Four-Operator Splitting via a Forward–Backward–Half-Forward Algorithm with Line Search

In this article, we provide a splitting method for solving monotone inclusions in a real Hilbert space involving four operators: a maximally monotone, a monotone-Lipschitzian, a cocoercive, and a monotone-continuous operator. The proposed method takes advantage of the intrinsic properties of each op...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of optimization theory and applications Ročník 195; číslo 1; s. 205 - 225
Hlavní autori: Briceño-Arias, Luis M., Roldán, Fernando
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.10.2022
Springer Nature B.V
Predmet:
ISSN:0022-3239, 1573-2878
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this article, we provide a splitting method for solving monotone inclusions in a real Hilbert space involving four operators: a maximally monotone, a monotone-Lipschitzian, a cocoercive, and a monotone-continuous operator. The proposed method takes advantage of the intrinsic properties of each operator, generalizing the forward–backward–half-forward splitting and the Tseng’s algorithm with line search. At each iteration, our algorithm defines the step size by using a line search in which the monotone-Lipschitzian and the cocoercive operators need only one activation. We also derive a method for solving nonlinearly constrained composite convex optimization problems in real Hilbert spaces. Finally, we implement our algorithm in a nonlinearly constrained least-square problem and we compare its performance with available methods in the literature.
AbstractList In this article, we provide a splitting method for solving monotone inclusions in a real Hilbert space involving four operators: a maximally monotone, a monotone-Lipschitzian, a cocoercive, and a monotone-continuous operator. The proposed method takes advantage of the intrinsic properties of each operator, generalizing the forward–backward–half-forward splitting and the Tseng’s algorithm with line search. At each iteration, our algorithm defines the step size by using a line search in which the monotone-Lipschitzian and the cocoercive operators need only one activation. We also derive a method for solving nonlinearly constrained composite convex optimization problems in real Hilbert spaces. Finally, we implement our algorithm in a nonlinearly constrained least-square problem and we compare its performance with available methods in the literature.
Author Roldán, Fernando
Briceño-Arias, Luis M.
Author_xml – sequence: 1
  givenname: Luis M.
  surname: Briceño-Arias
  fullname: Briceño-Arias, Luis M.
  organization: Universidad Técnica Federico Santa María
– sequence: 2
  givenname: Fernando
  orcidid: 0000-0001-6768-9015
  surname: Roldán
  fullname: Roldán, Fernando
  email: fernando.roldan@usm.cl
  organization: Universidad Técnica Federico Santa María
BookMark eNp9UM1OAjEQbgwmAvoCnpp4rk5b1tkekYiYkHBAL16a0u3C4rK7tovEm-_gG_okFiHx5mF-ku9nMl-PdKq6coRccrjmAHgTOKgEGQgRC3DA5Anp8gQlEymmHdKFPSSFVGekF8IaAFSKgy55Gddbz2aN86atPZ03ZdG2RbWk74Whho5rvzM--_78ujP29bhOTJmzI0KH5bL2Rbva0F3sdFpUjs6d8XZ1Tk5zUwZ3cZx98jy-fxpN2HT28DgaTpkVCC3LBZcJLlIJqHLIZGKVzc0tIkLqlDMcM5XIBVjMhJLCiWyBPB0Ya5I8S4SUfXJ18G18_bZ1odXr-FMVT2oRmZhIEQ36RBxY1tcheJfrxhcb4z80B73PUB8y1DEo_Zuh3lvLgyhEcrV0_s_6H9UPvWp3pA
Cites_doi 10.1007/s00245-019-09597-8
10.1090/S0002-9904-1964-11178-2
10.1090/pspum/018.1/0285942
10.1137/18M1207260
10.1137/120901106
10.1137/0716071
10.1007/s10957-015-0703-2
10.1080/02331934.2012.733883
10.1007/s11228-020-00542-4
10.1007/BF01448388
10.1007/s11590-019-01509-7
10.1016/j.amc.2015.01.017
10.1007/s10444-011-9254-8
10.1287/moor.2021.1161
10.1007/s10898-020-00940-w
10.1016/S1570-579X(01)80010-0
10.1137/10081602X
10.1007/s10957-019-01601-z
10.1137/S0363012998338806
10.1016/S0168-2024(08)70034-1
10.1007/978-1-4614-7621-4_9
