Numerical methods for forward fractional Feynman–Kac equation

Fractional Feynman–Kac equation governs the functional distribution of the trajectories of anomalous diffusion. The non-commutativity of the integral fractional Laplacian and time-space coupled fractional substantial derivative, i.e., A s 0 ∂ t 1 - α , x ≠ 0 ∂ t 1 - α , x A s , brings about huge cha...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advances in computational mathematics Ročník 50; číslo 3; s. 58
Hlavní autori: Nie, Daxin, Sun, Jing, Deng, Weihua
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.06.2024
Springer Nature B.V
Predmet:
ISSN:1019-7168, 1572-9044
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Fractional Feynman–Kac equation governs the functional distribution of the trajectories of anomalous diffusion. The non-commutativity of the integral fractional Laplacian and time-space coupled fractional substantial derivative, i.e., A s 0 ∂ t 1 - α , x ≠ 0 ∂ t 1 - α , x A s , brings about huge challenges on the regularity and spatial error estimates for the forward fractional Feynman–Kac equation. In this paper, we first use the corresponding resolvent estimate obtained by the bootstrapping arguments and the generalized Hölder-type inequalities in Sobolev space to build the regularity of the solution, and then the fully discrete scheme constructed by convolution quadrature and finite element methods is developed. Also, the complete error analyses in time and space directions are respectively presented, which are consistent with the provided numerical experiments.
AbstractList Fractional Feynman–Kac equation governs the functional distribution of the trajectories of anomalous diffusion. The non-commutativity of the integral fractional Laplacian and time-space coupled fractional substantial derivative, i.e., A s 0 ∂ t 1 - α , x ≠ 0 ∂ t 1 - α , x A s , brings about huge challenges on the regularity and spatial error estimates for the forward fractional Feynman–Kac equation. In this paper, we first use the corresponding resolvent estimate obtained by the bootstrapping arguments and the generalized Hölder-type inequalities in Sobolev space to build the regularity of the solution, and then the fully discrete scheme constructed by convolution quadrature and finite element methods is developed. Also, the complete error analyses in time and space directions are respectively presented, which are consistent with the provided numerical experiments.
Fractional Feynman–Kac equation governs the functional distribution of the trajectories of anomalous diffusion. The non-commutativity of the integral fractional Laplacian and time-space coupled fractional substantial derivative, i.e., As0∂t1-α,x≠0∂t1-α,xAs, brings about huge challenges on the regularity and spatial error estimates for the forward fractional Feynman–Kac equation. In this paper, we first use the corresponding resolvent estimate obtained by the bootstrapping arguments and the generalized Hölder-type inequalities in Sobolev space to build the regularity of the solution, and then the fully discrete scheme constructed by convolution quadrature and finite element methods is developed. Also, the complete error analyses in time and space directions are respectively presented, which are consistent with the provided numerical experiments.
ArticleNumber 58
Author Nie, Daxin
Deng, Weihua
Sun, Jing
Author_xml – sequence: 1
  givenname: Daxin
  surname: Nie
  fullname: Nie, Daxin
  organization: School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University
– sequence: 2
  givenname: Jing
  surname: Sun
  fullname: Sun, Jing
  organization: School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University
