Quantification of Cooled Film Thermal Protection Using Net Heat Flux Reduction within Transonic Environments
Considered are NHFR or net heat flux reduction data in order to illustrate and quantify turbulent thermal convection phenomena within a unique and intricate cooled film environment along the extremity end of a transonic turbine airfoil with a rim in the form of a squealer. Of particular focus are th...
Gespeichert in:
| Veröffentlicht in: | Thermal engineering Jg. 72; H. 10; S. 802 - 816 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Moscow
Pleiades Publishing
01.10.2025
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0040-6015, 1555-6301 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Considered are NHFR or net heat flux reduction data in order to illustrate and quantify turbulent thermal convection phenomena within a unique and intricate cooled film environment along the extremity end of a transonic turbine airfoil with a rim in the form of a squealer. Of particular focus are the consequences of modifying the magnitude of GAP (tip gap magnitude) which is adjacent to the outer end of the airfoil. Data are given for a variety of cooled film ratio of blowing conditions, as the coolant film is provided by two separate plenums that are connected to a row of holes which are located along the top segment of the concave surface of the blade, as well as to two dusting cooled film holes located on the end extremity of the blade. Line-averaged NHFR data show different dependence upon RoB
u
and RoB
d
ratios of blowing, depending upon the magnitude of GAP. Especially for the trailing edge portion of the squealer tip surface of the airfoil, NHFR data vary significantly with aft ratio of blowing RoB
d
for the 1.2 mm or smaller GAP arrangement, whereas very little variation with RoB
d
is present for the 2.0 mm or larger GAP environment. Here, GAP is the thickness of the flow gap at the blade tip. In addition, line-averaged NHFR data associated with the smaller GAP are often higher than values associated with the larger GAP, when compared for the same squealer surface airfoil tip locations, and at the same approximate RoB
u
and RoB
d
ratios of blowing. The flow and local static pressure variations within tip gap regions, which vary as the magnitude of GAP is changed, are less influential in regard to the data associated with the top portion of the concave surface of the two-dimensional airfoil. The impact of the present arrangements and configuration is new and unique NHFR results for different GAP values for complex boundary layer and separation flow environments, which are different from all other data which are available within the archival literature. |
|---|---|
| AbstractList | Considered are NHFR or net heat flux reduction data in order to illustrate and quantify turbulent thermal convection phenomena within a unique and intricate cooled film environment along the extremity end of a transonic turbine airfoil with a rim in the form of a squealer. Of particular focus are the consequences of modifying the magnitude of GAP (tip gap magnitude) which is adjacent to the outer end of the airfoil. Data are given for a variety of cooled film ratio of blowing conditions, as the coolant film is provided by two separate plenums that are connected to a row of holes which are located along the top segment of the concave surface of the blade, as well as to two dusting cooled film holes located on the end extremity of the blade. Line-averaged NHFR data show different dependence upon RoB
u
and RoB
d
ratios of blowing, depending upon the magnitude of GAP. Especially for the trailing edge portion of the squealer tip surface of the airfoil, NHFR data vary significantly with aft ratio of blowing RoB
d
for the 1.2 mm or smaller GAP arrangement, whereas very little variation with RoB