10.1007/978-3-319-48311-5
10.1007/s10444-018-9619-3
10.1016/j.amc.2020.125248
10.1007/s10013-015-0121-7
10.1137/120872802
10.1080/02331934.2013.855210
10.1007/s10957-017-1074-7
10.1137/16M1073741
10.1007/s10107-016-1044-0
10.1007/978-0-8176-4848-0
10.1137/17M1120099
10.1090/surv/049
10.1007/s11228-017-0421-z
10.1007/s10589-020-00238-3
10.1007/s11228-011-0191-y
10.1007/s11075-015-0007-5
10.1137/12088255X
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7TB
7WY
7WZ
7XB
87Z
88I
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
KR7
L.-
L6V
L7M
L~C
L~D
M0C
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOI 10.1007/s10957-022-02074-3
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep (ProQuest)
SciTech Premium
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (OCUL)
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1573-2878
EndPage 225
ExternalDocumentID 10_1007_s10957_022_02074_3
GrantInformation_xml – fundername: Beca Doctorado Nacional (ANID-Chile)
  grantid: 2018-21181024
– fundername: FONDECYT (ANID-Chile)
  grantid: 1190871
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9R
PF0
PKN
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
TWZ
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
VOH
W23
W48
WH7
WK8
YLTOR
YQT
Z45
Z7R
Z7S
Z7U
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZCG
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7TB
7XB
8FD
8FK
FR3
JQ2
KR7
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c270t-f21357b83079f0d35c9cfa677708e9ea17d953b0c7d2932e2db7184aca5fd5233
IEDL.DBID 7WY
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000852104500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-3239
IngestDate Wed Nov 05 01:34:08 EST 2025
Sat Nov 29 06:02:32 EST 2025
Fri Feb 21 02:44:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Lipschitzian operator
47H10
65K15
65K05
Convex optimization
Monotone operator theory
Splitting algorithms
90C25
49M29
Cocoercive operator
47H05
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-f21357b83079f0d35c9cfa677708e9ea17d953b0c7d2932e2db7184aca5fd5233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6768-9015
PQID 2718753295
PQPubID 48247
PageCount 21
ParticipantIDs proquest_journals_2718753295
crossref_primary_10_1007_s10957_022_02074_3
springer_journals_10_1007_s10957_022_02074_3
PublicationCentury 2000
PublicationDate 20221000
2022-10-00
20221001
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 20221000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of optimization theory and applications
PublicationTitleAbbrev J Optim Theory Appl
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA. https://doi.org/10.1007/978-0-8176-4848-0 (2009)
Boţ, R.I., Csetnek, E., Heinrich, A.: A primal-dual splitting algorithm for finding zeros of sums of maximal monotone operators. SIAM J. Optim. 23, 2011–2036 (2013). https://doi.org/10.1137/12088255X
Johnstone, P.R., Eckstein, J.: Single-forward-step projective splitting: exploiting cocoercivity. Comput. Optim. Appl. 78, 125–166 (2021). https://doi.org/10.1007/s10589-020-00238-3
Briceño-AriasLMForward-Douglas-Rachford splitting and forward-partial inverse method for solving monotone inclusionsOptimization20156412391261331680010.1080/02331934.2013.8552101310.47084
SalzoSThe variable metric forward-backward splitting algorithm under mild differentiability assumptionsSIAM J. Optim.20172721532181370789910.1137/16M10737411375.65085
Bùi, M.N., Combettes, P.L.: Multivariate monotone inclusions in saddle form. Math. Operat. Res. 47, 1082–1109 (2021). https://doi.org/10.1287/moor.2021.1161
Combettes, P.L., Pesquet, J.C.: Primal-dual splitting algorithm for solving inclusions with mixtures of composite, lipschitzian, and parallel-sum type monotone operators. Set-Valued Var. Anal. 20, 307–330 (2012). https://doi.org/10.1007/s11228-011-0191-y
