Laplace Distribution Based Online Identification of Linear Systems With Robust Recursive Expectation–Maximization Algorithm
The robust online identification problem of linear systems is considered in this article using a faster robust recursive expectation–maximization (RREM) framework. To improve the convergence rate, the outliers, which would deteriorate the identified models, are accommodated with a Laplace distributi...
Uloženo v:
| Vydáno v: | IEEE transactions on industrial informatics Ročník 19; číslo 8; s. 9028 - 9036 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
01.08.2023
|
| Témata: | |
| ISSN: | 1551-3203, 1941-0050 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The robust online identification problem of linear systems is considered in this article using a faster robust recursive expectation–maximization (RREM) framework. To improve the convergence rate, the outliers, which would deteriorate the identified models, are accommodated with a Laplace distribution instead of Student's [Formula Omitted]-distribution. Then, the recursive transformation of the maximum likelihood function is realized with a recursive [Formula Omitted]-function. The extensively recognized autoregressive exogenous (ARX) models are used for the description of general linear systems. As a result, the unknown parameters, including the regression coefficient vector of the ARX models, the variance of the noise without outliers, and the scale parameter of the Laplace distribution, are determined in a recursive manner. The performance of the proposed approach is tested with a simulated continuous fermentation reactor system example and a coupled-tank experiment. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1551-3203 1941-0050 |
| DOI: | 10.1109/TII.2022.3225026 |