Quantification of Cooled Film Thermal Protection Using Net Heat Flux Reduction within Transonic Environments

Considered are NHFR or net heat flux reduction data in order to illustrate and quantify turbulent thermal convection phenomena within a unique and intricate cooled film environment along the extremity end of a transonic turbine airfoil with a rim in the form of a squealer. Of particular focus are th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thermal engineering Jg. 72; H. 10; S. 802 - 816
Hauptverfasser: Ligrani, P., Knox, N.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Moscow Pleiades Publishing 01.10.2025
Springer Nature B.V
Schlagworte:
ISSN:0040-6015, 1555-6301
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Considered are NHFR or net heat flux reduction data in order to illustrate and quantify turbulent thermal convection phenomena within a unique and intricate cooled film environment along the extremity end of a transonic turbine airfoil with a rim in the form of a squealer. Of particular focus are the consequences of modifying the magnitude of GAP (tip gap magnitude) which is adjacent to the outer end of the airfoil. Data are given for a variety of cooled film ratio of blowing conditions, as the coolant film is provided by two separate plenums that are connected to a row of holes which are located along the top segment of the concave surface of the blade, as well as to two dusting cooled film holes located on the end extremity of the blade. Line-averaged NHFR data show different dependence upon RoB u and RoB d ratios of blowing, depending upon the magnitude of GAP. Especially for the trailing edge portion of the squealer tip surface of the airfoil, NHFR data vary significantly with aft ratio of blowing RoB d for the 1.2 mm or smaller GAP arrangement, whereas very little variation with RoB d is present for the 2.0 mm or larger GAP environment. Here, GAP is the thickness of the flow gap at the blade tip. In addition, line-averaged NHFR data associated with the smaller GAP are often higher than values associated with the larger GAP, when compared for the same squealer surface airfoil tip locations, and at the same approximate RoB u and RoB d ratios of blowing. The flow and local static pressure variations within tip gap regions, which vary as the magnitude of GAP is changed, are less influential in regard to the data associated with the top portion of the concave surface of the two-dimensional airfoil. The impact of the present arrangements and configuration is new and unique NHFR results for different GAP values for complex boundary layer and separation flow environments, which are different from all other data which are available within the archival literature.
AbstractList Considered are NHFR or net heat flux reduction data in order to illustrate and quantify turbulent thermal convection phenomena within a unique and intricate cooled film environment along the extremity end of a transonic turbine airfoil with a rim in the form of a squealer. Of particular focus are the consequences of modifying the magnitude of GAP (tip gap magnitude) which is adjacent to the outer end of the airfoil. Data are given for a variety of cooled film ratio of blowing conditions, as the coolant film is provided by two separate plenums that are connected to a row of holes which are located along the top segment of the concave surface of the blade, as well as to two dusting cooled film holes located on the end extremity of the blade. Line-averaged NHFR data show different dependence upon RoB u and RoB d ratios of blowing, depending upon the magnitude of GAP. Especially for the trailing edge portion of the squealer tip surface of the airfoil, NHFR data vary significantly with aft ratio of blowing RoB d for the 1.2 mm or smaller GAP arrangement, whereas very little variation with RoB d is present for the 2.0 mm or larger GAP environment. Here, GAP is the thickness of the flow gap at the blade tip. In addition, line-averaged NHFR data associated with the smaller GAP are often higher than values associated with the larger GAP, when compared for the same squealer surface airfoil tip locations, and at the same approximate RoB u and RoB d ratios of blowing. The flow and local static pressure variations within tip gap regions, which vary as the magnitude of GAP is changed, are less influential in regard to the data associated with the top portion of the concave surface of the two-dimensional airfoil. The impact of the present arrangements and configuration is new and unique NHFR results for different GAP values for complex boundary layer and separation flow environments, which are different from all other data which are available within the archival literature.