CombettesPLVũBCvariable metric forward-backward splitting with applications to monotone inclusions in dualityOptimization20146312891318322584510.1080/02331934.2012.7338831309.90109
CevherVVũBCA reflected forward-backward splitting method for monotone inclusions involving lipschitzian operatorsSet-Valued Var. Anal.202129163174421601010.1007/s11228-020-00542-41481.47082
Showalter, R.E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. Mathematical surveys and monographs 49. Amer. Math. Soc. Providence, RI. (1997) https://doi.org/10.1090/surv/049
GlowinskiRMarroccoASur l’approximation, Par Éléments Finis d’ordre un, et la Résolution, par Pénalisation-dualité, d’une Classe de Problèmes de Dirichlet non Linéaires. Rev. Française Automat. InformatRecherche Opérationnelle Sér. Rouge Anal Numér197594176
RaguetHFadiliJPeyréGA generalized forward-backward splittingSIAM J. Imag. Sci.2013611991226307335110.1137/1208728021296.47109
TsengPA modified forward-backward splitting method for maximal monotone mappingsSIAM J. Control Optim.200038431446174114710.1137/S03630129983388060997.90062
Boţ, R.I., Csetnek, E.R.: ADMM for monotone operators: convergence analysis and rates. Adv. Comput. Math. 45, 327–359 (2019). https://doi.org/10.1007/s10444-018-9619-3
Combettes, P.L.: Quasi-Fejérian Analysis of Some Optimization Algorithms. In: Butnariu D, Censor Y, Reich S (eds) Inherently parallel algorithms in feasibility and optimization and their applications. Stud Comput Math 8. North-Holland, Amsterdam, 115–152. (2001) https://doi.org/10.1016/S1570-579X(01)80010-0
Rieger, J., Tam, M.K.: Backward-forward-reflected-backward splitting for three operator monotone inclusions. Appl. Math. Comput. 381, 125248 2020).https://doi.org/10.1016/j.amc.2020.125248
Rockafellar, R.T.: Monotone operators associated with saddle-functions and minimax problems. In: Browder F E (ed) Nonlinear Functional Analysis (Proc. Sympos. Pure Math., Vol. XVIII, Part 1, Chicago, Ill., 1968). Amer Math Soc. Providence, R.I., 241–250 (1970)
Boţ, R.I., Csetnek, E.R., Hendrich, C.: Inertial Douglas-Rachford splitting for monotone inclusion problems. Appl. Math. Comput. 256, 472–487 (2015). https://doi.org/10.1016/j.amc.2015.01.017
Johnstone, P.R., Eckstein, J.: Projective splitting with forward steps only requires continuity. Optim. Lett. 14, 229–247 (2020). https://doi.org/10.1007/s11590-019-01509-7
Boţ, R.I., Csetnek, E.R.: An inertial forward-backward-forward primal-dual splitting algorithm for solving monotone inclusion problems. Numer. Algorithms 71, 519–540 (2016). https://doi.org/10.1007/s11075-015-0007-5
Csetnek, E., Malitsky, Y., Tam M.: Shadow Douglas-Rachford splitting for monotone inclusions. Appl. Math. Optim. 80, 665–678 (2019). https://doi.org/10.1007/s00245-019-09597-8
BauschkeHHCombettesPLConvex Analysis and Monotone Operator Theory in Hilbert Spaces2007New YorkSpringer10.1007/978-3-319-48311-51359.26003
Briceño-Arias, L.M., Combettes, P.L.: A monotone + skew splitting model for composite monotone inclusions in duality. SIAM J. Optim. 21, 1230–1250 (2011). https://doi.org/10.1137/10081602X
RyuEKVũBCFinding the forward-Douglas-Rachford-forward methodJ. Optim. Theory Appl.2020184858876406167210.1007/s10957-019-01601-z07174655
Lions, P., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979). https://doi.org/10.1137/0716071
DongYWeak convergence of an extended splitting method for monotone inclusionsJ. Global. Optim.202179257277419839710.1007/s10898-020-00940-w1466.49012
Boţ, R.I., Hendrich, C.: A Douglas-Rachford type primal-dual method for solving inclusions with mixtures of composite and parallel-sum type monotone operators. SIAM J. Optim. 23, 2541–2565 (2013). https://doi.org/10.1137/120901106
Briceño-AriasLMForward-partial inverse-forward splitting for solving monotone inclusionsJ. Optim. Theory Appl.2015166391413337138110.1007/s10957-015-0703-21321.47136
