Laplace Distribution Based Online Identification of Linear Systems With Robust Recursive Expectation–Maximization Algorithm

The robust online identification problem of linear systems is considered in this article using a faster robust recursive expectation–maximization (RREM) framework. To improve the convergence rate, the outliers, which would deteriorate the identified models, are accommodated with a Laplace distributi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on industrial informatics Ročník 19; číslo 8; s. 9028 - 9036
Hlavní autoři: Chen, Xin, Zhao, Shunyi, Liu, Fei, Tao, Chongben
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 01.08.2023
Témata:
ISSN:1551-3203, 1941-0050
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The robust online identification problem of linear systems is considered in this article using a faster robust recursive expectation–maximization (RREM) framework. To improve the convergence rate, the outliers, which would deteriorate the identified models, are accommodated with a Laplace distribution instead of Student's [Formula Omitted]-distribution. Then, the recursive transformation of the maximum likelihood function is realized with a recursive [Formula Omitted]-function. The extensively recognized autoregressive exogenous (ARX) models are used for the description of general linear systems. As a result, the unknown parameters, including the regression coefficient vector of the ARX models, the variance of the noise without outliers, and the scale parameter of the Laplace distribution, are determined in a recursive manner. The performance of the proposed approach is tested with a simulated continuous fermentation reactor system example and a coupled-tank experiment.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1551-3203
1941-0050
DOI:10.1109/TII.2022.3225026