045) 2018; 192
(key2023062305000631400_ref030) 2021; 8
(key2023062305000631400_ref037) 2005
(key2023062305000631400_ref018) 2017; 37
(key2023062305000631400_ref004) 2011; 111
(key2023062305000631400_ref029) 2018; 38
(key2023062305000631400_ref039) 2019; 26
(key2023062305000631400_ref040) 2017; 24
(key2023062305000631400_ref041) 2021; 59
(key2023062305000631400_ref005) 1993; 31
(key2023062305000631400_ref008) 2018; 50
(key2023062305000631400_ref028) 2022; 2022
(key2023062305000631400_ref043) 2021; 235
(key2023062305000631400_ref009) 2013; 51
(key2023062305000631400_ref016) 2021; 63
(key2023062305000631400_ref048) 2021; 163
(key2023062305000631400_ref015) 2013; 51
(key2023062305000631400_ref033) 2015; 53
(key2023062305000631400_ref025) 2022
(key2023062305000631400_ref035) 2004
(key2023062305000631400_ref017) 2010; 48
(key2023062305000631400_ref006) 2021; 304
References_xml – volume: 3
  start-page: 189
  issue: 1
  year: 2023
  ident: key2023062305000631400_ref026
  article-title: A secure traffic police remote sensing approach via a deep learning-based low-altitude vehicle speed detector through UAVs in smart cites: algorithm, implementation and evaluation
  publication-title: Future Transportation
  doi: 10.3390/futuretransp3010012
– volume: 163
  year: 2021
  ident: key2023062305000631400_ref048
  article-title: A hybrid fuzzy-neural-based dynamic scheduling method for part feeding of mixed-model assembly lines
  publication-title: Computers & Industrial Engineering
– volume: 26
  issue: 5
  year: 2019
  ident: key2023062305000631400_ref039
  article-title: A multi-objective scheduling of hybrid manufacturing systems with walking workers
  publication-title: International Journal of Industrial Engineering: Theory, Applications and Practice
  doi: 10.23055/ijietap.2019.26.5.2810
– volume: 12
  start-page: 202
  issue: 3
  year: 2018
  ident: key2023062305000631400_ref034
  article-title: Electric vehicle-routing problem with charging demands and energy consumption
  publication-title: IET Intelligent Transport Systems
  doi: 10.1049/iet-its.2017.0008
– volume: 51
  start-page: 2997
  issue: 10
  year: 2013
  ident: key2023062305000631400_ref009
  article-title: Kanban number optimisation in a supermarket warehouse feeding a mixed-model assembly system
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2012.751516
– start-page: 606
  volume-title: IEEE 17th International Conference on Automation Science and Engineering (CASE)
  year: 2021
  ident: key2023062305000631400_ref038
  article-title: A harmony search based algorithm for a stochastic two-sided assembly line balancing problem
– volume: 111
  start-page: 84
  issue: 1
  year: 2011
  ident: key2023062305000631400_ref004
  article-title: A methodology for selecting assembly systems feeding policy
  publication-title: Industrial Management & Data Systems
  doi: 10.1108/02635571111099749
– volume: 135
  start-page: 393
  issue: 1
  year: 2012
  ident: key2023062305000631400_ref007
  article-title: Optimally locating in-house logistics areas to facilitate JIT-supply of mixed-model assembly lines
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2011.07.022
– volume: 192
  start-page: 293
  year: 2018
  ident: key2023062305000631400_ref045
  article-title: Multi-objective optimization of material delivery for mixed model assembly lines with energy consideration
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2018.04.251
– volume: 50
  start-page: 1013
  issue: 11
  year: 2018
  ident: key2023062305000631400_ref008
  article-title: Scheduling electric vehicles making milk-runs for just-in-time delivery
  publication-title: IISE Transactions
  doi: 10.1080/24725854.2018.1479899
– volume: 53
  start-page: 1439
  issue: 5
  year: 2015
  ident: key2023062305000631400_ref033