Combettes, P.L., Eckstein, J.: Asynchronous block-iterative primal-dual decomposition methods for monotone inclusions. Math. Program. 168, 645–672 (2018). https://doi.org/10.1007/s10107-016-1044-0
Briceño-Arias, L.M., Davis, D.: Forward-backward-half forward algorithm for solving monotone inclusions. SIAM J. Optim. 28, 2839–2871 (2018). https://doi.org/10.1137/17M1120099
DũngDVũ B.C.: A splitting algorithm for system of composite monotone inclusionsVietnam J. Math.201543323341334981910.1007/s10013-015-0121-71316.47052
GoldsteinAAConvex programming in Hilbert spaceBull. Amer. Math. Soc.19647070971016598210.1090/S0002-9904-1964-11178-20142.17101
Davis, D., Yin, W.: A three-operator scheme and its optimization applications. Set-Valued Var. Anal. 25, 829–858 (2017). https://doi.org/10.1007/s11228-017-0421-z
SpingarnJEPartial inverse of a monotone operatorAppl. Math. Optim.19831024726572248910.1007/BF014483880524.90072
VũBCA splitting algorithm for dual monotone inclusions involving cocoercive operatorsAdv. Comput. Math.201338667681303703410.1007/s10444-011-9254-81284.47045
Briceño-Arias, L.M., Combettes, P.L.: Monotone Operator Methods for Nash Equilibria in Non-Potential Games. In: Bailey D H, Bauschke H H, Borwein P, Garvan F, Théra M, Vanderwerff J, Wolkowicz H (eds) Computational and Analytical Mathematics. Springer Proceedings in Mathematics & Statistics 50. Springer, New York, NY, 143–159. https://doi.org/10.1007/978-1-4614-7621-4_9 (2013)
Gabay, D.: Chapter IX Applications of the method of multipliers to variational inequalities. In: Fortin M, Glowinski R (eds.) Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems. Studies in Mathematics and Its Applications, 15. Elsevier, 299–331. (1983) https://doi.org/10.1016/S0168-2024(08)70034-1
Malitsky, Y., Tam, M.K.: A forward-backward splitting method for monotone inclusions without cocoercivity. SIAM J. Optim. 30, 1451–1472 (2020). https://doi.org/10.1137/18M1207260
EcksteinJA simplified form of block-iterative operator splitting and an asynchronous algorithm resembling the multi-block alternating direction method of multipliersJ. Optim. Theory Appl.2017173155182362664210.1007/s10957-017-1074-706768800
BC Vũ (2074_CR39) 2013; 38
AA Goldstein (2074_CR26) 1964; 70
H Raguet (2074_CR31) 2013; 6
2074_CR4
2074_CR3
LM Briceño-Arias (2074_CR9) 2015; 166
2074_CR6
2074_CR5
2074_CR7
2074_CR11
2074_CR33
2074_CR10
2074_CR32
2074_CR30
2074_CR15
V Cevher (2074_CR14) 2021; 29
2074_CR36
P Tseng (2074_CR38) 2000; 38
2074_CR13
2074_CR12
2074_CR19
2074_CR17
LM Briceño-Arias (2074_CR8) 2015; 64
2074_CR16
HH Bauschke (2074_CR2) 2007
EK Ryu (2074_CR34) 2020; 184
J Eckstein (2074_CR23) 2017; 173
PL Combettes (2074_CR18) 2014; 63
D Dũng (2074_CR22) 2015; 43
JE Spingarn (2074_CR37) 1983; 10
R Glowinski (2074_CR25) 1975; 9
2074_CR20
S Salzo (2074_CR35) 2017; 27
2074_CR24
2074_CR1
2074_CR29
2074_CR28
Y Dong (2074_CR21) 2021; 79
2074_CR27
References_xml – reference: Bùi, M.N., Combettes, P.L.: Multivariate monotone inclusions in saddle form. Math. Operat. Res. 47, 1082–1109 (2021). https://doi.org/10.1287/moor.2021.1161
– reference: Combettes, P.L., Pesquet, J.C.: Primal-dual splitting algorithm for solving inclusions with mixtures of composite, lipschitzian, and parallel-sum type monotone operators. Set-Valued Var. Anal. 20, 307–330 (2012). https://doi.org/10.1007/s11228-011-0191-y
– reference: Gabay, D.: Chapter IX Applications of the method of multipliers to variational inequalities. In: Fortin M, Glowinski R (eds.) Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems. Studies in Mathematics and Its Applications, 15. Elsevier, 299–331. (1983) https://doi.org/10.1016/S0168-2024(08)70034-1
– reference: Briceño-AriasLMForward-partial inverse-forward splitting for solving monotone inclusionsJ. Optim. Theory Appl.2015166391413337138110.1007/s10957-015-0703-21321.47136
