Numerical methods for forward fractional Feynman–Kac equation
Fractional Feynman–Kac equation governs the functional distribution of the trajectories of anomalous diffusion. The non-commutativity of the integral fractional Laplacian and time-space coupled fractional substantial derivative, i.e., A s 0 ∂ t 1 - α , x ≠ 0 ∂ t 1 - α , x A s , brings about huge cha...
Uložené v:
| Vydané v: | Advances in computational mathematics Ročník 50; číslo 3; s. 58 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.06.2024
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1019-7168, 1572-9044 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Fractional Feynman–Kac equation governs the functional distribution of the trajectories of anomalous diffusion. The non-commutativity of the integral fractional Laplacian and time-space coupled fractional substantial derivative, i.e.,
A
s
0
∂
t
1
-
α
,
x
≠
0
∂
t
1
-
α
,
x
A
s
, brings about huge challenges on the regularity and spatial error estimates for the forward fractional Feynman–Kac equation. In this paper, we first use the corresponding resolvent estimate obtained by the bootstrapping arguments and the generalized Hölder-type inequalities in Sobolev space to build the regularity of the solution, and then the fully discrete scheme constructed by convolution quadrature and finite element methods is developed. Also, the complete error analyses in time and space directions are respectively presented, which are consistent with the provided numerical experiments. |
|---|---|
| AbstractList | Fractional Feynman–Kac equation governs the functional distribution of the trajectories of anomalous diffusion. The non-commutativity of the integral fractional Laplacian and time-space coupled fractional substantial derivative, i.e.,
A
s
0
∂
t
1
-
α
,
x
≠
0
∂
t
1
-
α
,
x
A
s
, brings about huge challenges on the regularity and spatial error estimates for the forward fractional Feynman–Kac equation. In this paper, we first use the corresponding resolvent estimate obtained by the bootstrapping arguments and the generalized Hölder-type inequalities in Sobolev space to build the regularity of the solution, and then the fully discrete scheme constructed by convolution quadrature and finite element methods is developed. Also, the complete error analyses in time and space directions are respectively presented, which are consistent with the provided numerical experiments. Fractional Feynman–Kac equation governs the functional distribution of the trajectories of anomalous diffusion. The non-commutativity of the integral fractional Laplacian and time-space coupled fractional substantial derivative, i.e., As0∂t1-α,x≠0∂t1-α,xAs, brings about huge challenges on the regularity and spatial error estimates for the forward fractional Feynman–Kac equation. In this paper, we first use the corresponding resolvent estimate obtained by the bootstrapping arguments and the generalized Hölder-type inequalities in Sobolev space to build the regularity of the solution, and then the fully discrete scheme constructed by convolution quadrature and finite element methods is developed. Also, the complete error analyses in time and space directions are respectively presented, which are consistent with the provided numerical experiments. |
| ArticleNumber | 58 |
| Author | Nie, Daxin Deng, Weihua Sun, Jing |