– sequence: 3
  givenname: Weihua
  orcidid: 0000-0002-8573-012X
  surname: Deng
  fullname: Deng, Weihua
  email: dengwh@lzu.edu.cn
  organization: School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University
BookMark eNp9UMtKAzEUDVLBtvoDrgZcR5NMniuRYqtYdKPrkJneaEtnpk1mkO78B__QLzHjCO5c3Af3PLicCRrVTQ0InVNySQlRV5ESzjkmjGNKqGBYHKExFYphk4BR2gk1WFGpT9Akxg0hxEglxuj6sasgrEu3zSpo35pVzHwT-np3YZX54Mp23dQJnsOhrlz99fH54MoM9p3rgVN07N02wtnvnKKX-e3z7A4vnxb3s5slLpkiLfa5ybXLFZCScm4KELygSism-jsDRn3JQWrwioIEaTQUBTFO6iI1rvMpuhh8d6HZdxBbu2m6kP6KNmeCMyaolInFBlYZmhgDeLsL68qFg6XE9kHZISibgrI_QVmRRPkgiolcv0L4s_5H9Q3pX20o
Cites_doi 10.1007/s10915-018-0640-y
10.1137/14097207X
10.1007/s10915-020-01256-3
10.1016/j.bulsci.2011.12.004
10.1007/BF01398686
10.1140/epjb/e2009-00126-3
10.1007/s10915-014-9873-6
10.1137/17M1118245
10.1515/fca-2019-0042
10.1103/PhysRevLett.103.190201
10.4310/ARKIV.2021.v59.n2.a2
10.1103/PhysRevE.84.061104
10.1007/s00211-020-01148-6
10.1007/s10915-021-01581-1
10.1007/s10915-017-0506-8
10.1016/j.cam.2016.09.006
10.1016/j.aim.2014.09.018
10.1007/s10955-010-0086-6
10.1007/BF01462237
10.1007/s00211-019-01025-x
10.1103/PhysRevE.89.030102
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s10444-024-10152-5
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database (subscription)
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1572-9044
ExternalDocumentID 10_1007_s10444_024_10152_5
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 12071195
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -52
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCO
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z83
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c270t-f3938a37e0c1449be54b178725938a2e21fc4e68ef71e6e698ebb09a68b9a6483
IEDL.DBID BENPR
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001242955200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1019-7168
IngestDate Wed Oct 08 04:49:27 EDT 2025
Sat Nov 29 04:13:23 EST 2025
Fri Feb 21 02:40:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Convolution quadrature
Finite element method
Error estimate
35R11
65M60
Integral fractional Laplacian
Fractional substantial derivative
65M12
Forward fractional Feynman–Kac equation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-f3938a37e0c1449be54b178725938a2e21fc4e68ef71e6e698ebb09a68b9a6483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8573-012X
PQID 3254225166
PQPubID 2043875
ParticipantIDs proquest_journals_3254225166
crossref_primary_10_1007_s10444_024_10152_5
springer_journals_10_1007_s10444_024_10152_5
PublicationCentury 2000
PublicationDate 20240600
2024-06-00
20240601
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 6
  year: 2024
  text: 20240600
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Advances in computational mathematics
PublicationTitleAbbrev Adv Comput Math
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Carmi, Turgeman, Barkai (CR6) 2010; 141
Grubb (CR14) 2015; 268
Lubich (CR18) 1988; 52
Chen, Deng (CR7) 2015; 37
Denisov, Horsthemke, Hänggi (CR12) 2009; 68
Lubich (CR19) 1988; 52
Acosta, Bersetche, Borthagaray (CR1) 2019; 22
Nie, Sun, Deng (CR21) 2020; 146
Behzadan, Holst (CR3) 2021; 59
Li, Deng, Zhao (CR17) 2019; 24
CR2
Carmi, Barkai (CR5) 2011; 84
Deng, Chen, Barkai (CR10) 2015; 62
Sun, Nie, Deng (CR23) 2020; 84
Bonito, Lei, Pasciak (CR4) 2019; 142
Chen, Deng (CR8) 2018; 76
Huang, Zhang, Song (CR16) 2018; 74
CR24
Turgeman, Carmi, Barkai (CR25) 2009; 103
Deng, Li, Qian, Wang (CR11) 2018; 56
CR22
CR20
Chen, Jiang, Bu (CR9) 2021; 88
Di Nezza, Palatucci, Valdinoci (CR13) 2012; 136
Hao, Cao, Lin (CR15) 2017; 313
W Deng (10152_CR11) 2018; 56
