Four-Operator Splitting via a Forward–Backward–Half-Forward Algorithm with Line Search
In this article, we provide a splitting method for solving monotone inclusions in a real Hilbert space involving four operators: a maximally monotone, a monotone-Lipschitzian, a cocoercive, and a monotone-continuous operator. The proposed method takes advantage of the intrinsic properties of each op...
Uložené v:
| Vydané v: | Journal of optimization theory and applications Ročník 195; číslo 1; s. 205 - 225 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.10.2022
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0022-3239, 1573-2878 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this article, we provide a splitting method for solving monotone inclusions in a real Hilbert space involving four operators: a maximally monotone, a monotone-Lipschitzian, a cocoercive, and a monotone-continuous operator. The proposed method takes advantage of the intrinsic properties of each operator, generalizing the forward–backward–half-forward splitting and the Tseng’s algorithm with line search. At each iteration, our algorithm defines the step size by using a line search in which the monotone-Lipschitzian and the cocoercive operators need only one activation. We also derive a method for solving nonlinearly constrained composite convex optimization problems in real Hilbert spaces. Finally, we implement our algorithm in a nonlinearly constrained least-square problem and we compare its performance with available methods in the literature. |
|---|---|
| AbstractList | In this article, we provide a splitting method for solving monotone inclusions in a real Hilbert space involving four operators: a maximally monotone, a monotone-Lipschitzian, a cocoercive, and a monotone-continuous operator. The proposed method takes advantage of the intrinsic properties of each operator, generalizing the forward–backward–half-forward splitting and the Tseng’s algorithm with line search. At each iteration, our algorithm defines the step size by using a line search in which the monotone-Lipschitzian and the cocoercive operators need only one activation. We also derive a method for solving nonlinearly constrained composite convex optimization problems in real Hilbert spaces. Finally, we implement our algorithm in a nonlinearly constrained least-square problem and we compare its performance with available methods in the literature. |
| Author | Roldán, Fernando Briceño-Arias, Luis M. |
| Author_xml | – sequence: 1 givenname: Luis M. surname: Briceño-Arias fullname: Briceño-Arias, Luis M. organization: Universidad Técnica Federico Santa María – sequence: 2 givenname: Fernando orcidid: 0000-0001-6768-9015 surname: Roldán fullname: Roldán, Fernando email: fernando.roldan@usm.cl organization: Universidad Técnica Federico Santa María |
| BookMark | eNp9UM1OAjEQbgwmAvoCnpp4rk5b1tkekYiYkHBAL16a0u3C4rK7tovEm-_gG_okFiHx5mF-ku9nMl-PdKq6coRccrjmAHgTOKgEGQgRC3DA5Anp8gQlEymmHdKFPSSFVGekF8IaAFSKgy55Gddbz2aN86atPZ03ZdG2RbWk74Whho5rvzM--_78ujP29bhOTJmzI0KH5bL2Rbva0F3sdFpUjs6d8XZ1Tk5zUwZ3cZx98jy-fxpN2HT28DgaTpkVCC3LBZcJLlIJqHLIZGKVzc0tIkLqlDMcM5XIBVjMhJLCiWyBPB0Ya5I8S4SUfXJ18G18_bZ1odXr-FMVT2oRmZhIEQ36RBxY1tcheJfrxhcb4z80B73PUB8y1DEo_Zuh3lvLgyhEcrV0_s_6H9UPvWp3pA |