– reference: Boţ, R.I., Csetnek, E.R., Hendrich, C.: Inertial Douglas-Rachford splitting for monotone inclusion problems. Appl. Math. Comput. 256, 472–487 (2015). https://doi.org/10.1016/j.amc.2015.01.017
– reference: GlowinskiRMarroccoASur l’approximation, Par Éléments Finis d’ordre un, et la Résolution, par Pénalisation-dualité, d’une Classe de Problèmes de Dirichlet non Linéaires. Rev. Française Automat. InformatRecherche Opérationnelle Sér. Rouge Anal Numér197594176
– reference: SalzoSThe variable metric forward-backward splitting algorithm under mild differentiability assumptionsSIAM J. Optim.20172721532181370789910.1137/16M10737411375.65085
– reference: Briceño-Arias, L.M., Combettes, P.L.: A monotone + skew splitting model for composite monotone inclusions in duality. SIAM J. Optim. 21, 1230–1250 (2011). https://doi.org/10.1137/10081602X
– reference: Combettes, P.L.: Quasi-Fejérian Analysis of Some Optimization Algorithms. In: Butnariu D, Censor Y, Reich S (eds) Inherently parallel algorithms in feasibility and optimization and their applications. Stud Comput Math 8. North-Holland, Amsterdam, 115–152. (2001) https://doi.org/10.1016/S1570-579X(01)80010-0
– reference: Rieger, J., Tam, M.K.: Backward-forward-reflected-backward splitting for three operator monotone inclusions. Appl. Math. Comput. 381, 125248 2020).https://doi.org/10.1016/j.amc.2020.125248
– reference: Malitsky, Y., Tam, M.K.: A forward-backward splitting method for monotone inclusions without cocoercivity. SIAM J. Optim. 30, 1451–1472 (2020). https://doi.org/10.1137/18M1207260
– reference: DũngDVũ B.C.: A splitting algorithm for system of composite monotone inclusionsVietnam J. Math.201543323341334981910.1007/s10013-015-0121-71316.47052
– reference: RaguetHFadiliJPeyréGA generalized forward-backward splittingSIAM J. Imag. Sci.2013611991226307335110.1137/1208728021296.47109
– reference: Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA. https://doi.org/10.1007/978-0-8176-4848-0 (2009)
– reference: Johnstone, P.R., Eckstein, J.: Projective splitting with forward steps only requires continuity. Optim. Lett. 14, 229–247 (2020). https://doi.org/10.1007/s11590-019-01509-7
– reference: TsengPA modified forward-backward splitting method for maximal monotone mappingsSIAM J. Control Optim.200038431446174114710.1137/S03630129983388060997.90062
– reference: Johnstone, P.R., Eckstein, J.: Single-forward-step projective splitting: exploiting cocoercivity. Comput. Optim. Appl. 78, 125–166 (2021). https://doi.org/10.1007/s10589-020-00238-3
– reference: Briceño-Arias, L.M., Combettes, P.L.: Monotone Operator Methods for Nash Equilibria in Non-Potential Games. In: Bailey D H, Bauschke H H, Borwein P, Garvan F, Théra M, Vanderwerff J, Wolkowicz H (eds) Computational and Analytical Mathematics. Springer Proceedings in Mathematics & Statistics 50. Springer, New York, NY, 143–159. https://doi.org/10.1007/978-1-4614-7621-4_9 (2013)
– reference: Boţ, R.I., Hendrich, C.: A Douglas-Rachford type primal-dual method for solving inclusions with mixtures of composite and parallel-sum type monotone operators. SIAM J. Optim. 23, 2541–2565 (2013). https://doi.org/10.1137/120901106
– reference: Combettes, P.L., Eckstein, J.: Asynchronous block-iterative primal-dual decomposition methods for monotone inclusions. Math. Program. 168, 645–672 (2018). https://doi.org/10.1007/s10107-016-1044-0
– reference: Boţ, R.I., Csetnek, E.R.: An inertial forward-backward-forward primal-dual splitting algorithm for solving monotone inclusion problems. Numer. Algorithms 71, 519–540 (2016). https://doi.org/10.1007/s11075-015-0007-5
– reference: Lions, P., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979). https://doi.org/10.1137/0716071