| Author_xml | – sequence: 1 givenname: Daxin surname: Nie fullname: Nie, Daxin organization: School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University – sequence: 2 givenname: Jing surname: Sun fullname: Sun, Jing organization: School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University – sequence: 3 givenname: Weihua orcidid: 0000-0002-8573-012X surname: Deng fullname: Deng, Weihua email: dengwh@lzu.edu.cn organization: School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University |
| BookMark | eNp9UMtKAzEUDVLBtvoDrgZcR5NMniuRYqtYdKPrkJneaEtnpk1mkO78B__QLzHjCO5c3Af3PLicCRrVTQ0InVNySQlRV5ESzjkmjGNKqGBYHKExFYphk4BR2gk1WFGpT9Akxg0hxEglxuj6sasgrEu3zSpo35pVzHwT-np3YZX54Mp23dQJnsOhrlz99fH54MoM9p3rgVN07N02wtnvnKKX-e3z7A4vnxb3s5slLpkiLfa5ybXLFZCScm4KELygSism-jsDRn3JQWrwioIEaTQUBTFO6iI1rvMpuhh8d6HZdxBbu2m6kP6KNmeCMyaolInFBlYZmhgDeLsL68qFg6XE9kHZISibgrI_QVmRRPkgiolcv0L4s_5H9Q3pX20o |
| Cites_doi | 10.1007/s10915-018-0640-y 10.1137/14097207X 10.1007/s10915-020-01256-3 10.1016/j.bulsci.2011.12.004 10.1007/BF01398686 10.1140/epjb/e2009-00126-3 10.1007/s10915-014-9873-6 10.1137/17M1118245 10.1515/fca-2019-0042 10.1103/PhysRevLett.103.190201 10.4310/ARKIV.2021.v59.n2.a2 10.1103/PhysRevE.84.061104 10.1007/s00211-020-01148-6 10.1007/s10915-021-01581-1 10.1007/s10915-017-0506-8 10.1016/j.cam.2016.09.006 10.1016/j.aim.2014.09.018 10.1007/s10955-010-0086-6 10.1007/BF01462237 10.1007/s00211-019-01025-x 10.1103/PhysRevE.89.030102 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s10444-024-10152-5 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database (subscription) AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics |
| EISSN | 1572-9044 |
| ExternalDocumentID | 10_1007_s10444_024_10152_5 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 12071195 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | -52 -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCO SDD SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z83 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c270t-f3938a37e0c1449be54b178725938a2e21fc4e68ef71e6e698ebb09a68b9a6483 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001242955200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1019-7168 |
| IngestDate | Wed Oct 08 04:49:27 EDT 2025 Sat Nov 29 04:13:23 EST 2025 Fri Feb 21 02:40:16 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Convolution quadrature Finite element method Error estimate 35R11 65M60 Integral fractional Laplacian Fractional substantial derivative 65M12 Forward fractional Feynman–Kac equation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c270t-f3938a37e0c1449be54b178725938a2e21fc4e68ef71e6e698ebb09a68b9a6483 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8573-012X |
| PQID | 3254225166 |
| PQPubID | 2043875 |
| ParticipantIDs | proquest_journals_3254225166 crossref_primary_10_1007_s10444_024_10152_5 springer_journals_10_1007_s10444_024_10152_5 |
| PublicationCentury | 2000 |
| PublicationDate | 20240600 2024-06-00 20240601 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 6 year: 2024 text: 20240600 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Advances in computational mathematics |
| PublicationTitleAbbrev | Adv Comput Math |