| Cites_doi | 10.1007/s00245-019-09597-8 10.1090/S0002-9904-1964-11178-2 10.1090/pspum/018.1/0285942 10.1137/18M1207260 10.1137/120901106 10.1137/0716071 10.1007/s10957-015-0703-2 10.1080/02331934.2012.733883 10.1007/s11228-020-00542-4 10.1007/BF01448388 10.1007/s11590-019-01509-7 10.1016/j.amc.2015.01.017 10.1007/s10444-011-9254-8 10.1287/moor.2021.1161 10.1007/s10898-020-00940-w 10.1016/S1570-579X(01)80010-0 10.1137/10081602X 10.1007/s10957-019-01601-z 10.1137/S0363012998338806 10.1016/S0168-2024(08)70034-1 10.1007/978-1-4614-7621-4_9 10.1007/978-3-319-48311-5 10.1007/s10444-018-9619-3 10.1016/j.amc.2020.125248 10.1007/s10013-015-0121-7 10.1137/120872802 10.1080/02331934.2013.855210 10.1007/s10957-017-1074-7 10.1137/16M1073741 10.1007/s10107-016-1044-0 10.1007/978-0-8176-4848-0 10.1137/17M1120099 10.1090/surv/049 10.1007/s11228-017-0421-z 10.1007/s10589-020-00238-3 10.1007/s11228-011-0191-y 10.1007/s11075-015-0007-5 10.1137/12088255X |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7WY 7WZ 7XB 87Z 88I 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FR3 FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- KR7 L.- L6V L7M L~C L~D M0C M2O M2P M7S MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PTHSS Q9U |
| DOI | 10.1007/s10957-022-02074-3 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One Community College ProQuest Central Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep (ProQuest) SciTech Premium ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global (OCUL) Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1573-2878 |
| EndPage | 225 |
| ExternalDocumentID | 10_1007_s10957_022_02074_3 |
| GrantInformation_xml | – fundername: Beca Doctorado Nacional (ANID-Chile) grantid: 2018-21181024 – fundername: FONDECYT (ANID-Chile) grantid: 1190871 |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 88I 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M2O M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM OVD P19 P2P P62 P9R PF0 PKN PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS TWZ U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 VOH W23 W48 WH7 WK8 YLTOR YQT Z45 Z7R Z7S Z7U Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8U Z8W Z92 ZCG ZMTXR ZWQNP ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADXHL AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7TB 7XB 8FD 8FK FR3 JQ2 KR7 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c270t-f21357b83079f0d35c9cfa677708e9ea17d953b0c7d2932e2db7184aca5fd5233 |
| IEDL.DBID | 7WY |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000852104500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-3239 |
| IngestDate | Wed Nov 05 01:34:08 EST 2025 Sat Nov 29 06:02:32 EST 2025 Fri Feb 21 02:44:36 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Lipschitzian operator 47H10 65K15 65K05 Convex optimization Monotone operator theory Splitting algorithms 90C25 49M29 Cocoercive operator 47H05 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c270t-f21357b83079f0d35c9cfa677708e9ea17d953b0c7d2932e2db7184aca5fd5233 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6768-9015 |
| PQID | 2718753295 |
| PQPubID | 48247 |
| PageCount | 21 |
| ParticipantIDs | proquest_journals_2718753295 crossref_primary_10_1007_s10957_022_02074_3 springer_journals_10_1007_s10957_022_02074_3 |
| PublicationCentury | 2000 |
| PublicationDate | 20221000 2022-10-00 20221001 |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: 20221000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Journal of optimization theory and applications |
| PublicationTitleAbbrev | J Optim Theory Appl |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA. https://doi.org/10.1007/978-0-8176-4848-0 (2009) Boţ, R.I., Csetnek, E., Heinrich, A.: A primal-dual splitting algorithm for finding zeros of sums of maximal monotone operators. SIAM J. Optim. 