Numerical methods for forward fractional Feynman–Kac equation

Fractional Feynman–Kac equation governs the functional distribution of the trajectories of anomalous diffusion. The non-commutativity of the integral fractional Laplacian and time-space coupled fractional substantial derivative, i.e., A s 0 ∂ t 1 - α , x ≠ 0 ∂ t 1 - α , x A s , brings about huge cha...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advances in computational mathematics Ročník 50; číslo 3; s. 58
Hlavní autoři: Nie, Daxin, Sun, Jing, Deng, Weihua
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.06.2024
Springer Nature B.V
Témata:
ISSN:1019-7168, 1572-9044
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Fractional Feynman–Kac equation governs the functional distribution of the trajectories of anomalous diffusion. The non-commutativity of the integral fractional Laplacian and time-space coupled fractional substantial derivative, i.e., A s 0 ∂ t 1 - α , x ≠ 0 ∂ t 1 - α , x A s , brings about huge challenges on the regularity and spatial error estimates for the forward fractional Feynman–Kac equation. In this paper, we first use the corresponding resolvent estimate obtained by the bootstrapping arguments and the generalized Hölder-type inequalities in Sobolev space to build the regularity of the solution, and then the fully discrete scheme constructed by convolution quadrature and finite element methods is developed. Also, the complete error analyses in time and space directions are respectively presented, which are consistent with the provided numerical experiments.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1019-7168
1572-9044
DOI:10.1007/s10444-024-10152-5