Improved kernelization and fixed-parameter algorithms for bicluster editing
Given a bipartite graph G , the Bicluster Editing problem asks for the minimum number of edges to insert or delete in G so that every connected component is a bicluster, i.e. a complete bipartite graph. This has several applications, including in bioinformatics and social network analysis. In this w...
Uloženo v:
| Vydáno v: | Journal of combinatorial optimization Ročník 47; číslo 5; s. 90 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.07.2024
Springer Nature B.V |
| Témata: | |
| ISSN: | 1382-6905, 1573-2886 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Given a bipartite graph
G
, the
Bicluster Editing
problem asks for the minimum number of edges to insert or delete in
G
so that every connected component is a bicluster, i.e. a complete bipartite graph. This has several applications, including in bioinformatics and social network analysis. In this work, we study the parameterized complexity under the natural parameter
k
, which is the number of allowed modified edges. We first show that one can obtain a kernel with 4.5
k
vertices, an improvement over the previously known quadratic kernel. We then propose an algorithm that runs in time
O
∗
(
2
.
581
k
)
. Our algorithm has the advantage of being conceptually simple and should be easy to implement. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1382-6905 1573-2886 |
| DOI: | 10.1007/s10878-024-01186-y |