23, 2011–2036 (2013). https://doi.org/10.1137/12088255X Johnstone, P.R., Eckstein, J.: Single-forward-step projective splitting: exploiting cocoercivity. Comput. Optim. Appl. 78, 125–166 (2021). https://doi.org/10.1007/s10589-020-00238-3 Briceño-AriasLMForward-Douglas-Rachford splitting and forward-partial inverse method for solving monotone inclusionsOptimization20156412391261331680010.1080/02331934.2013.8552101310.47084 SalzoSThe variable metric forward-backward splitting algorithm under mild differentiability assumptionsSIAM J. Optim.20172721532181370789910.1137/16M10737411375.65085 Bùi, M.N., Combettes, P.L.: Multivariate monotone inclusions in saddle form. Math. Operat. Res. 47, 1082–1109 (2021). https://doi.org/10.1287/moor.2021.1161 Combettes, P.L., Pesquet, J.C.: Primal-dual splitting algorithm for solving inclusions with mixtures of composite, lipschitzian, and parallel-sum type monotone operators. Set-Valued Var. Anal. 20, 307–330 (2012). https://doi.org/10.1007/s11228-011-0191-y CombettesPLVũBCvariable metric forward-backward splitting with applications to monotone inclusions in dualityOptimization20146312891318322584510.1080/02331934.2012.7338831309.90109 CevherVVũBCA reflected forward-backward splitting method for monotone inclusions involving lipschitzian operatorsSet-Valued Var. Anal.202129163174421601010.1007/s11228-020-00542-41481.47082 Showalter, R.E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. Mathematical surveys and monographs 49. Amer. Math. Soc. Providence, RI. (1997) https://doi.org/10.1090/surv/049 GlowinskiRMarroccoASur l’approximation, Par Éléments Finis d’ordre un, et la Résolution, par Pénalisation-dualité, d’une Classe de Problèmes de Dirichlet non Linéaires. Rev. Française Automat. InformatRecherche Opérationnelle Sér. Rouge Anal Numér197594176 RaguetHFadiliJPeyréGA generalized forward-backward splittingSIAM J. Imag. Sci.2013611991226307335110.1137/1208728021296.47109 TsengPA modified forward-backward splitting method for maximal monotone mappingsSIAM J. Control Optim.200038431446174114710.1137/S03630129983388060997.90062 Boţ, R.I., Csetnek, E.R.: ADMM for monotone operators: convergence analysis and rates. Adv. Comput. Math. 45, 327–359 (2019). https://doi.org/10.1007/s10444-018-9619-3 Combettes, P.L.: Quasi-Fejérian Analysis of Some Optimization Algorithms. In: Butnariu D, Censor Y, Reich S (eds) Inherently parallel algorithms in feasibility and optimization and their applications. Stud Comput Math 8. North-Holland, Amsterdam, 115–152. (2001) https://doi.org/10.1016/S1570-579X(01)80010-0 Rieger, J., Tam, M.K.: Backward-forward-reflected-backward splitting for three operator monotone inclusions. Appl. Math. Comput. 381, 125248 2020).https://doi.org/10.1016/j.amc.2020.125248 Rockafellar, R.T.: Monotone operators associated with saddle-functions and minimax problems. In: Browder F E (ed) Nonlinear Functional Analysis (Proc. Sympos. Pure Math., Vol. XVIII, Part 1, Chicago, Ill., 1968). Amer Math Soc. Providence, R.I., 241–250 (1970) Boţ, R.I., Csetnek, E.R., Hendrich, C.: Inertial Douglas-Rachford splitting for monotone inclusion problems. Appl. Math. Comput. 256, 472–487 (2015). https://doi.org/10.1016/j.amc.2015.01.017 Johnstone, P.R., Eckstein, J.: Projective splitting with forward steps only requires continuity. Optim. Lett. 14, 229–247 (2020). https://doi.org/10.1007/s11590-019-01509-7 Boţ, R.I., Csetnek, E.R.: An inertial forward-backward-forward primal-dual splitting algorithm for solving monotone inclusion problems. Numer. Algorithms 71, 519–540 (2016). https://doi.org/10.1007/s11075-015-0007-5 Csetnek, E., Malitsky, Y., Tam M.: Shadow Douglas-Rachford splitting for monotone inclusions. Appl. Math. Optim. 80, 665–678 (2019). https://doi.org/10.1007/s00245-019-09597-8 BauschkeHHCombettesPLConvex Analysis and Monotone Operator Theory in Hilbert Spaces2007New YorkSpringer10.1007/978-3-319-48311-51359.26003 Briceño-Arias, L.M., Combettes, P.L.: A monotone + skew splitting model for composite monotone inclusions in duality. SIAM J. Optim. 