| PublicationYear | 2024 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Carmi, Turgeman, Barkai (CR6) 2010; 141 Grubb (CR14) 2015; 268 Lubich (CR18) 1988; 52 Chen, Deng (CR7) 2015; 37 Denisov, Horsthemke, Hänggi (CR12) 2009; 68 Lubich (CR19) 1988; 52 Acosta, Bersetche, Borthagaray (CR1) 2019; 22 Nie, Sun, Deng (CR21) 2020; 146 Behzadan, Holst (CR3) 2021; 59 Li, Deng, Zhao (CR17) 2019; 24 CR2 Carmi, Barkai (CR5) 2011; 84 Deng, Chen, Barkai (CR10) 2015; 62 Sun, Nie, Deng (CR23) 2020; 84 Bonito, Lei, Pasciak (CR4) 2019; 142 Chen, Deng (CR8) 2018; 76 Huang, Zhang, Song (CR16) 2018; 74 CR24 Turgeman, Carmi, Barkai (CR25) 2009; 103 Deng, Li, Qian, Wang (CR11) 2018; 56 CR22 CR20 Chen, Jiang, Bu (CR9) 2021; 88 Di Nezza, Palatucci, Valdinoci (CR13) 2012; 136 Hao, Cao, Lin (CR15) 2017; 313 W Deng (10152_CR11) 2018; 56 M Chen (10152_CR8) 2018; 76 M Chen (10152_CR9) 2021; 88 10152_CR20 10152_CR22 C Lubich (10152_CR18) 1988; 52 G Grubb (10152_CR14) 2015; 268 M Chen (10152_CR7) 2015; 37 C Li (10152_CR17) 2019; 24 S Carmi (10152_CR6) 2010; 141 G Acosta (10152_CR1) 2019; 22 W Deng (10152_CR10) 2015; 62 D Nie (10152_CR21) 2020; 146 A Behzadan (10152_CR3) 2021; 59 S Carmi (10152_CR5) 2011; 84 E Di Nezza (10152_CR13) 2012; 136 J Sun (10152_CR23) 2020; 84 A Bonito (10152_CR4) 2019; 142 C Lubich (10152_CR19) 1988; 52 L Turgeman (10152_CR25) 2009; 103 C Huang (10152_CR16) 2018; 74 10152_CR2 10152_CR24 SI Denisov (10152_CR12) 2009; 68 Z Hao (10152_CR15) 2017; 313 |
| References_xml | – volume: 76 start-page: 867 issue: 2 year: 2018 end-page: 887 ident: CR8 article-title: High order algorithm for the time-tempered fractional Feynman-Kac equation publication-title: J. Sci. Comput. doi: 10.1007/s10915-018-0640-y – ident: CR22 – volume: 37 start-page: A890 issue: 2 year: 2015 end-page: A917 ident: CR7 article-title: High order algorithms for the fractional substantial diffusion equation with truncated Lévy flights publication-title: SIAM J. Sci. Comput. doi: 10.1137/14097207X – volume: 84 start-page: 6 issue: 1 year: 2020 ident: CR23 article-title: Error estimates for backward fractional Feynman-Kac equation with non-smooth initial data publication-title: J. Sci. Comput. doi: 10.1007/s10915-020-01256-3 – volume: 136 start-page: 521 issue: 5 year: 2012 end-page: 573 ident: CR13 article-title: Hitchhiker’s guide to the fractional Sobolev spaces publication-title: Bull. Sci. Math. doi: 10.1016/j.bulsci.2011.12.004 – volume: 52 start-page: 129 issue: 2 year: 1988 end-page: 145 ident: CR18 article-title: Convolution quadrature and discretized operational calculus I publication-title: Numer. Math. doi: 10.1007/BF01398686 – ident: CR2 – volume: 68 start-page: 567 issue: 4 year: 2009 end-page: 575 ident: CR12 article-title: Generalized Fokker-Planck equation: derivation and exact solutions publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2009-00126-3 – volume: 62 start-page: 718 issue: 3 year: 2015 end-page: 746 ident: CR10 article-title: Numerical algorithms for the forward and backward fractional Feynman-Kac equations publication-title: J. Sci. Comput. doi: 10.1007/s10915-014-9873-6 – volume: 56 start-page: 3249 issue: 6 year: 2018 end-page: 3275 ident: CR11 article-title: Time discretization of a tempered fractional Feynman-Kac equation with measure data publication-title: SIAM J. Numer. Anal. doi: 10.1137/17M1118245 – volume: 22 start-page: 767 issue: 3 year: 2019 end-page: 794 ident: CR1 article-title: Finite element approximations for fractional evolution problems publication-title: Fract. Calc. Appl. Anal. doi: 10.1515/fca-2019-0042 – volume: 103 issue: 19 year: 2009 ident: CR25 article-title: Fractional Feynman-Kac equation for non-Brownian functionals publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.190201 – volume: 59 start-page: 275 issue: 