M Chen (10152_CR8) 2018; 76
M Chen (10152_CR9) 2021; 88
10152_CR20
10152_CR22
C Lubich (10152_CR18) 1988; 52
G Grubb (10152_CR14) 2015; 268
M Chen (10152_CR7) 2015; 37
C Li (10152_CR17) 2019; 24
S Carmi (10152_CR6) 2010; 141
G Acosta (10152_CR1) 2019; 22
W Deng (10152_CR10) 2015; 62
D Nie (10152_CR21) 2020; 146
A Behzadan (10152_CR3) 2021; 59
S Carmi (10152_CR5) 2011; 84
E Di Nezza (10152_CR13) 2012; 136
J Sun (10152_CR23) 2020; 84
A Bonito (10152_CR4) 2019; 142
C Lubich (10152_CR19) 1988; 52
L Turgeman (10152_CR25) 2009; 103
C Huang (10152_CR16) 2018; 74
10152_CR2
10152_CR24
SI Denisov (10152_CR12) 2009; 68
Z Hao (10152_CR15) 2017; 313
References_xml – volume: 76
  start-page: 867
  issue: 2
  year: 2018
  end-page: 887
  ident: CR8
  article-title: High order algorithm for the time-tempered fractional Feynman-Kac equation
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-018-0640-y
– ident: CR22
– volume: 37
  start-page: A890
  issue: 2
  year: 2015
  end-page: A917
  ident: CR7
  article-title: High order algorithms for the fractional substantial diffusion equation with truncated Lévy flights
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/14097207X
– volume: 84
  start-page: 6
  issue: 1
  year: 2020
  ident: CR23
  article-title: Error estimates for backward fractional Feynman-Kac equation with non-smooth initial data
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-020-01256-3
– volume: 136
  start-page: 521
  issue: 5
  year: 2012
  end-page: 573
  ident: CR13
  article-title: Hitchhiker’s guide to the fractional Sobolev spaces
  publication-title: Bull. Sci. Math.
  doi: 10.1016/j.bulsci.2011.12.004
– volume: 52
  start-page: 129
  issue: 2
  year: 1988
  end-page: 145
  ident: CR18
  article-title: Convolution quadrature and discretized operational calculus I
  publication-title: Numer. Math.
  doi: 10.1007/BF01398686
– ident: CR2
– volume: 68
  start-page: 567
  issue: 4
  year: 2009
  end-page: 575
  ident: CR12
  article-title: Generalized Fokker-Planck equation: derivation and exact solutions
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2009-00126-3
– volume: 62
  start-page: 718
  issue: 3
  year: 2015
  end-page: 746
  ident: CR10
  article-title: Numerical algorithms for the forward and backward fractional Feynman-Kac equations
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-014-9873-6
– volume: 56
  start-page: 3249
  issue: 6
  year: 2018
  end-page: 3275
  ident: CR11
  article-title: Time discretization of a tempered fractional Feynman-Kac equation with measure data
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/17M1118245
– volume: 22
  start-page: 767
  issue: 3
  year: 2019
  end-page: 794
  ident: CR1
  article-title: Finite element approximations for fractional evolution problems
  publication-title: Fract. Calc. Appl. Anal.
  doi: 10.1515/fca-2019-0042
– volume: 103
  issue: 19
  year: 2009
  ident: CR25
  article-title: Fractional Feynman-Kac equation for non-Brownian functionals
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.190201
– volume: 59
  start-page: 275
  issue: 2
  year: 2021
  end-page: 306
  ident: CR3
  article-title: Multiplication in Sobolev spaces, revisited
  publication-title: Ark. Mat.
  doi: 10.4310/ARKIV.2021.v59.n2.a2
– volume: 84
  issue: 6
  year: 2011
  ident: CR5
  article-title: Fractional Feynman-Kac equation for weak ergodicity breaking
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.84.061104
– volume: 146
  start-page: 481
  issue: 3
  year: 2020
  end-page: 511
  ident: CR21
  article-title: Numerical algorithm for the space-time fractional Fokker-Planck system with two internal states
  publication-title: Numer. Math.