21, 1230–1250 (2011). https://doi.org/10.1137/10081602X RyuEKVũBCFinding the forward-Douglas-Rachford-forward methodJ. Optim. Theory Appl.2020184858876406167210.1007/s10957-019-01601-z07174655 Lions, P., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979). https://doi.org/10.1137/0716071 DongYWeak convergence of an extended splitting method for monotone inclusionsJ. Global. Optim.202179257277419839710.1007/s10898-020-00940-w1466.49012 Boţ, R.I., Hendrich, C.: A Douglas-Rachford type primal-dual method for solving inclusions with mixtures of composite and parallel-sum type monotone operators. SIAM J. Optim. 23, 2541–2565 (2013). https://doi.org/10.1137/120901106 Briceño-AriasLMForward-partial inverse-forward splitting for solving monotone inclusionsJ. Optim. Theory Appl.2015166391413337138110.1007/s10957-015-0703-21321.47136 Combettes, P.L., Eckstein, J.: Asynchronous block-iterative primal-dual decomposition methods for monotone inclusions. Math. Program. 168, 645–672 (2018). https://doi.org/10.1007/s10107-016-1044-0 Briceño-Arias, L.M., Davis, D.: Forward-backward-half forward algorithm for solving monotone inclusions. SIAM J. Optim. 28, 2839–2871 (2018). https://doi.org/10.1137/17M1120099 DũngDVũ B.C.: A splitting algorithm for system of composite monotone inclusionsVietnam J. Math.201543323341334981910.1007/s10013-015-0121-71316.47052 GoldsteinAAConvex programming in Hilbert spaceBull. Amer. Math. Soc.19647070971016598210.1090/S0002-9904-1964-11178-20142.17101 Davis, D., Yin, W.: A three-operator scheme and its optimization applications. Set-Valued Var. Anal. 25, 829–858 (2017). https://doi.org/10.1007/s11228-017-0421-z SpingarnJEPartial inverse of a monotone operatorAppl. Math. Optim.19831024726572248910.1007/BF014483880524.90072 VũBCA splitting algorithm for dual monotone inclusions involving cocoercive operatorsAdv. Comput. Math.201338667681303703410.1007/s10444-011-9254-81284.47045 Briceño-Arias, L.M., Combettes, P.L.: Monotone Operator Methods for Nash Equilibria in Non-Potential Games. In: Bailey D H, Bauschke H H, Borwein P, Garvan F, Théra M, Vanderwerff J, Wolkowicz H (eds) Computational and Analytical Mathematics. Springer Proceedings in Mathematics & Statistics 50. Springer, New York, NY, 143–159. https://doi.org/10.1007/978-1-4614-7621-4_9 (2013) Gabay, D.: Chapter IX Applications of the method of multipliers to variational inequalities. In: Fortin M, Glowinski R (eds.) Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems. Studies in Mathematics and Its Applications, 15. Elsevier, 299–331. (1983) https://doi.org/10.1016/S0168-2024(08)70034-1 Malitsky, Y., Tam, M.K.: A forward-backward splitting method for monotone inclusions without cocoercivity. SIAM J. Optim. 30, 1451–1472 (2020). https://doi.org/10.1137/18M1207260 EcksteinJA simplified form of block-iterative operator splitting and an asynchronous algorithm resembling the multi-block alternating direction method of multipliersJ. Optim. Theory Appl.2017173155182362664210.1007/s10957-017-1074-706768800 BC Vũ (2074_CR39) 2013; 38 AA Goldstein (2074_CR26) 1964; 70 H Raguet (2074_CR31) 2013; 6 2074_CR4 2074_CR3 LM Briceño-Arias (2074_CR9) 2015; 166 2074_CR6 2074_CR5 2074_CR7 2074_CR11 2074_CR33 2074_CR10 2074_CR32 2074_CR30 2074_CR15 V Cevher (2074_CR14) 2021; 29 2074_CR36 P Tseng (2074_CR38) 2000; 38 2074_CR13 2074_CR12 2074_CR19 2074_CR17 LM Briceño-Arias (2074_CR8) 2015; 64 2074_CR16 HH Bauschke (2074_CR2) 2007 EK Ryu (2074_CR34) 2020; 184 J Eckstein (2074_CR23) 2017; 173 PL Combettes (2074_CR18) 2014; 63 D Dũng (2074_CR22) 2015; 43 JE Spingarn (2074_CR37) 1983; 10 R Glowinski (2074_CR25) 1975; 9 2074_CR20 S Salzo (2074_CR35) 2017; 27 2074_CR24 2074_CR1 2074_CR29 2074_CR28 Y Dong (2074_CR21) 2021; 79 2074_CR27 |