  article-title: An empirical assessment of the performances of three line feeding modes used in the automotive sector: line stocking vs. kitting vs sequencing
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2014.944630
– volume: 35
  start-page: 57
  issue: 1
  year: 2015
  ident: key2023062305000631400_ref020
  article-title: Advances in assembly line parts feeding policies: a literature review
  publication-title: Assembly Automation
  doi: 10.1108/AA-05-2014-047
– volume: 2022
  year: 2022
  ident: key2023062305000631400_ref028
  article-title: Simulation and validation of optimized PID controller in AGV (automated guided vehicles) model using PSO and BAS algorithms
  publication-title: Computational Intelligence and Neuroscience
– volume: 50
  year: 2019
  ident: key2023062305000631400_ref014
  article-title: A three-level particle swarm optimization with variable neighbourhood search algorithm for the production scheduling problem with Mould maintenance
  publication-title: Swarm and Evolutionary Computation
– start-page: 1
  volume-title: 8th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS)
  year: 2022
  ident: key2023062305000631400_ref027
  article-title: Fusion BASED AGV robot navigation solution comparative analysis and VREP simulation
– volume: 304
  year: 2021
  ident: key2023062305000631400_ref006
  article-title: Integrated operational planning model, considering optimal delivery routing, incentives and electric vehicle aggregated demand management
  publication-title: Applied Energy
– start-page: 1894
  year: 2015
  ident: key2023062305000631400_ref0230
  article-title: Heterogeneous AGV routing problem considering energy consumption
  publication-title: IEEE International Conference on Robotics and Biomimetics (ROBIO), Zhuhai, China
  doi: 10.1109/ROBIO.2015.7419049
– volume: 51
  start-page: 979
  issue: 4
  year: 2013
  ident: key2023062305000631400_ref015
  article-title: A comparison of kitting and continuous supply in in-plant materials supply
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2012.657806
– volume: 35
  start-page: 149
  issue: 1
  year: 2015
  ident: key2023062305000631400_ref002
  article-title: Part-feeding with supermarket in assembly systems: transportation mode selection model and multi-scenario analysis
  publication-title: Assembly Automation
  doi: 10.1108/AA-06-2014-053
– volume: 235
  start-page: 839
  issue: 6
  year: 2021
  ident: key2023062305000631400_ref043
  article-title: Hybrid self-adaptive biobjective optimization of multiple robot scheduling problem for mixed-model assembly lines considering energy savings
  publication-title: Proceedings of the Institution of Mechanical Engineers Part I-Journal of Systems and Control Engineering
– start-page: 325
  volume-title: Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)
  year: 2004
  ident: key2023062305000631400_ref035
  article-title: Particle swarm optimization with particles having quantum behavior
  doi: 10.1109/CEC.2004.1330875
– volume: 31
  start-page: 2835
  issue: 12
  year: 1993
  ident: key2023062305000631400_ref005
  article-title: An evaluation of heuristics for allocating components to kits in small-lot, multi-echelon assembly systems
  publication-title: International Journal of Production Research
  doi: 10.1080/00207549308956903
– volume: 37
  start-page: 84
  issue: 1
  year: 2017
  ident: key2023062305000631400_ref018
  article-title: Design methodology for a hybrid part feeding system in lean-based assembly lines
  publication-title: Assembly Automation
  doi: 10.1108/AA-09-2016-114
– volume: 59
  start-page: 4881
  issue: 16
  year: 2021
  ident: key2023062305000631400_ref041
  article-title: A supervised machine learning approach for the optimisation of the assembly line feeding mode selection
