Four-Operator Splitting via a Forward–Backward–Half-Forward Algorithm with Line Search
In this article, we provide a splitting method for solving monotone inclusions in a real Hilbert space involving four operators: a maximally monotone, a monotone-Lipschitzian, a cocoercive, and a monotone-continuous operator. The proposed method takes advantage of the intrinsic properties of each op...
Uloženo v:
| Vydáno v: | Journal of optimization theory and applications Ročník 195; číslo 1; s. 205 - 225 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.10.2022
Springer Nature B.V |
| Témata: | |
| ISSN: | 0022-3239, 1573-2878 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this article, we provide a splitting method for solving monotone inclusions in a real Hilbert space involving four operators: a maximally monotone, a monotone-Lipschitzian, a cocoercive, and a monotone-continuous operator. The proposed method takes advantage of the intrinsic properties of each operator, generalizing the forward–backward–half-forward splitting and the Tseng’s algorithm with line search. At each iteration, our algorithm defines the step size by using a line search in which the monotone-Lipschitzian and the cocoercive operators need only one activation. We also derive a method for solving nonlinearly constrained composite convex optimization problems in real Hilbert spaces. Finally, we implement our algorithm in a nonlinearly constrained least-square problem and we compare its performance with available methods in the literature. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0022-3239 1573-2878 |
| DOI: | 10.1007/s10957-022-02074-3 |