d
is present for the 2.0 mm or larger GAP environment. Here, GAP is the thickness of the flow gap at the blade tip. In addition, line-averaged NHFR data associated with the smaller GAP are often higher than values associated with the larger GAP, when compared for the same squealer surface airfoil tip locations, and at the same approximate RoB
u
and RoB
d
ratios of blowing. The flow and local static pressure variations within tip gap regions, which vary as the magnitude of GAP is changed, are less influential in regard to the data associated with the top portion of the concave surface of the two-dimensional airfoil. The impact of the present arrangements and configuration is new and unique NHFR results for different GAP values for complex boundary layer and separation flow environments, which are different from all other data which are available within the archival literature. Considered are NHFR or net heat flux reduction data in order to illustrate and quantify turbulent thermal convection phenomena within a unique and intricate cooled film environment along the extremity end of a transonic turbine airfoil with a rim in the form of a squealer. Of particular focus are the consequences of modifying the magnitude of GAP (tip gap magnitude) which is adjacent to the outer end of the airfoil. Data are given for a variety of cooled film ratio of blowing conditions, as the coolant film is provided by two separate plenums that are connected to a row of holes which are located along the top segment of the concave surface of the blade, as well as to two dusting cooled film holes located on the end extremity of the blade. Line-averaged NHFR data show different dependence upon RoBu and RoBd ratios of blowing, depending upon the magnitude of GAP. Especially for the trailing edge portion of the squealer tip surface of the airfoil, NHFR data vary significantly with aft ratio of blowing RoBd for the 1.2 mm or smaller GAP arrangement, whereas very little variation with RoBd is present for the 2.0 mm or larger GAP environment. Here, GAP is the thickness of the flow gap at the blade tip. In addition, line-averaged NHFR data associated with the smaller GAP are often higher than values associated with the larger GAP, when compared for the same squealer surface airfoil tip locations, and at the same approximate RoBu and RoBd ratios of blowing. The flow and local static pressure variations within tip gap regions, which vary as the magnitude of GAP is changed, are less influential in regard to the data associated with the top portion of the concave surface of the two-dimensional airfoil. The impact of the present arrangements and configuration is new and unique NHFR results for different GAP values for complex boundary layer and separation flow environments, which are different from all other data which are available within the archival literature. |
| Author | Ligrani, P. Knox, N. |
| Author_xml | – sequence: 1 givenname: P. surname: Ligrani fullname: Ligrani, P. email: pml0006@uah.edu organization: University of Alabama in Huntsville – sequence: 2 givenname: N. surname: Knox fullname: Knox, N. organization: University of Alabama in Huntsville |
| BookMark | eNp1kEtPwzAQhC0EEm3hB3CzxDngV5z0iKqWIlU823PkOJvWVWoX2-Hx70kJEgfEZVer-WZWmiE6ts4CQheUXFHKxfULIYJIQlMmukkkO0IDmqZpIjmhx2hwkJODfoqGIWy7UwiaDlDz1CobTW20isZZ7Go8ca6BCs9Ms8PLDfidavCjdxH0N7EKxq7xPUQ8BxXxrGk_8DNUba--m7gxFi-9ssFZo_HUvhnv7A5sDGfopFZNgPOfPUKr2XQ5mSeLh9u7yc0i0SwjMamZTqtUKikJZ5BTIKTOS8FYBjTTcpzxiguqRV6SXFJdKa0yVXJejtU4r7OMj9Bln7v37rWFEIuta73tXhacSUFoVxnpKNpT2rsQPNTF3pud8p8FJcWh1OJPqZ2H9Z7QsXYN_jf5f9MXPTV6ng |
| Cites_doi | 10.1115/1.4005978 10.2514/1.B34299 10.1115/1.4001810 10.1016/0894-1777(88)90043-X 10.1115/1.4045466 10.1016/j.ijheatmasstransfer.2023.125043 |
| ContentType | Journal Article |