  doi: 10.1007/s00211-020-01148-6
– volume: 88
  start-page: 58
  issue: 3
  year: 2021
  ident: CR9
  article-title: Two L1 schemes on graded meshes for fractional Feynman-Kac equation
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-021-01581-1
– volume: 74
  start-page: 1554
  issue: 3
  year: 2018
  end-page: 1574
  ident: CR16
  article-title: Spectral methods for substantial fractional differential equations
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-017-0506-8
– volume: 24
  start-page: 1989
  issue: 4
  year: 2019
  end-page: 2015
  ident: CR17
  article-title: Well-posedness and numerical algorithm for the tempered fractional differential equations
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
– volume: 313
  start-page: 54
  year: 2017
  end-page: 69
  ident: CR15
  article-title: A second-order difference scheme for the time fractional substantial diffusion equation
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2016.09.006
– volume: 268
  start-page: 478
  year: 2015
  end-page: 528
  ident: CR14
  article-title: Fractional Laplacians on domains, a development of Hörmander’s theory of -transmission pseudodifferential operators
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2014.09.018
– volume: 141
  start-page: 1071
  issue: 6
  year: 2010
  end-page: 1092
  ident: CR6
  article-title: On distributions of functionals of anomalous diffusion paths
  publication-title: J. Stat. Phys.
  doi: 10.1007/s10955-010-0086-6
– volume: 52
  start-page: 413
  issue: 4
  year: 1988
  end-page: 425
  ident: CR19
  article-title: Convolution quadrature and discretized operational calculus
  publication-title: II. Numer. Math.
  doi: 10.1007/BF01462237
– volume: 142
  start-page: 235
  issue: 2
  year: 2019
  end-page: 278
  ident: CR4
  article-title: Numerical approximation of the integral fractional Laplacian
  publication-title: Numer. Math.
  doi: 10.1007/s00211-019-01025-x
– ident: CR24
– ident: CR20
– volume: 52
  start-page: 129
  issue: 2
  year: 1988
  ident: 10152_CR18
  publication-title: Numer. Math.
  doi: 10.1007/BF01398686
– volume: 103
  issue: 19
  year: 2009
  ident: 10152_CR25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.190201
– volume: 76
  start-page: 867
  issue: 2
  year: 2018
  ident: 10152_CR8
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-018-0640-y
– volume: 88
  start-page: 58
  issue: 3
  year: 2021
  ident: 10152_CR9
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-021-01581-1
– volume: 37
  start-page: A890
  issue: 2
  year: 2015
  ident: 10152_CR7
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/14097207X
– volume: 62
  start-page: 718
  issue: 3
  year: 2015
  ident: 10152_CR10
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-014-9873-6
– volume: 24
  start-page: 1989
  issue: 4
  year: 2019
  ident: 10152_CR17
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
– ident: 10152_CR22
  doi: 10.1103/PhysRevE.89.030102
– volume: 84
  issue: 6
  year: 2011
  ident: 10152_CR5
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.84.061104
– volume: 59
  start-page: 275
  issue: 2
  year: 2021
  ident: 10152_CR3
  publication-title: Ark. Mat.
  doi: 10.4310/ARKIV.2021.v59.n2.a2
– volume: 74
  start-page: 1554
  issue: 3
  year: 2018
  ident: 10152_CR16
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-017-0506-8
– volume: 146
  start-page: 481
  issue: 3
  year: 2020
  ident: 10152_CR21
  publication-title: Numer. Math.
  doi: 10.1007/s00211-020-01148-6
– volume: 56
  start-page: 3249
  issue: 6
  year: 2018
  ident: 10152_CR11
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/17M1118245
– ident: 10152_CR2
– ident: 10152_CR24
– ident: 10152_CR20
– volume: 84
  start-page: 6
  issue: 1
  year: 2020
  ident: 10152_CR23
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-020-01256-3
– volume: 142
  start-page: 235
  issue: 2
  year: 2019
  ident: 10152_CR4
  publication-title: Numer. Math.
  doi: 10.1007/s00211-019-01025-x
– volume: 52
  start-page: 413
  issue: 4
  year: 1988
  ident: 10152_CR19
  publication-title: II. Numer. Math.
  doi: 10.1007/BF01462237
– volume: 313
  start-page: 54
  year: 2017
  ident: 10152_CR15
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2016.09.006
– volume: 136
  start-page: 521
  issue: 5
  year: 2012
  ident: 10152_CR13
  publication-title: Bull. Sci. Math.