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2020.1851793
– volume: 38
  start-page: 347
  issue: 3
  year: 2018
  ident: key2023062305000631400_ref029
  article-title: Scheduling multiple servers to facilitate just-in-time part-supply in automobile assembly lines
  publication-title: Assembly Automation
  doi: 10.1108/AA-08-2017-102
– volume: 1
  year: 2021
  ident: key2023062305000631400_ref050
  article-title: Tactical level strategies for multi-objective disassembly line balancing problem with multi-manned stations: an optimization model and solution approaches
  publication-title: Annals of Operations Research
  doi: 10.1007/s10479-020-03902-3
– volume: 37
  start-page: 1446
  issue: 2
  year: 2010
  ident: key2023062305000631400_ref022
  article-title: A hybrid genetic – particle swarm optimization algorithm for the vehicle routing problem
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.06.085
– volume: 48
  start-page: 779
  issue: 3
  year: 2010
  ident: key2023062305000631400_ref017
  article-title: Research issues on factors influencing the choice of kitting versus line stocking
  publication-title: International Journal of Production Research
  doi: 10.1080/00207540802456802
– volume: 203
  start-page: 404
  year: 2018
  ident: key2023062305000631400_ref042
  article-title: Electric vehicle routing problem with recharging stations for minimizing energy consumption
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2018.07.016
– volume: 59
  start-page: 7216
  issue: 23
  year: 2021
  ident: key2023062305000631400_ref032
  article-title: Multi-objective optimisation for energy-aware flexible job-shop scheduling problem with assembly operations
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2020.1836421
– volume: 32
  start-page: 226
  issue: 3
  year: 2012
  ident: key2023062305000631400_ref019
  article-title: Design of kitting system in lean‐based assembly lines
  publication-title: Assembly Automation
  doi: 10.1108/01445151211244357
– volume: 63
  year: 2021
  ident: key2023062305000631400_ref016
  article-title: Major advances in particle swarm optimization: theory, analysis, and application
  publication-title: Swarm and Evolutionary Computation
– volume: 8
  start-page: 370
  issue: 3
  year: 2021
  ident: key2023062305000631400_ref030
  article-title: A review on the electric vehicle routing problems: variants and algorithms
  publication-title: Frontiers of Engineering Management
  doi: 10.1007/s42524-021-0157-1
– volume: 54
  start-page: 878
  issue: 3
  year: 2016
  ident: key2023062305000631400_ref012
  article-title: A modified particle swarm optimisation algorithm to solve the part feeding problem at assembly lines
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2015.1090032
– start-page: 1721
  volume-title: 7th International Conference on Intelligent Computing and Signal Processing (ICSP)
  year: 2022
  ident: key2023062305000631400_ref025
  article-title: Personal image classifier based handy pipe defect recognizer (HPD): design and test
– volume: 53
  start-page: 3433
  issue: 11
  year: 2015
  ident: key2023062305000631400_ref013
  article-title: Dynamic resequencing at mixed-model assembly lines
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2014.993046
– volume: 50
  start-page: 4046
  issue: 15
  year: 2012
  ident: key2023062305000631400_ref021
  article-title: Optimising part feeding in the automotive assembly industry: deciding between kitting and line stocking
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2011.588625
– volume: 40
  start-page: 2599
  issue: 11
  year: 2013
  ident: key2023062305000631400_ref031
  article-title: Scheduling a single vehicle in the just-in-time part supply for a mixed-model assembly line