– reference: Rockafellar, R.T.: Monotone operators associated with saddle-functions and minimax problems. In: Browder F E (ed) Nonlinear Functional Analysis (Proc. Sympos. Pure Math., Vol. XVIII, Part 1, Chicago, Ill., 1968). Amer Math Soc. Providence, R.I., 241–250 (1970)
– reference: Csetnek, E., Malitsky, Y., Tam M.: Shadow Douglas-Rachford splitting for monotone inclusions. Appl. Math. Optim. 80, 665–678 (2019). https://doi.org/10.1007/s00245-019-09597-8
– reference: CevherVVũBCA reflected forward-backward splitting method for monotone inclusions involving lipschitzian operatorsSet-Valued Var. Anal.202129163174421601010.1007/s11228-020-00542-41481.47082
– reference: Showalter, R.E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. Mathematical surveys and monographs 49. Amer. Math. Soc. Providence, RI. (1997) https://doi.org/10.1090/surv/049
– reference: GoldsteinAAConvex programming in Hilbert spaceBull. Amer. Math. Soc.19647070971016598210.1090/S0002-9904-1964-11178-20142.17101
– reference: SpingarnJEPartial inverse of a monotone operatorAppl. Math. Optim.19831024726572248910.1007/BF014483880524.90072
– reference: CombettesPLVũBCvariable metric forward-backward splitting with applications to monotone inclusions in dualityOptimization20146312891318322584510.1080/02331934.2012.7338831309.90109
– reference: BauschkeHHCombettesPLConvex Analysis and Monotone Operator Theory in Hilbert Spaces2007New YorkSpringer10.1007/978-3-319-48311-51359.26003
– reference: Boţ, R.I., Csetnek, E.R.: ADMM for monotone operators: convergence analysis and rates. Adv. Comput. Math. 45, 327–359 (2019). https://doi.org/10.1007/s10444-018-9619-3
– reference: Briceño-AriasLMForward-Douglas-Rachford splitting and forward-partial inverse method for solving monotone inclusionsOptimization20156412391261331680010.1080/02331934.2013.8552101310.47084
– reference: RyuEKVũBCFinding the forward-Douglas-Rachford-forward methodJ. Optim. Theory Appl.2020184858876406167210.1007/s10957-019-01601-z07174655
– reference: Briceño-Arias, L.M., Davis, D.: Forward-backward-half forward algorithm for solving monotone inclusions. SIAM J. Optim. 28, 2839–2871 (2018). https://doi.org/10.1137/17M1120099
– reference: VũBCA splitting algorithm for dual monotone inclusions involving cocoercive operatorsAdv. Comput. Math.201338667681303703410.1007/s10444-011-9254-81284.47045
– reference: EcksteinJA simplified form of block-iterative operator splitting and an asynchronous algorithm resembling the multi-block alternating direction method of multipliersJ. Optim. Theory Appl.2017173155182362664210.1007/s10957-017-1074-706768800
– reference: Boţ, R.I., Csetnek, E., Heinrich, A.: A primal-dual splitting algorithm for finding zeros of sums of maximal monotone operators. SIAM J. Optim. 23, 2011–2036 (2013). https://doi.org/10.1137/12088255X
– reference: DongYWeak convergence of an extended splitting method for monotone inclusionsJ. Global. Optim.202179257277419839710.1007/s10898-020-00940-w1466.49012
– reference: Davis, D., Yin, W.: A three-operator scheme and its optimization applications. Set-Valued Var. Anal. 25, 829–858 (2017). https://doi.org/10.1007/s11228-017-0421-z
– ident: 2074_CR19
  doi: 10.1007/s00245-019-09597-8
– volume: 70
  start-page: 709
  year: 1964
  ident: 2074_CR26
  publication-title: Bull. Amer. Math. Soc.
  doi: 10.1090/S0002-9904-1964-11178-2
– ident: 2074_CR33
  doi: 10.1090/pspum/018.1/0285942
– ident: 2074_CR30
  doi: 10.1137/18M1207260
– ident: 2074_CR7
  doi: 10.1137/120901106
– ident: 2074_CR29
  doi: 10.1137/0716071
– volume: 166
  start-page: 391
  year: 2015
  ident: 2074_CR9
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-015-0703-2
– volume: 63
  start-page: 1289
  year: 2014
  ident: 2074_CR18
  publication-title: Optimization
  doi: 10.1080/02331934.2012.733883
– volume: 29
  start-page: 163
  year: 2021
  ident: 2074_CR14
  publication-title: Set-Valued Var. Anal.