| References_xml | – reference: Bùi, M.N., Combettes, P.L.: Multivariate monotone inclusions in saddle form. Math. Operat. Res. 47, 1082–1109 (2021). https://doi.org/10.1287/moor.2021.1161 – reference: Combettes, P.L., Pesquet, J.C.: Primal-dual splitting algorithm for solving inclusions with mixtures of composite, lipschitzian, and parallel-sum type monotone operators. Set-Valued Var. Anal. 20, 307–330 (2012). https://doi.org/10.1007/s11228-011-0191-y – reference: Gabay, D.: Chapter IX Applications of the method of multipliers to variational inequalities. In: Fortin M, Glowinski R (eds.) Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems. Studies in Mathematics and Its Applications, 15. Elsevier, 299–331. (1983) https://doi.org/10.1016/S0168-2024(08)70034-1 – reference: Briceño-AriasLMForward-partial inverse-forward splitting for solving monotone inclusionsJ. Optim. Theory Appl.2015166391413337138110.1007/s10957-015-0703-21321.47136 – reference: Boţ, R.I., Csetnek, E.R., Hendrich, C.: Inertial Douglas-Rachford splitting for monotone inclusion problems. Appl. Math. Comput. 256, 472–487 (2015). https://doi.org/10.1016/j.amc.2015.01.017 – reference: GlowinskiRMarroccoASur l’approximation, Par Éléments Finis d’ordre un, et la Résolution, par Pénalisation-dualité, d’une Classe de Problèmes de Dirichlet non Linéaires. Rev. Française Automat. InformatRecherche Opérationnelle Sér. Rouge Anal Numér197594176 – reference: SalzoSThe variable metric forward-backward splitting algorithm under mild differentiability assumptionsSIAM J. Optim.20172721532181370789910.1137/16M10737411375.65085 – reference: Briceño-Arias, L.M., Combettes, P.L.: A monotone + skew splitting model for composite monotone inclusions in duality. SIAM J. Optim. 21, 1230–1250 (2011). https://doi.org/10.1137/10081602X – reference: Combettes, P.L.: Quasi-Fejérian Analysis of Some Optimization Algorithms. In: Butnariu D, Censor Y, Reich S (eds) Inherently parallel algorithms in feasibility and optimization and their applications. Stud Comput Math 8. North-Holland, Amsterdam, 115–152. (2001) https://doi.org/10.1016/S1570-579X(01)80010-0 – reference: Rieger, J., Tam, M.K.: Backward-forward-reflected-backward splitting for three operator monotone inclusions. Appl. Math. Comput. 381, 125248 2020).https://doi.org/10.1016/j.amc.2020.125248 – reference: Malitsky, Y., Tam, M.K.: A forward-backward splitting method for monotone inclusions without cocoercivity. SIAM J. Optim. 30, 1451–1472 (2020). https://doi.org/10.1137/18M1207260 – reference: DũngDVũ B.C.: A splitting algorithm for system of composite monotone inclusionsVietnam J. Math.201543323341334981910.1007/s10013-015-0121-71316.47052 – reference: RaguetHFadiliJPeyréGA generalized forward-backward splittingSIAM J. Imag. Sci.2013611991226307335110.1137/1208728021296.47109 – reference: Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA. https://doi.org/10.1007/978-0-8176-4848-0 (2009) – reference: Johnstone, P.R., Eckstein, J.: Projective splitting with forward steps only requires continuity. Optim. Lett. 14, 229–247 (2020). https://doi.org/10.1007/s11590-019-01509-7 – reference: TsengPA modified forward-backward splitting method for maximal monotone mappingsSIAM J. Control Optim.200038431446174114710.1137/S03630129983388060997.90062 – reference: Johnstone, P.R., Eckstein, J.: Single-forward-step projective splitting: exploiting cocoercivity. Comput. Optim. Appl. 78, 125–166 (2021). https://doi.org/10.1007/s10589-020-00238-3 – reference: Briceño-Arias, L.M., Combettes, P.L.: Monotone Operator Methods for Nash Equilibria in Non-Potential Games. In: Bailey D H, Bauschke H H, Borwein P, Garvan F, Théra M, Vanderwerff J, Wolkowicz H (eds) Computational and Analytical Mathematics. Springer Proceedings in Mathematics & Statistics 50. Springer, New York, NY, 143–159. https://doi.org/10.1007/978-1-4614-7621-4_9 (2013) – reference: Boţ, R.I., Hendrich, C.: A Douglas-Rachford type primal-dual method for solving inclusions with mixtures of composite and parallel-sum type monotone operators. SIAM J. Optim. 