2 year: 2021 end-page: 306 ident: CR3 article-title: Multiplication in Sobolev spaces, revisited publication-title: Ark. Mat. doi: 10.4310/ARKIV.2021.v59.n2.a2 – volume: 84 issue: 6 year: 2011 ident: CR5 article-title: Fractional Feynman-Kac equation for weak ergodicity breaking publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.84.061104 – volume: 146 start-page: 481 issue: 3 year: 2020 end-page: 511 ident: CR21 article-title: Numerical algorithm for the space-time fractional Fokker-Planck system with two internal states publication-title: Numer. Math. doi: 10.1007/s00211-020-01148-6 – volume: 88 start-page: 58 issue: 3 year: 2021 ident: CR9 article-title: Two L1 schemes on graded meshes for fractional Feynman-Kac equation publication-title: J. Sci. Comput. doi: 10.1007/s10915-021-01581-1 – volume: 74 start-page: 1554 issue: 3 year: 2018 end-page: 1574 ident: CR16 article-title: Spectral methods for substantial fractional differential equations publication-title: J. Sci. Comput. doi: 10.1007/s10915-017-0506-8 – volume: 24 start-page: 1989 issue: 4 year: 2019 end-page: 2015 ident: CR17 article-title: Well-posedness and numerical algorithm for the tempered fractional differential equations publication-title: Discrete Contin. Dyn. Syst. Ser. B – volume: 313 start-page: 54 year: 2017 end-page: 69 ident: CR15 article-title: A second-order difference scheme for the time fractional substantial diffusion equation publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2016.09.006 – volume: 268 start-page: 478 year: 2015 end-page: 528 ident: CR14 article-title: Fractional Laplacians on domains, a development of Hörmander’s theory of -transmission pseudodifferential operators publication-title: Adv. Math. doi: 10.1016/j.aim.2014.09.018 – volume: 141 start-page: 1071 issue: 6 year: 2010 end-page: 1092 ident: CR6 article-title: On distributions of functionals of anomalous diffusion paths publication-title: J. Stat. Phys. doi: 10.1007/s10955-010-0086-6 – volume: 52 start-page: 413 issue: 4 year: 1988 end-page: 425 ident: CR19 article-title: Convolution quadrature and discretized operational calculus publication-title: II. Numer. Math. doi: 10.1007/BF01462237 – volume: 142 start-page: 235 issue: 2 year: 2019 end-page: 278 ident: CR4 article-title: Numerical approximation of the integral fractional Laplacian publication-title: Numer. Math. doi: 10.1007/s00211-019-01025-x – ident: CR24 – ident: CR20 – volume: 52 start-page: 129 issue: 2 year: 1988 ident: 10152_CR18 publication-title: Numer. Math. doi: 10.1007/BF01398686 – volume: 103 issue: 19 year: 2009 ident: 10152_CR25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.190201 – volume: 76 start-page: 867 issue: 2 year: 2018 ident: 10152_CR8 publication-title: J. Sci. Comput. doi: 10.1007/s10915-018-0640-y – volume: 88 start-page: 58 issue: 3 year: 2021 ident: 10152_CR9 publication-title: J. Sci. Comput. doi: 10.1007/s10915-021-01581-1 – volume: 37 start-page: A890 issue: 2 year: 2015 ident: 10152_CR7 publication-title: SIAM J. Sci. Comput. doi: 10.1137/14097207X – volume: 62 start-page: 718 issue: 3 year: 2015 ident: 10152_CR10 publication-title: J. Sci. Comput. doi: 10.1007/s10915-014-9873-6 – volume: 24 start-page: 1989 issue: 4 year: 2019 ident: 10152_CR17 publication-title: Discrete Contin. Dyn. Syst. Ser. B – ident: 10152_CR22 doi: 10.1103/PhysRevE.89.030102 – volume: 84 issue: 6 year: 2011 ident: 10152_CR5 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.84.061104 – volume: 59 start-page: 275 issue: 2 year: 2021 ident: 10152_CR3 publication-title: Ark. Mat. doi: 10.4310/ARKIV.2021.v59.n2.a2 – volume: 74 start-page: 1554 issue: 3 year: 2018 ident: 10152_CR16 publication-title: J. Sci. Comput. doi: 10.1007/s10915-017-0506-8 – volume: 146 start-page: 481 issue: 3 year: 2020 ident: 10152_CR21 publication-title: Numer. Math. doi: 10.1007/s00211-020-01148-6 – volume: 56 start-page: 3249 issue: 6 year: 2018 ident: 10152_CR11 publication-title: SIAM J. Numer. Anal. doi: 10.1137/17M1118245 – ident: 10152_CR2 – ident: 10152_CR24 – ident: 10152_CR20 – volume: 84 start-page: 6 issue: 1 year: 2020 ident: 10152_CR23 publication-title: J. Sci. Comput. doi: 10.1007/s10915-020-01256-3 – volume: 142 start-page: 235 issue: 2 year: 2019 ident: 10152_CR4 publication-title: Numer. Math. doi: 10.1007/s00211-019-01025-x – volume: 52 start-page: 413 issue: 4 year: 1988 ident: 10152_CR19 publication-title: II. Numer. Math. doi: 10.1007/BF01462237 – volume: 313 start-page: 54 year: 2017 ident: 10152_CR15 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2016.09.006 – volume: 136 start-page: 521 issue: 5 year: 2012 ident: 10152_CR13 publication-title: Bull. Sci. Math. doi: 10.1016/j.bulsci.2011.12.004 – volume: 268 start-page: 478 year: 2015 ident: 10152_CR14 publication-title: Adv. Math. doi: 10.1016/j.aim.2014.09.018 – volume: 141 start-page: 1071 issue: 6 year: 2010 ident: 10152_CR6 publication-title: J. Stat. Phys. doi: 10.1007/s10955-010-0086-6 – volume: 68 start-page: 567 issue: 4 year: 2009 ident: 10152_CR12 publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2009-00126-3 – volume: 22 start-page: 767 issue: 3 year: 2019 ident: 10152_CR1 publication-title: Fract. Calc. Appl. Anal. doi: 10.1515/fca-2019-0042 |
| SSID | ssj0009675 |
| Score | 2.3675194 |
| Snippet | Fractional Feynman–Kac equation governs the functional distribution of the trajectories of anomalous diffusion. The non-commutativity of the integral... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 58 |
| SubjectTerms | Applied mathematics Commutativity Computational mathematics Computational Mathematics and Numerical Analysis Computational Science and Engineering Derivatives Diffusion Error analysis Estimates Finite element analysis Finite element method Integrals Laplace transforms Mathematical and Computational Biology Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Methods Numerical analysis Numerical methods Quadratures Regularity Sobolev space Visualization |
| SummonAdditionalLinks | – databaseName: Springer Standard Collection dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB509aAH1yeurtKDNw1s0jRNTyLiIqiL4IO9lSRNQNCq213Bm__Bf-gvcfqyKnrQQ3towlAmmVcm8w3AjjMBdUonBPWvT9D_F0RrYwiniehpXyhqi64lp-FgIIfD6LwqCsvq2-51SrLQ1J-K3TjnBG0Kqg60OiSYhpkgR5vJY_SL6wZqVxTwujgpIhgNyKpU5mcaX81R42N-S4sW1qbf_t9_LsJC5V16B-V2WIIpmy5Du_I0vUqOs2WYP_tAa81WYH8wKfM2t17ZUDrz0JXNn_xKredGZfEDDvftc3qn0reX1xNlPPtY4oSvwlX_6PLwmFSNFYhhYW9MnB_5Uvmh7RmMpyJtA64pSi6GQvidWUad4VZI60JqhRWRtFr3IiWkxheX_hq00vvUroPHnVMB41pJy7hhLHJUINUgSYwfas07sFvzN34o8TPiBik551SMnIoLTsVBB7r1EsSVLGWxjzEsah0qRAf2apY3w79T2_jb9E2YY_mqFUcsXWiNRxO7BbPmaXyTjbaLPfYOHPLL1g priority: 102 providerName: Springer Nature |
| Title | Numerical methods for forward fractional Feynman–Kac equation |
| URI | https://link.springer.com/article/10.1007/s10444-024-10152-5 https://www.proquest.com/docview/3254225166 |
| Volume | 50 |