Considered are NHFR or net heat flux reduction data in order to illustrate and quantify turbulent thermal convection phenomena within a unique and intricate cooled film environment along the extremity end of a transonic turbine airfoil with a rim in the form of a squealer. Of particular focus are the consequences of modifying the magnitude of GAP (tip gap magnitude) which is adjacent to the outer end of the airfoil. Data are given for a variety of cooled film ratio of blowing conditions, as the coolant film is provided by two separate plenums that are connected to a row of holes which are located along the top segment of the concave surface of the blade, as well as to two dusting cooled film holes located on the end extremity of the blade. Line-averaged NHFR data show different dependence upon RoBu and RoBd ratios of blowing, depending upon the magnitude of GAP. Especially for the trailing edge portion of the squealer tip surface of the airfoil, NHFR data vary significantly with aft ratio of blowing RoBd for the 1.2 mm or smaller GAP arrangement, whereas very little variation with RoBd is present for the 2.0 mm or larger GAP environment. Here, GAP is the thickness of the flow gap at the blade tip. In addition, line-averaged NHFR data associated with the smaller GAP are often higher than values associated with the larger GAP, when compared for the same squealer surface airfoil tip locations, and at the same approximate RoBu and RoBd ratios of blowing. The flow and local static pressure variations within tip gap regions, which vary as the magnitude of GAP is changed, are less influential in regard to the data associated with the top portion of the concave surface of the two-dimensional airfoil. The impact of the present arrangements and configuration is new and unique NHFR results for different GAP values for complex boundary layer and separation flow environments, which are different from all other data which are available within the archival literature.
Author Ligrani, P.
Knox, N.
Author_xml – sequence: 1
  givenname: P.
  surname: Ligrani
  fullname: Ligrani, P.
  email: pml0006@uah.edu
  organization: University of Alabama in Huntsville
– sequence: 2
  givenname: N.
  surname: Knox
  fullname: Knox, N.
  organization: University of Alabama in Huntsville
BookMark eNp1kEtPwzAQhC0EEm3hB3CzxDngV5z0iKqWIlU823PkOJvWVWoX2-Hx70kJEgfEZVer-WZWmiE6ts4CQheUXFHKxfULIYJIQlMmukkkO0IDmqZpIjmhx2hwkJODfoqGIWy7UwiaDlDz1CobTW20isZZ7Go8ca6BCs9Ms8PLDfidavCjdxH0N7EKxq7xPUQ8BxXxrGk_8DNUba--m7gxFi-9ssFZo_HUvhnv7A5sDGfopFZNgPOfPUKr2XQ5mSeLh9u7yc0i0SwjMamZTqtUKikJZ5BTIKTOS8FYBjTTcpzxiguqRV6SXFJdKa0yVXJejtU4r7OMj9Bln7v37rWFEIuta73tXhacSUFoVxnpKNpT2rsQPNTF3pud8p8FJcWh1OJPqZ2H9Z7QsXYN_jf5f9MXPTV6ng
Cites_doi 10.1115/1.4005978
10.2514/1.B34299
10.1115/1.4001810
10.1016/0894-1777(88)90043-X
10.1115/1.4045466
10.1016/j.ijheatmasstransfer.2023.125043
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2025 ISSN 0040-6015, Thermal Engineering, 2025, Vol. 72, No. 10, pp. 802–816. © Pleiades Publishing, Ltd., 2025.Russian Text © The Author(s), 2025, published in Teploenergetika.
Pleiades Publishing, Ltd. 2025.
Copyright_xml – notice: Pleiades Publishing, Ltd. 2025 ISSN 0040-6015, Thermal Engineering, 2025, Vol. 72, No. 10, pp. 802–816. © Pleiades Publishing, Ltd., 2025.Russian Text © The Author(s), 2025, published in Teploenergetika.
– notice: Pleiades Publishing, Ltd. 2025.
DBID AAYXX
CITATION
DOI 10.1134/S0040601524601062
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1555-6301
EndPage 816
ExternalDocumentID 10_1134_S0040601524601062
GroupedDBID -Y2
.VR
06D
0R~
0VY
123
1N0
29Q
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
408
40D
40E
5VS
6NX
6TJ
78A
8WZ
95-
95.
95~
96X
A6W
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABBBX
ABDBE
ABDZT
ABECU
ABEFU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBEA
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKIV
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFGCZ
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGQPQ
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AZFZN
B-.