23, 2541–2565 (2013). https://doi.org/10.1137/120901106 – reference: Combettes, P.L., Eckstein, J.: Asynchronous block-iterative primal-dual decomposition methods for monotone inclusions. Math. Program. 168, 645–672 (2018). https://doi.org/10.1007/s10107-016-1044-0 – reference: Boţ, R.I., Csetnek, E.R.: An inertial forward-backward-forward primal-dual splitting algorithm for solving monotone inclusion problems. Numer. Algorithms 71, 519–540 (2016). https://doi.org/10.1007/s11075-015-0007-5 – reference: Lions, P., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979). https://doi.org/10.1137/0716071 – reference: Rockafellar, R.T.: Monotone operators associated with saddle-functions and minimax problems. In: Browder F E (ed) Nonlinear Functional Analysis (Proc. Sympos. Pure Math., Vol. XVIII, Part 1, Chicago, Ill., 1968). Amer Math Soc. Providence, R.I., 241–250 (1970) – reference: Csetnek, E., Malitsky, Y., Tam M.: Shadow Douglas-Rachford splitting for monotone inclusions. Appl. Math. Optim. 80, 665–678 (2019). https://doi.org/10.1007/s00245-019-09597-8 – reference: CevherVVũBCA reflected forward-backward splitting method for monotone inclusions involving lipschitzian operatorsSet-Valued Var. Anal.202129163174421601010.1007/s11228-020-00542-41481.47082 – reference: Showalter, R.E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. Mathematical surveys and monographs 49. Amer. Math. Soc. Providence, RI. (1997) https://doi.org/10.1090/surv/049 – reference: GoldsteinAAConvex programming in Hilbert spaceBull. Amer. Math. Soc.19647070971016598210.1090/S0002-9904-1964-11178-20142.17101 – reference: SpingarnJEPartial inverse of a monotone operatorAppl. Math. Optim.19831024726572248910.1007/BF014483880524.90072 – reference: CombettesPLVũBCvariable metric forward-backward splitting with applications to monotone inclusions in dualityOptimization20146312891318322584510.1080/02331934.2012.7338831309.90109 – reference: BauschkeHHCombettesPLConvex Analysis and Monotone Operator Theory in Hilbert Spaces2007New YorkSpringer10.1007/978-3-319-48311-51359.26003 – reference: Boţ, R.I., Csetnek, E.R.: ADMM for monotone operators: convergence analysis and rates. Adv. Comput. Math. 45, 327–359 (2019). https://doi.org/10.1007/s10444-018-9619-3 – reference: Briceño-AriasLMForward-Douglas-Rachford splitting and forward-partial inverse method for solving monotone inclusionsOptimization20156412391261331680010.1080/02331934.2013.8552101310.47084 – reference: RyuEKVũBCFinding the forward-Douglas-Rachford-forward methodJ. Optim. Theory Appl.2020184858876406167210.1007/s10957-019-01601-z07174655 – reference: Briceño-Arias, L.M., Davis, D.: Forward-backward-half forward algorithm for solving monotone inclusions. SIAM J. Optim. 28, 2839–2871 (2018). https://doi.org/10.1137/17M1120099 – reference: VũBCA splitting algorithm for dual monotone inclusions involving cocoercive operatorsAdv. Comput. Math.201338667681303703410.1007/s10444-011-9254-81284.47045 – reference: EcksteinJA simplified form of block-iterative operator splitting and an asynchronous algorithm resembling the multi-block alternating direction method of multipliersJ. Optim. Theory Appl.2017173155182362664210.1007/s10957-017-1074-706768800 – reference: Boţ, R.I., Csetnek, E., Heinrich, A.: A primal-dual splitting algorithm for finding zeros of sums of maximal monotone operators. SIAM J. Optim. 