  doi: 10.1016/j.bulsci.2011.12.004
– volume: 268
  start-page: 478
  year: 2015
  ident: 10152_CR14
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2014.09.018
– volume: 141
  start-page: 1071
  issue: 6
  year: 2010
  ident: 10152_CR6
  publication-title: J. Stat. Phys.
  doi: 10.1007/s10955-010-0086-6
– volume: 68
  start-page: 567
  issue: 4
  year: 2009
  ident: 10152_CR12
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2009-00126-3
– volume: 22
  start-page: 767
  issue: 3
  year: 2019
  ident: 10152_CR1
  publication-title: Fract. Calc. Appl. Anal.
  doi: 10.1515/fca-2019-0042
SSID ssj0009675
Score 2.3675194
Snippet Fractional Feynman–Kac equation governs the functional distribution of the trajectories of anomalous diffusion. The non-commutativity of the integral...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 58
SubjectTerms Applied mathematics
Commutativity
Computational mathematics
Computational Mathematics and Numerical Analysis
Computational Science and Engineering
Derivatives
Diffusion
Error analysis
Estimates
Finite element analysis
Finite element method
Integrals
Laplace transforms
Mathematical and Computational Biology
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Methods
Numerical analysis
Numerical methods
Quadratures
Regularity
Sobolev space
Visualization
SummonAdditionalLinks – databaseName: Springer Standard Collection
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB509aAH1yeurtKDNw1s0jRNTyLiIqiL4IO9lSRNQNCq213Bm__Bf-gvcfqyKnrQQ3towlAmmVcm8w3AjjMBdUonBPWvT9D_F0RrYwiniehpXyhqi64lp-FgIIfD6LwqCsvq2-51SrLQ1J-K3TjnBG0Kqg60OiSYhpkgR5vJY_SL6wZqVxTwujgpIhgNyKpU5mcaX81R42N-S4sW1qbf_t9_LsJC5V16B-V2WIIpmy5Du_I0vUqOs2WYP_tAa81WYH8wKfM2t17ZUDrz0JXNn_xKredGZfEDDvftc3qn0reX1xNlPPtY4oSvwlX_6PLwmFSNFYhhYW9MnB_5Uvmh7RmMpyJtA64pSi6GQvidWUad4VZI60JqhRWRtFr3IiWkxheX_hq00vvUroPHnVMB41pJy7hhLHJUINUgSYwfas07sFvzN34o8TPiBik551SMnIoLTsVBB7r1EsSVLGWxjzEsah0qRAf2apY3w79T2_jb9E2YY_mqFUcsXWiNRxO7BbPmaXyTjbaLPfYOHPLL1g
  priority: 102
  providerName: Springer Nature
Title Numerical methods for forward fractional Feynman–Kac equation
URI https://link.springer.com/article/10.1007/s10444-024-10152-5
https://www.proquest.com/docview/3254225166
Volume 50
WOSCitedRecordID wos001242955200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1572-9044
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0009675
  issn: 1019-7168
  databaseCode: P5Z
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1572-9044
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0009675
  issn: 1019-7168
  databaseCode: K7-
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database (subscription)
  customDbUrl:
  eissn: 1572-9044
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0009675
  issn: 1019-7168
  databaseCode: M7S
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1572-9044