| Copyright | Pleiades Publishing, Ltd. 2025 ISSN 0040-6015, Thermal Engineering, 2025, Vol. 72, No. 10, pp. 802–816. © Pleiades Publishing, Ltd., 2025.Russian Text © The Author(s), 2025, published in Teploenergetika. Pleiades Publishing, Ltd. 2025. |
| Copyright_xml | – notice: Pleiades Publishing, Ltd. 2025 ISSN 0040-6015, Thermal Engineering, 2025, Vol. 72, No. 10, pp. 802–816. © Pleiades Publishing, Ltd., 2025.Russian Text © The Author(s), 2025, published in Teploenergetika. – notice: Pleiades Publishing, Ltd. 2025. |
| DBID | AAYXX CITATION |
| DOI | 10.1134/S0040601524601062 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1555-6301 |
| EndPage | 816 |
| ExternalDocumentID | 10_1134_S0040601524601062 |
| GroupedDBID | -Y2 .VR 06D 0R~ 0VY 123 1N0 29Q 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 408 40D 40E 5VS 6NX 6TJ 78A 8WZ 95- 95. 95~ 96X A6W AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABAKF ABBBX ABDBE ABDZT ABECU ABEFU ABFSG ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBEA ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKIV ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFGCZ AFHIU AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGQPQ AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AZFZN B-. BA0 BDATZ BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 H13 HF~ HG6 HLICF HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y M7S MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J P9P PF0 PHGZM PHGZT PQGLB PT4 PTHSS QOS R89 R9I ROL RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TUC UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR ZMTXR ~A9 AAYXX AFFHD AFKRA ARAPS BENPR CITATION HCIFZ |
| ID | FETCH-LOGICAL-c270t-f2c5d56a66032e81e00f8b4227e17c6973d341c48b0861cdaca7ab33b9a98f773 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001598345500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0040-6015 |
| IngestDate | Sat Oct 25 08:21:59 EDT 2025 Sat Nov 29 07:04:40 EST 2025 Sat Oct 25 07:00:43 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | blowing ratio tip gap net heat flux reduction transonic flow cooled film squealer turbine airfoil |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c270t-f2c5d56a66032e81e00f8b4227e17c6973d341c48b0861cdaca7ab33b9a98f773 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3264011130 |
| PQPubID | 2043668 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_3264011130 crossref_primary_10_1134_S0040601524601062 springer_journals_10_1134_S0040601524601062 |
| PublicationCentury | 2000 |
| PublicationDate | 20251000 2025-10-00 20251001 |
| PublicationDateYYYYMMDD | 2025-10-01 |
| PublicationDate_xml | – month: 10 year: 2025 text: 20251000 |
| PublicationDecade | 2020 |
| PublicationPlace | Moscow |
| PublicationPlace_xml | – name: Moscow – name: Heidelberg |
| PublicationTitle | Thermal engineering |
| PublicationTitleAbbrev | Therm. Eng |
| PublicationYear | 2025 |
| Publisher | Pleiades Publishing Springer Nature B.V |
| Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
| References | G. Fulmer (1721_CR5) 2024; 221 R. J. Moffat (1721_CR7) 1988; 1 S. Sakaoglu (1721_CR4) 2020; 142 J. L. Rutledge (1721_CR2) 2012; 134 C. Zhou (1721_CR3) 2012; 28 S. J. Kline (1721_CR6) 1953; 75 J. L. Rutledge (1721_CR1) 2010; 132 |
| References_xml | – volume: 134 start-page: 7 year: 2012 ident: 1721_CR2 publication-title: J. Eng. Gas Turbines Power doi: 10.1115/1.4005978 – volume: 28 start-page: 900 year: 2012 ident: 1721_CR3 publication-title: J. Propul. Power doi: 10.2514/1.B34299 – volume: 132 start-page: 12 year: 2010 ident: 1721_CR1 publication-title: J. Eng. Gas Turbines Power doi: 10.1115/1.4001810 – volume: 1 start-page: 3 year: 1988 ident: 1721_CR7 publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/0894-1777(88)90043-X – volume: 142 start-page: 2 year: 2020 ident: 1721_CR4 publication-title: J. Turbomach. doi: 10.1115/1.4045466 – volume: 221 start-page: 125043 year: 2024 ident: 1721_CR5 publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2023.125043 – volume: 75 start-page: 3 year: 1953 ident: 1721_CR6 publication-title: Mech. Eng. |