23, 2011–2036 (2013). https://doi.org/10.1137/12088255X – reference: DongYWeak convergence of an extended splitting method for monotone inclusionsJ. Global. Optim.202179257277419839710.1007/s10898-020-00940-w1466.49012 – reference: Davis, D., Yin, W.: A three-operator scheme and its optimization applications. Set-Valued Var. Anal. 25, 829–858 (2017). https://doi.org/10.1007/s11228-017-0421-z – ident: 2074_CR19 doi: 10.1007/s00245-019-09597-8 – volume: 70 start-page: 709 year: 1964 ident: 2074_CR26 publication-title: Bull. Amer. Math. Soc. doi: 10.1090/S0002-9904-1964-11178-2 – ident: 2074_CR33 doi: 10.1090/pspum/018.1/0285942 – ident: 2074_CR30 doi: 10.1137/18M1207260 – ident: 2074_CR7 doi: 10.1137/120901106 – ident: 2074_CR29 doi: 10.1137/0716071 – volume: 166 start-page: 391 year: 2015 ident: 2074_CR9 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-015-0703-2 – volume: 63 start-page: 1289 year: 2014 ident: 2074_CR18 publication-title: Optimization doi: 10.1080/02331934.2012.733883 – volume: 29 start-page: 163 year: 2021 ident: 2074_CR14 publication-title: Set-Valued Var. Anal. doi: 10.1007/s11228-020-00542-4 – volume: 10 start-page: 247 year: 1983 ident: 2074_CR37 publication-title: Appl. Math. Optim. doi: 10.1007/BF01448388 – ident: 2074_CR27 doi: 10.1007/s11590-019-01509-7 – ident: 2074_CR6 doi: 10.1016/j.amc.2015.01.017 – volume: 38 start-page: 667 year: 2013 ident: 2074_CR39 publication-title: Adv. Comput. Math. doi: 10.1007/s10444-011-9254-8 – ident: 2074_CR13 doi: 10.1287/moor.2021.1161 – volume: 79 start-page: 257 year: 2021 ident: 2074_CR21 publication-title: J. Global. Optim. doi: 10.1007/s10898-020-00940-w – ident: 2074_CR15 doi: 10.1016/S1570-579X(01)80010-0 – ident: 2074_CR10 doi: 10.1137/10081602X – volume: 184 start-page: 858 year: 2020 ident: 2074_CR34 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-019-01601-z – volume: 38 start-page: 431 year: 2000 ident: 2074_CR38 publication-title: SIAM J. Control Optim. doi: 10.1137/S0363012998338806 – ident: 2074_CR24 doi: 10.1016/S0168-2024(08)70034-1 – ident: 2074_CR11 doi: 10.1007/978-1-4614-7621-4_9 – volume-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces year: 2007 ident: 2074_CR2 doi: 10.1007/978-3-319-48311-5 – ident: 2074_CR4 doi: 10.1007/s10444-018-9619-3 – ident: 2074_CR32 doi: 10.1016/j.amc.2020.125248 – volume: 43 start-page: 323 year: 2015 ident: 2074_CR22 publication-title: Vietnam J. Math. doi: 10.1007/s10013-015-0121-7 – volume: 6 start-page: 1199 year: 2013 ident: 2074_CR31 publication-title: SIAM J. Imag. Sci. doi: 10.1137/120872802 – volume: 64 start-page: 1239 year: 2015 ident: 2074_CR8 publication-title: Optimization doi: 10.1080/02331934.2013.855210 – volume: 173 start-page: 155 year: 2017 ident: 2074_CR23 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-017-1074-7 – volume: 27 start-page: 2153 year: 2017 ident: 2074_CR35 publication-title: SIAM J. Optim. doi: 10.1137/16M1073741 – ident: 2074_CR16 doi: 10.1007/s10107-016-1044-0 – ident: 2074_CR1 doi: 10.1007/978-0-8176-4848-0 – ident: 2074_CR12 doi: 10.1137/17M1120099 – ident: 2074_CR36 doi: 10.1090/surv/049 – ident: 2074_CR20 doi: 10.1007/s11228-017-0421-z – ident: 2074_CR28 doi: 10.1007/s10589-020-00238-3 – ident: 2074_CR17 doi: 10.1007/s11228-011-0191-y – ident: 2074_CR3 doi: 10.1007/s11075-015-0007-5 – ident: 2074_CR5 doi: 10.1137/12088255X – volume: 9 start-page: 41 year: 1975 ident: 2074_CR25 publication-title: Recherche Opérationnelle Sér. Rouge Anal Numér |
| SSID | ssj0009874 |
| Score | 2.3428617 |
| Snippet | In this article, we provide a splitting method for solving monotone inclusions in a real Hilbert space involving four operators: a maximally monotone, a... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 205 |
| SubjectTerms | Algorithms Applications of Mathematics Calculus of Variations and Optimal Control; Optimization Computational geometry Convex analysis Convexity Engineering Game theory Hilbert space Hypotheses Inclusions Mathematics Mathematics and Statistics Methods Operations Research/Decision Theory Operators (mathematics) Optimization Partial differential equations Searching Splitting Theory of Computation |