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2013.05.007
– start-page: 6
  volume-title: IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)
  year: 2019
  ident: key2023062305000631400_ref024
  article-title: Path planning and trajectroy tracking of a mobile robot using bio-inspired optimization algorithms and PID control
– volume: 64
  start-page: 224
  issue: 1
  year: 2013
  ident: key2023062305000631400_ref010
  article-title: Parallel-machine scheduling to minimize tardiness penalty and power cost
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2012.10.002
– volume: 24
  issue: 1
  year: 2017
  ident: key2023062305000631400_ref040
  article-title: Determination of material handling equipment for lean in-plant logistics using fuzzy analytical network process considering risk attitudes of the experts
  publication-title: International Journal of Industrial Engineering: Theory, Applications and Practice
  doi: 10.23055/ijietap.2017.24.1.2890
– volume: 233
  start-page: 975
  issue: 3
  year: 2019
  ident: key2023062305000631400_ref047
  article-title: A novel optimized cyclic part feeding system with line-integrated supermarkets
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture
  doi: 10.1177/0954405417752510
– volume: 41
  start-page: 24
  issue: 1
  year: 2021
  ident: key2023062305000631400_ref049
  article-title: Improved multi-objective cuckoo search algorithm with novel search strategies for point-to-point part feeding scheduling problems of automotive assembly lines
  publication-title: Assembly Automation
  doi: 10.1108/AA-06-2020-0081
– start-page: 695
  volume-title: International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06)
  year: 2005
  ident: key2023062305000631400_ref037
  article-title: Opposition-based learning: a new scheme for machine intelligence
– volume: 239
  start-page: 820
  issue: 3
  year: 2014
  ident: key2023062305000631400_ref003
  article-title: Scheduling the part supply of mixed-model assembly lines in line-integrated supermarkets
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2014.05.029
– volume: 26
  start-page: 64
  year: 2016
  ident: key2023062305000631400_ref001
  article-title: Opposition-based learning in the shuffled bidirectional differential evolution algorithm
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2015.08.002
– volume: 140
  year: 2020
  ident: key2023062305000631400_ref044
  article-title: A material handling scheduling method for mixed-model automotive assembly lines based on an improved static kitting strategy
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2020.106268
– volume: 81
  start-page: 82
  year: 2016
  ident: key2023062305000631400_ref036
  article-title: Energy-efficient dynamic scheduling for a flexible flow shop using an improved particle swarm optimization
  publication-title: Computers in Industry
  doi: 10.1016/j.compind.2015.10.001
– volume: 9
  start-page: 256
  issue: 4
  year: 2020
  ident: key2023062305000631400_ref023
  article-title: The quadrotor dynamic modeling and study of meta-heuristic algorithms performance on optimization of PID controller index to control angles and tracking the route
  publication-title: International Journal of Robotics and Automation (IJRA)
  doi: 10.11591/ijra.v9i4.pp256-270
– volume: 31
  start-page: 978
  issue: 10
  year: 2018
  ident: key2023062305000631400_ref046
  article-title: Electric vehicle handling routing and battery swap station location optimisation for automotive assembly lines
  publication-title: International Journal of Computer Integrated Manufacturing
  doi: 10.1080/0951192X.2018.1493229
– volume: 75
  start-page: 629
  issue: 1/4
  year: 2014
  ident: key2023062305000631400_ref011