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0009675
  issn: 1019-7168
  databaseCode: BENPR
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Standard Collection
  customDbUrl:
  eissn: 1572-9044
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009675
  issn: 1019-7168
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_o5sGL8xOnc_TgTYNrm6btaahsCJMxNpXhpTRpAoJ2H90Eb_4P_of-Jb60GUVBLx76Dg2EkPfL-0jeB8CpEp6tYp4QlL8uQfufEc6FINROWIu7LLZl3rXk1u_3g_E4HJgLt8yEVa5kYi6ok4nQd-QXLnoyiD2bsfZ0RnTXKP26alporENVVypDnFevOv3BsCy7y_JSu4i7kKBnEJi0GZM8RyklqKNQFKEWI9531VTamz-eSHPN0639d83bsGVsTuuyAMkOrMl0F2rG_rTM6c72oN1fFu83z1bRWDqz0KTVnw6ttdS8SILA4a58S1_i9PP9oxcLS86KeuH7cN_t3F3fENNggQjHby2IckM3iF1ftgT6VSGXHuU2nmB0ifC_Ix1bCSpZIJVvSyZZGEjOW2HMAo6EBu4BVNJJKg_BokrFnkN5HEiHCscJlc1wVi9JhOtzTutwttrbaFrU0YjKismaExFyIso5EXl1aKw2NDJnKovK3azD-Yol5fDvsx39PdsxbDoaBfnVSgMqi_lSnsCGeF08ZfOmQVQT1ns-aerQ0BHSgfeIdDh6-AL2otaN
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07b9swED7kUSBZ4vQR1K2baGinlqhFUhQ1BEaQxrBh1-jgAt5UkSKBAKnsWE6KbPkP-R_5Uf0lOeoBoQWSzUMGcRCBA6Tv4z1I3h3AR6sD3yYqJah_GUH_XxCltCbcT0VXMZH4puhaMg4nEzmbRT824L7OhXHXKmudWCjqdK7dHvlXhpEMcs8Xore4JK5rlDtdrVtolLQYmZs_GLLlx8NviO8nSvtn09MBqboKEE3D7opYFjGZsNB0NQYTkTIBVz7SFuMAfE8N9a3mRkhjQ98IIyJplOpGiZAKBy4Zyt2Ebc6kcCtqFJKmyK8oCvsiyyOCcYisknSqVD3OOUGLiIoPbSYJ_jWEjXf734FsYef6ref2h_Zhr_KovZNyCbyEDZO9glblXXuV7spfQ29yVZ5OXXhl2-zcQ4fdPe7isGeXZYoHTvfNTfY7yf7e3o0S7ZnLshr6G_i5ls84gK1snpm34HFrk4BylUhDuaY0sr5AqUGaahYqxdvwucYyXpRVQuKmHrRDPkbk4wL5OGhDpwYwrjRGHjfoteFLTYFm-nFp756WdgQ7g-n3cTweTkbvYZc6BhabSB3YWi2vzAd4oa9X5_nysOCyB7_WTY0HBA8tDg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60iujBR1WsVs3Bmy7tJptNchJRg9Jaii96C9nNLggaa9MK3vwP_kN_iZNHTRU9iIfkkF2GMLvz2pn5FmBPS5vqUEQE9a9F0P_nRAgpCaMRbwqLh1Rlt5a0nU7H7fW87kQXf1btPk5J5j0NKUpTPGz0I92YaHxjjBG0L6hG0AIRexpmGEYyaVHX5dVtCbvLM6hdnOQRjAzcom3mZxpfTVPpb35LkWaWx1_6_z8vw2LhdRpH-TZZgSkVV2Gp8ECNQr6TKixcfKK4Jqtw2Bnl-Zx7I79oOjHQxU2ftNTW0IO8KQKHffUSP4Tx--tbK5SGesrxw9fgxj-9Pj4jxYULRJpOc0i05VluaDmqKTHO8oSymaAo0Rgi4XdTmVRLprirtEMVV9xzlRBNL-SuwBdzrXWoxI-x2gCDaR3aJhOhq0wmTdPTlCNVO4qk5QjBarA_5nXQz3E1ghJBOeVUgJwKMk4Fdg3q4-UIChlLAgtjW9RGlPMaHIzZXw7_Tm3zb9N3Ya574gft805rC-bNdAGzU5g6VIaDkdqGWfk8vEsGO9nW-wBIO9ee
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+methods+for+forward+fractional+Feynman%E2%80%93Kac+equation&rft.jtitle=Advances+in+computational+mathematics&rft.au=Nie%2C+Daxin&rft.au=Sun%2C+Jing&rft.au=Deng%2C+Weihua&rft.date=2024-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1019-7168&rft.eissn=1572-9044&rft.volume=50&rft.issue=3&rft.spage=58&rft_id=info:doi/10.1007%2Fs10444-024-10152-5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1019-7168&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1019-7168&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1019-7168&client=summon