BA0
BDATZ
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
M7S
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9P
PF0
PHGZM
PHGZT
PQGLB
PT4
PTHSS
QOS
R89
R9I
ROL
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TUC
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
ZMTXR
~A9
AAYXX
AFFHD
AFKRA
ARAPS
BENPR
CITATION
HCIFZ
ID FETCH-LOGICAL-c270t-f2c5d56a66032e81e00f8b4227e17c6973d341c48b0861cdaca7ab33b9a98f773
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001598345500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0040-6015
IngestDate Sat Oct 25 08:21:59 EDT 2025
Sat Nov 29 07:04:40 EST 2025
Sat Oct 25 07:00:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords blowing ratio
tip gap
net heat flux reduction
transonic flow
cooled film
squealer turbine airfoil
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-f2c5d56a66032e81e00f8b4227e17c6973d341c48b0861cdaca7ab33b9a98f773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3264011130
PQPubID 2043668
PageCount 15
ParticipantIDs proquest_journals_3264011130
crossref_primary_10_1134_S0040601524601062
springer_journals_10_1134_S0040601524601062
PublicationCentury 2000
PublicationDate 20251000
2025-10-00
20251001
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 20251000
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: Heidelberg
PublicationTitle Thermal engineering
PublicationTitleAbbrev Therm. Eng
PublicationYear 2025
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References G. Fulmer (1721_CR5) 2024; 221
R. J. Moffat (1721_CR7) 1988; 1
S. Sakaoglu (1721_CR4) 2020; 142
J. L. Rutledge (1721_CR2) 2012; 134
C. Zhou (1721_CR3) 2012; 28
S. J. Kline (1721_CR6) 1953; 75
J. L. Rutledge (1721_CR1) 2010; 132
References_xml – volume: 134
  start-page: 7
  year: 2012
  ident: 1721_CR2
  publication-title: J. Eng. Gas Turbines Power
  doi: 10.1115/1.4005978
– volume: 28
  start-page: 900
  year: 2012
  ident: 1721_CR3
  publication-title: J. Propul. Power
  doi: 10.2514/1.B34299
– volume: 132
  start-page: 12
  year: 2010
  ident: 1721_CR1
  publication-title: J. Eng. Gas Turbines Power
  doi: 10.1115/1.4001810
– volume: 1
  start-page: 3
  year: 1988
  ident: 1721_CR7
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/0894-1777(88)90043-X
– volume: 142
  start-page: 2
  year: 2020
  ident: 1721_CR4
  publication-title: J. Turbomach.
  doi: 10.1115/1.4045466
– volume: 221
  start-page: 125043
  year: 2024
  ident: 1721_CR5
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2023.125043
– volume: 75
  start-page: 3
  year: 1953
  ident: 1721_CR6
  publication-title: Mech. Eng.
SSID ssj0044415
Score 2.3319314
Snippet Considered are NHFR or net heat flux reduction data in order to illustrate and quantify turbulent thermal convection phenomena within a unique and intricate...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 802
SubjectTerms Airfoils
Blade tips
Boundary layers
Combined-Cycle Power Plants and Their Auxiliary Equipment
Convection cooling
Cooling
Engineering
Engineering Thermodynamics