| SSID | ssj0044415 |
| Score | 2.3319314 |
| Snippet | Considered are NHFR or net heat flux reduction data in order to illustrate and quantify turbulent thermal convection phenomena within a unique and intricate... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 802 |
| SubjectTerms | Airfoils Blade tips Boundary layers Combined-Cycle Power Plants and Their Auxiliary Equipment Convection cooling Cooling Engineering Engineering Thermodynamics Free convection Gas-Turbine Heat and Mass Transfer Heat flux Heat transfer Investigations Ratios Reynolds number Static pressure Steam-Turbine Temperature Thermal protection Turbines Velocity |
| Title | Quantification of Cooled Film Thermal Protection Using Net Heat Flux Reduction within Transonic Environments |
| URI | https://link.springer.com/article/10.1134/S0040601524601062 https://www.proquest.com/docview/3264011130 |
| Volume | 72 |
| WOSCitedRecordID | wos001598345500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1555-6301 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0044415 issn: 0040-6015 databaseCode: RSV dateStart: 20060101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbQ4AAH3ojBQDlwAlVK07Rpj2hatdM0ntqtSvOQJpUObR3i55OkrTZeBzjHjSrb9aO2PwNcqcQc6Eh61GfaowRzj4e2CUAmmnIZ5UxSt2yCjUbxZJKMmznuRdvt3pYknaWu945QO9NLLXhISKirDRq7uxlasBmboj88t-aX2gShbZWz5E0p88crPjujVYT5pSjqfE2696-33IfdJrREt7UuHMCGKg9hZw1w8AiKuyWvu4OcQNBMo_5sViiJ0mnxgozOGDtdoHEN3mApXEsBGqkKDY3VRmmxfEf3Fu7Vndq_uNMSOYdnMXbRYG1u7hie0sFjf-g1-xY8QRiuPE1EKMOIRxEOiIp9hbGOc0oIUz4TkWG1ND5P0Dg3eZAvJBec8TwI8oQnsWYsOIFOOSvVKaBQ5kIaOytDiWmgWZz7mJvYj8WaEJHQLly3jM9ea1iNzKUjAc2-sbALvVY0WfOFLTITdprU0DyAu3DTimJ1_OtlZ3-iPodtYhf-uu69HnSq-VJdwJZ4q6aL-aVTvA8DitDh |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kCurBt1itugdPSiDZbLLJUUpDxRqqVuktbPYBhZhIm4o_391NQuvroOeZLGFnMo_MzDcAXIhQEaTPLewQaWFkU4t6ugmAhxJT7qeEY7NsgsRxMB6Hw3qOe9Z0uzclSWOpq70jWM_0Yg0e4iFsaoPK7q5ivWVHp-iPz435xTpBaFrlNHtdyvzxiM_OaBFhfimKGl8Tbf_rLXfAVh1awutKF3bBisj3wOYS4OA-yO7ntOoOMgKBhYTdosgEh9Eke4FKZ5SdzuCwAm_QHKalAMaihH1ltWGUzd_hg4Z7NVT9F3eSQ-PwNMYu7C3NzR2Ap6g36vatet-CxRCxS0si5nHPp75vu0gEjrBtGaQYISIcwvyQuFz5PIaDVOVBDuOUUUJT101DGgaSEPcQtPIiF0cAejxlXNlZ7nEbu5IEqWNTFfuRQCLEQtwGl83FJ68VrEZi0hEXJ9-usA06jWiS-gubJSrsVKmhesBug6tGFAvyr4cd_4n7HKz3R3eDZHAT356ADaSX_5pOvg5oldO5OAVr7K2czKZnRgk_ANe408U |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6iIvrgXZxOzYNPSrFN06Z9lLkyUcqcF_ZW0lxgUNuxdeLPN0lbNm8P4vM5DaUnOZeeL98B4FyESiB9bmGHSAsjm1rU0yAAHkpMuZ8Sjs2wCRLHwXAY9us5p9MG7d60JKs7DZqlKS-vxlzWM0iwvt-LNZGIh7DpEyofvIJVIaMxXYPHl8YVY10sNLA5rV63NX9c4nNgmmebXxqkJu5EW_9-422wWaec8LraIztgSeS7YGOBiHAPZA8zWqGGjKFgIWGnKDLBYTTKXqHaS8p_Z7BfkTpoDQM1gLEoYU95cxhls3c40DSwRqr_7o5yaAKh5t6F3YX7dPvgOeo-dXpWPYfBYojYpSUR87jnU9-3XSQCR9i2DFKMEBEOYX5IXK5iIcNBquojh3HKKKGp66YhDQNJiHsAlvMiF4cAejxlXPlf7nEbu5IEqWNTlROSQCLEQtwCF40RknFFt5GYMsXFybdP2ALtxkxJffKmiUpHVcmoHrBb4LIxy1z862JHf9I-A2v9myi5v43vjsE60jOBDcCvDZbLyUycgFX2Vo6mk1OzHz8AGIncqQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantification+of+Cooled+Film+Thermal+Protection+Using+Net+Heat+Flux+Reduction+within+Transonic+Environments&rft.jtitle=Thermal+engineering&rft.au=Ligrani%2C+P&rft.au=Knox%2C+N&rft.date=2025-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0040-6015&rft.eissn=1555-6301&rft.volume=72&rft.issue=10&rft.spage=802&rft.epage=816&rft_id=info:doi/10.1134%2FS0040601524601062&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-6015&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-6015&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-6015&client=summon |