| WOSCitedRecordID | wos001242955200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1572-9044 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0009675 issn: 1019-7168 databaseCode: P5Z dateStart: 20230201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1572-9044 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0009675 issn: 1019-7168 databaseCode: K7- dateStart: 20230201 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database (subscription) customDbUrl: eissn: 1572-9044 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0009675 issn: 1019-7168 databaseCode: M7S dateStart: 20230201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1572-9044 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0009675 issn: 1019-7168 databaseCode: BENPR dateStart: 20230201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Standard Collection customDbUrl: eissn: 1572-9044 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009675 issn: 1019-7168 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_o5sGL8xOnc_TgTYNrm6btaahsCJMxNpXhpTRpAoJ2H90Eb_4P_of-Jb60GUVBLx76Dg2EkPfL-0jeB8CpEp6tYp4QlL8uQfufEc6FINROWIu7LLZl3rXk1u_3g_E4HJgLt8yEVa5kYi6ok4nQd-QXLnoyiD2bsfZ0RnTXKP26alporENVVypDnFevOv3BsCy7y_JSu4i7kKBnEJi0GZM8RyklqKNQFKEWI9531VTamz-eSHPN0639d83bsGVsTuuyAMkOrMl0F2rG_rTM6c72oN1fFu83z1bRWDqz0KTVnw6ttdS8SILA4a58S1_i9PP9oxcLS86KeuH7cN_t3F3fENNggQjHby2IckM3iF1ftgT6VSGXHuU2nmB0ifC_Ix1bCSpZIJVvSyZZGEjOW2HMAo6EBu4BVNJJKg_BokrFnkN5HEiHCscJlc1wVi9JhOtzTutwttrbaFrU0YjKismaExFyIso5EXl1aKw2NDJnKovK3azD-Yol5fDvsx39PdsxbDoaBfnVSgMqi_lSnsCGeF08ZfOmQVQT1ns-aerQ0BHSgfeIdDh6-AL2otaN |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07b9swED7kUSBZ4vQR1K2baGinlqhFUhQ1BEaQxrBh1-jgAt5UkSKBAKnsWE6KbPkP-R_5Uf0lOeoBoQWSzUMGcRCBA6Tv4z1I3h3AR6sD3yYqJah_GUH_XxCltCbcT0VXMZH4puhaMg4nEzmbRT824L7OhXHXKmudWCjqdK7dHvlXhpEMcs8Xore4JK5rlDtdrVtolLQYmZs_GLLlx8NviO8nSvtn09MBqboKEE3D7opYFjGZsNB0NQYTkTIBVz7SFuMAfE8N9a3mRkhjQ98IIyJplOpGiZAKBy4Zyt2Ebc6kcCtqFJKmyK8oCvsiyyOCcYisknSqVD3OOUGLiIoPbSYJ_jWEjXf734FsYef6ref2h_Zhr_KovZNyCbyEDZO9glblXXuV7spfQ29yVZ5OXXhl2-zcQ4fdPe7isGeXZYoHTvfNTfY7yf7e3o0S7ZnLshr6G_i5ls84gK1snpm34HFrk4BylUhDuaY0sr5AqUGaahYqxdvwucYyXpRVQuKmHrRDPkbk4wL5OGhDpwYwrjRGHjfoteFLTYFm-nFp756WdgQ7g-n3cTweTkbvYZc6BhabSB3YWi2vzAd4oa9X5_nysOCyB7_WTY0HBA8tDg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60iujBR1WsVs3Bmy7tJptNchJRg9Jaii96C9nNLggaa9MK3vwP_kN_iZNHTRU9iIfkkF2GMLvz2pn5FmBPS5vqUEQE9a9F0P_nRAgpCaMRbwqLh1Rlt5a0nU7H7fW87kQXf1btPk5J5j0NKUpTPGz0I92YaHxjjBG0L6hG0AIRexpmGEYyaVHX5dVtCbvLM6hdnOQRjAzcom3mZxpfTVPpb35LkWaWx1_6_z8vw2LhdRpH-TZZgSkVV2Gp8ECNQr6TKixcfKK4Jqtw2Bnl-Zx7I79oOjHQxU2ftNTW0IO8KQKHffUSP4Tx--tbK5SGesrxw9fgxj-9Pj4jxYULRJpOc0i05VluaDmqKTHO8oSymaAo0Rgi4XdTmVRLprirtEMVV9xzlRBNL-SuwBdzrXWoxI-x2gCDaR3aJhOhq0wmTdPTlCNVO4qk5QjBarA_5nXQz3E1ghJBOeVUgJwKMk4Fdg3q4-UIChlLAgtjW9RGlPMaHIzZXw7_Tm3zb9N3Ya574gft805rC-bNdAGzU5g6VIaDkdqGWfk8vEsGO9nW-wBIO9ee |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+methods+for+forward+fractional+Feynman%E2%80%93Kac+equation&rft.jtitle=Advances+in+computational+mathematics&rft.au=Nie%2C+Daxin&rft.au=Sun%2C+Jing&rft.au=Deng%2C+Weihua&rft.date=2024-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1019-7168&rft.eissn=1572-9044&rft.volume=50&rft.issue=3&rft.spage=58&rft_id=info:doi/10.1007%2Fs10444-024-10152-5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1019-7168&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1019-7168&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1019-7168&client=summon |