  article-title: A novel memetic ant colony optimization-based Heuristic Algorithm for solving the assembly line part feeding problem
  publication-title: The International Journal of Advanced Manufacturing Technology
SSID ssj0002804075
ssj0011022
Score 2.2578826
Snippet PurposeThe purpose of this paper is to cut down energy consumption and eliminate production waste on mixed-model assembly lines. Therefore, a supermarket...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 267
SubjectTerms Algorithms
Assembly lines
Electric vehicles
Energy consumption
Genetic algorithms
Industrial engineering
Integer programming
Machine learning
Manufacturing
Multiple objective analysis
Optimization
Particle swarm optimization
Production scheduling
Scheduling
Searching
Sorting algorithms
Supermarkets
Work in process
Workloads
Title Dynamic cyclic kitting part-feeding scheduling for mixed-model assembly line by a hybrid quantum-behaved particle swarm optimization
URI https://www.proquest.com/docview/3142420896
Volume 43
WOSCitedRecordID wos001002286500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 2754-6977
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0002804075
  issn: 2754-6969
  databaseCode: 7WY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 2754-6977
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0002804075
  issn: 2754-6969
  databaseCode: M0C
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2754-6977
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0002804075
  issn: 2754-6969
  databaseCode: M7S
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2754-6977
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0002804075
  issn: 2754-6969
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKywEObXlU9CkfuHCw1nH8yqkqfahIsKoKiHKKHNtRV93sbvdR2Ds_vDPebCmXXrgkivKQpZnMN-N5fIS891y43NYZBDkiMBmVYhZwkSmZB6-MrKRLQ1w_m27XXl0VF-2G26Qtq1zaxGSow9DjHnknx5YswW2hD0e3DFmjMLvaUmg8I2sA1AoZDMyPnw9ZBIxmkFzOKMl0oYtlmpLbzuWnI9yhE1jMzrPEu_IIlv61yglqzjb-d5GbZL11MunRQitekZU4eE1ePho9-Ib8OVlQ0VM_93043fRSATQdgSqxegFpFCJfQCJsWKfg29Km9zsGlrhzKPjcsan6c4puKq3m1NHrOXZ_0dsZCGvWsDQAIIb0RVwGnfxy44YOwUY1bfPnW_L97PTb8TlrGRmYFyabQrBppM8zrYKogosycOMywb3WLshaW0D_kInKautFEUwwrgb0E8boKkhbu3yLrA6Gg_iOUCVsFYpM1kobGUElaoMZPKEjeJAi-G3SWQqk9O24cmTN6JcpbOG2BBGW3JQowhJFuE0-PLwxWozqeOLZvaUAy_annZR_pbfz9O1d8gJZ57FiTOR7ZHU6nsV98tzfTXuT8UHSwQOy9vG0e3EJV1_4MR7N13ujpOgz
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwELVKQaIc-EYtFPABDhysdRzHdg4IVS1VV92uECpSb8GxHbFis7vdD0ru_B5-IzPepJRLbz1wyiGJFTnPM_M8nnmEvHFc2NRUCZAc4ZkMWcYM-EWWydS7TMtS2tjEdaCHQ3N2ln_aIL-7Whg8VtnZxGio_dThHnkvxZIswU2uPszOGapGYXa1k9BYw-I4NBdA2Rbv-wfwf98KcfjxdP-ItaoCzAmdLIEwaenSRGVelN4G6bm2ieBOKetlpQx4MJ-I0ijjRO6117YCCy60VqWXprIpjHuL3JZAvHBdnfD9y6wFsicUs9OZZCpXeZcW5ab3ub-HO4ICD8_zJOq8XHGD_3qB6NoOH_xvk_KQ3G-DaLq3Rv0jshEmj8m9K60Vn5BfB83E1iNHXePGcPk-ige86QyWCqvWLpsCswdPiwX5FGJ3Wo9-Bs-iNhAFThHqctxQDMNp2VBLvzVY3UbPVwDGVc1ig4Pg44j4GXRxYec1nYINrtvi1qfky41MwzOyOZlOwjahmTClzxNZZUrLAJCvNGYohQoQIQvvdkivA0Dh2nbsqAoyLiIt46YAyBRcFwiZAiGzQ95dvjFbtyK55tndDjBFa5QWxV-0PL_-9mty9-j0ZFAM-sPjF2QLRkUFECbSXbK5nK_CS3LH_ViOFvNXEf-UfL1pbP0BVkdAoA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+cyclic+kitting+part-feeding+scheduling+for+mixed-model+assembly+line+by+a+hybrid+quantum-behaved+particle+swarm+optimization&rft.jtitle=Robotic+Intelligence+and+Automation&rft.au=Zhou%2C+Binghai&rft.au=Huang%2C+Yufan&rft.date=2023-06-23&rft.issn=2754-6969&rft.eissn=2754-6977&rft.volume=43&rft.issue=3&rft.spage=267&rft.epage=289&rft_id=info:doi/10.1108%2FRIA-07-2022-0188&rft.externalDBID=n%2Fa&rft.externalDocID=10_1108_RIA_07_2022_0188
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2754-6969&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2754-6969&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2754-6969&client=summon