Free convection
Gas-Turbine
Heat and Mass Transfer
Heat flux
Heat transfer
Investigations
Ratios
Reynolds number
Static pressure
Steam-Turbine
Temperature
Thermal protection
Turbines
Velocity
Title Quantification of Cooled Film Thermal Protection Using Net Heat Flux Reduction within Transonic Environments
URI https://link.springer.com/article/10.1134/S0040601524601062
https://www.proquest.com/docview/3264011130
Volume 72
WOSCitedRecordID wos001598345500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1555-6301
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0044415
  issn: 0040-6015
  databaseCode: RSV
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbQ4AAH3ojBQDlwAlVK07Rpj2hatdM0ntqtSvOQJpUObR3i55OkrTZeBzjHjSrb9aO2PwNcqcQc6Eh61GfaowRzj4e2CUAmmnIZ5UxSt2yCjUbxZJKMmznuRdvt3pYknaWu945QO9NLLXhISKirDRq7uxlasBmboj88t-aX2gShbZWz5E0p88crPjujVYT5pSjqfE2696-33IfdJrREt7UuHMCGKg9hZw1w8AiKuyWvu4OcQNBMo_5sViiJ0mnxgozOGDtdoHEN3mApXEsBGqkKDY3VRmmxfEf3Fu7Vndq_uNMSOYdnMXbRYG1u7hie0sFjf-g1-xY8QRiuPE1EKMOIRxEOiIp9hbGOc0oIUz4TkWG1ND5P0Dg3eZAvJBec8TwI8oQnsWYsOIFOOSvVKaBQ5kIaOytDiWmgWZz7mJvYj8WaEJHQLly3jM9ea1iNzKUjAc2-sbALvVY0WfOFLTITdprU0DyAu3DTimJ1_OtlZ3-iPodtYhf-uu69HnSq-VJdwJZ4q6aL-aVTvA8DitDh
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kCurBt1itugdPSiDZbLLJUUpDxRqqVuktbPYBhZhIm4o_391NQuvroOeZLGFnMo_MzDcAXIhQEaTPLewQaWFkU4t6ugmAhxJT7qeEY7NsgsRxMB6Hw3qOe9Z0uzclSWOpq70jWM_0Yg0e4iFsaoPK7q5ivWVHp-iPz435xTpBaFrlNHtdyvzxiM_OaBFhfimKGl8Tbf_rLXfAVh1awutKF3bBisj3wOYS4OA-yO7ntOoOMgKBhYTdosgEh9Eke4FKZ5SdzuCwAm_QHKalAMaihH1ltWGUzd_hg4Z7NVT9F3eSQ-PwNMYu7C3NzR2Ap6g36vatet-CxRCxS0si5nHPp75vu0gEjrBtGaQYISIcwvyQuFz5PIaDVOVBDuOUUUJT101DGgaSEPcQtPIiF0cAejxlXNlZ7nEbu5IEqWNTFfuRQCLEQtwGl83FJ68VrEZi0hEXJ9-usA06jWiS-gubJSrsVKmhesBug6tGFAvyr4cd_4n7HKz3R3eDZHAT356ADaSX_5pOvg5oldO5OAVr7K2czKZnRgk_ANe408U
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6iIvrgXZxOzYNPSrFN06Z9lLkyUcqcF_ZW0lxgUNuxdeLPN0lbNm8P4vM5DaUnOZeeL98B4FyESiB9bmGHSAsjm1rU0yAAHkpMuZ8Sjs2wCRLHwXAY9us5p9MG7d60JKs7DZqlKS-vxlzWM0iwvt-LNZGIh7DpEyofvIJVIaMxXYPHl8YVY10sNLA5rV63NX9c4nNgmmebXxqkJu5EW_9-422wWaec8LraIztgSeS7YGOBiHAPZA8zWqGGjKFgIWGnKDLBYTTKXqHaS8p_Z7BfkTpoDQM1gLEoYU95cxhls3c40DSwRqr_7o5yaAKh5t6F3YX7dPvgOeo-dXpWPYfBYojYpSUR87jnU9-3XSQCR9i2DFKMEBEOYX5IXK5iIcNBquojh3HKKKGp66YhDQNJiHsAlvMiF4cAejxlXPlf7nEbu5IEqWNTlROSQCLEQtwCF40RknFFt5GYMsXFybdP2ALtxkxJffKmiUpHVcmoHrBb4LIxy1z862JHf9I-A2v9myi5v43vjsE60jOBDcCvDZbLyUycgFX2Vo6mk1OzHz8AGIncqQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantification+of+Cooled+Film+Thermal+Protection+Using+Net+Heat+Flux+Reduction+within+Transonic+Environments&rft.jtitle=Thermal+engineering&rft.au=Ligrani%2C+P&rft.au=Knox%2C+N&rft.date=2025-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0040-6015&rft.eissn=1555-6301&rft.volume=72&rft.issue=10&rft.spage=802&rft.epage=816&rft_id=info:doi/10.1134%2FS0040601524601062&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-6015&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-6015&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-6015&client=summon