| SummonAdditionalLinks | – databaseName: SpringerLink dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcIADb8RgoBy4QaQuaZbkOBDVLjykAZq4VGmbwqSxTW3Zmf_AP-SXkPRBB4ID3FqldSs7ju3Y_gJw7AqmWEgi7AqlsNsR2qyD9jAzoQUjXFtQrfywCX51JQYDeVM2haVVtXuVksxX6rlmN8k4ttXnxsXhLqaLsMQsBJKN0fv3NdSuqLCXCaaEyrJV5mcaX81R7WN-S4vm1sZb_99_bsBa6V2ibjEdNmFBj7dgdQ5z0NxdfgK1ptvw4JlX8PVU59l21DcuaV4IjWZDhRTyJomtqn1_fTuz-3zFZU-NYlyOoO7ocZIMs6dnZHd0kQltNSpKmHfgzru4Pe_h8rgFHBLuZDgmbcp4IIzWy9iJKAtlGKsO59wRWmrV5pFkNHBCHhkfgWgSBcawuSpULI5MPEt3oTGejPUeIONH0NiKWRsdDEgglXINGRbQQBKleRNOKq770wJVw6_xky3_fMM_P-efT5vQqgTjlxqW-sR824RaRLImnFaCqId_p7b_t8cPYIVYWeb1ey1oZMmLPoTlcJYN0-Qon3kffrTSYg priority: 102 providerName: Springer Nature |
| Title | Four-Operator Splitting via a Forward–Backward–Half-Forward Algorithm with Line Search |
| URI | https://link.springer.com/article/10.1007/s10957-022-02074-3 https://www.proquest.com/docview/2718753295 |
| Volume | 195 |
| WOSCitedRecordID | wos000852104500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 1573-2878 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009874 issn: 0022-3239 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB5R6KEcePShhpd86I1abOw1tk8VICKkKg8lfYRcVt5dbxsJkpAsnPsf-If8EsaOt9tWgksvo11Za3k99vjzePwNwIdYCSMyltNYGUPjY2XRDrpkZsoqwaR1pFo-2YTsdNRwqHvB4bYIYZWVTfSGOp9mzkd-xNCIIrRmWnya3VCXNcqdroYUGi9gDRdq4TIYyO-XNemuqliYGeWM63BpJlyd00JSV4KAScaU_70w1WjznwNSv-60Nv-3xVuwERAnOVkOkW1YsZPXsP4HDyG-tX-Tty7ewKiFn9DuzPoTeDJAmOqDo8nd2BBDWtO5i7R9-HV_6nx_y8cLc1XQUEJOrn5gO8qf18R5eQludy1ZhjW_ha-t8y9nFzSkYKAZk1FJC9bkQqYKLYEuopyLTGeFOZZSRspqa5oy14KnUSZzxA3MsjzFv45NZkSR4x6Xv4PVyXRi3wNBbMELp3qL8zJlqTYmxmpEylPNjJUNOKz6P5ktmTaSmlPZaStBbSVeWwlvwF7V6UmYdYuk7vEGfKzUVhc_XdvO87XtwivmRoqP4duD1XJ-a_fhZXZXjhfzAz_mDmDt9LzT6-PbZ0lRtqMzJ1nXy56TcoCyJ0Yo-4NvjwTX5Oo |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NThsxEB4FigQcKL8ihYIPcAKLYK9j-1BVaUsUFAhIBCnisnh3vYAESZqkVL3xDrxHH6pP0vH-sIAENw7cdjXaWXnn25mxPf4GYMNTwoiQRdRTxlCvqiz6QdfMTFklmLSOVCtpNiFbLdXp6OMS_M3PwriyytwnJo466oVujXyHoRPF1Jpp8bX_k7quUW53NW-hkcKiaf_8xinb8Mv-D7TvJmP1vfb3Bs26CtCQycqIxmyXCxkoBLeOKxEXoQ5jU5VSVpTV1uzKSAseVEIZYShklkUBvtozoRFxhNM2jnrH4IPHVdVx9TclLUh-Vc76zChnXGeHdLKjelpI6iSYoEmP8qeBsMhun23IJnGu_vG9faFZmMkyalJLf4E5KNnuPEw_4lnEu8MHctrhApzV8RF61LdJhQE5wTQ8Kf4mt1eGGFLvDVwl8b-7-29ubTO9bJjrmGYSUru-wHGPLm-IW8UmOJ23JC3bXoTTNxnqEox3e127DARzJx47aFv0OwELtDEeqhEBDzQzVpZhK7e330-ZRPyCM9qhw0d0-Ak6fF6G1dzIfuZVhn5h4TJs5zApxC9r-_S6tnWYbLQPD_yD_VZzBaaYQ2lSr7gK46PBL_sZJsLb0dVwsJbgncD5W8PnP0ZWOHY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1BT9swFH4q3YTGYRtsE2Vs-MBOYBHsuLYP08TWRSCgQwIktEtwEmdUKm1pu0677T_s3-zn7Jfs2UnIhsRuHLglsvIU5315frY_fw9gPVTCiJRlNFTG0LCtLMZBV8xMWSWYtE5UyxebkN2uOjvTRw34VZ2FcbTKKib6QJ0NU7dGvsUwiGJqzbTYyktaxFEneje6oq6ClNtprcppFBDZt9-_4fRt8navg75-w1j08eTDLi0rDNCUyWBKc7bNhUwUAl3nQcZFqtPctKWUgbLamm2ZacGTIJUZDovMsizB1whNakSe4RSOo905eCDDdsA8bfC4FvxVlQI0o5xxXR7YKY_taSGpa8FkTYaU_zso1pnujc1ZP-ZFT-7z13oKj8tMm-wUv8YiNOxgCRb-0l_Eu8Nr0drJM_gc4SP008h65gE5xvTck8LJrGeIIdFw7BjGv3_8fO_WPIvLXdPPadlCdvpfsN_Ti0viVrcJTvMtKejcz-H0Trr6ApqD4cAuA8GciucO8hbjUcISbUyIZkTCE82MlS3YqHwfjwqFkbjWknZIiREpsUdKzFuwWjk8LqPNJK693YLNCjJ18-3WVv5vbQ3mETXxwV53_yU8Yg6wnsa4Cs3p-Kt9BQ_T2bQ3Gb_20Cdwftfo-QNiLEF- |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Four-Operator+Splitting+via+a+Forward%E2%80%93Backward%E2%80%93Half-Forward+Algorithm+with+Line+Search&rft.jtitle=Journal+of+optimization+theory+and+applications&rft.au=Brice%C3%B1o-Arias%2C+Luis+M.&rft.au=Rold%C3%A1n%2C+Fernando&rft.date=2022-10-01&rft.issn=0022-3239&rft.eissn=1573-2878&rft.volume=195&rft.issue=1&rft.spage=205&rft.epage=225&rft_id=info:doi/10.1007%2Fs10957-022-02074-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10957_022_02074_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3239&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3239&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3239&client=summon |