Improved kernelization and fixed-parameter algorithms for bicluster editing

Given a bipartite graph G , the Bicluster Editing problem asks for the minimum number of edges to insert or delete in G so that every connected component is a bicluster, i.e. a complete bipartite graph. This has several applications, including in bioinformatics and social network analysis. In this w...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of combinatorial optimization Ročník 47; číslo 5; s. 90
Hlavní autor: Lafond, Manuel
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.07.2024
Springer Nature B.V
Témata:
ISSN:1382-6905, 1573-2886
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Given a bipartite graph G , the Bicluster Editing problem asks for the minimum number of edges to insert or delete in G so that every connected component is a bicluster, i.e. a complete bipartite graph. This has several applications, including in bioinformatics and social network analysis. In this work, we study the parameterized complexity under the natural parameter k , which is the number of allowed modified edges. We first show that one can obtain a kernel with 4.5 k vertices, an improvement over the previously known quadratic kernel. We then propose an algorithm that runs in time O ∗ ( 2 . 581 k ) . Our algorithm has the advantage of being conceptually simple and should be easy to implement.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1382-6905
1573-2886
DOI:10.1007/s10878-024-01186-y