  doi: 10.1007/s11228-020-00542-4
– volume: 10
  start-page: 247
  year: 1983
  ident: 2074_CR37
  publication-title: Appl. Math. Optim.
  doi: 10.1007/BF01448388
– ident: 2074_CR27
  doi: 10.1007/s11590-019-01509-7
– ident: 2074_CR6
  doi: 10.1016/j.amc.2015.01.017
– volume: 38
  start-page: 667
  year: 2013
  ident: 2074_CR39
  publication-title: Adv. Comput. Math.
  doi: 10.1007/s10444-011-9254-8
– ident: 2074_CR13
  doi: 10.1287/moor.2021.1161
– volume: 79
  start-page: 257
  year: 2021
  ident: 2074_CR21
  publication-title: J. Global. Optim.
  doi: 10.1007/s10898-020-00940-w
– ident: 2074_CR15
  doi: 10.1016/S1570-579X(01)80010-0
– ident: 2074_CR10
  doi: 10.1137/10081602X
– volume: 184
  start-page: 858
  year: 2020
  ident: 2074_CR34
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-019-01601-z
– volume: 38
  start-page: 431
  year: 2000
  ident: 2074_CR38
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/S0363012998338806
– ident: 2074_CR24
  doi: 10.1016/S0168-2024(08)70034-1
– ident: 2074_CR11
  doi: 10.1007/978-1-4614-7621-4_9
– volume-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces
  year: 2007
  ident: 2074_CR2
  doi: 10.1007/978-3-319-48311-5
– ident: 2074_CR4
  doi: 10.1007/s10444-018-9619-3
– ident: 2074_CR32
  doi: 10.1016/j.amc.2020.125248
– volume: 43
  start-page: 323
  year: 2015
  ident: 2074_CR22
  publication-title: Vietnam J. Math.
  doi: 10.1007/s10013-015-0121-7
– volume: 6
  start-page: 1199
  year: 2013
  ident: 2074_CR31
  publication-title: SIAM J. Imag. Sci.
  doi: 10.1137/120872802
– volume: 64
  start-page: 1239
  year: 2015
  ident: 2074_CR8
  publication-title: Optimization
  doi: 10.1080/02331934.2013.855210
– volume: 173
  start-page: 155
  year: 2017
  ident: 2074_CR23
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-017-1074-7
– volume: 27
  start-page: 2153
  year: 2017
  ident: 2074_CR35
  publication-title: SIAM J. Optim.
  doi: 10.1137/16M1073741
– ident: 2074_CR16
  doi: 10.1007/s10107-016-1044-0
– ident: 2074_CR1
  doi: 10.1007/978-0-8176-4848-0
– ident: 2074_CR12
  doi: 10.1137/17M1120099
– ident: 2074_CR36
  doi: 10.1090/surv/049
– ident: 2074_CR20
  doi: 10.1007/s11228-017-0421-z
– ident: 2074_CR28
  doi: 10.1007/s10589-020-00238-3
– ident: 2074_CR17
  doi: 10.1007/s11228-011-0191-y
– ident: 2074_CR3
  doi: 10.1007/s11075-015-0007-5
– ident: 2074_CR5
  doi: 10.1137/12088255X
– volume: 9
  start-page: 41
  year: 1975
  ident: 2074_CR25
  publication-title: Recherche Opérationnelle Sér. Rouge Anal Numér
SSID ssj0009874
Score 2.3428617
Snippet In this article, we provide a splitting method for solving monotone inclusions in a real Hilbert space involving four operators: a maximally monotone, a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 205
SubjectTerms Algorithms
Applications of Mathematics
Calculus of Variations and Optimal Control; Optimization
Computational geometry
Convex analysis
Convexity
Engineering
Game theory
Hilbert space
Hypotheses
Inclusions
Mathematics
Mathematics and Statistics
Methods
Operations Research/Decision Theory
Operators (mathematics)
Optimization
Partial differential equations
Searching
Splitting
Theory of Computation
SummonAdditionalLinks – databaseName: SpringerLink
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcIADb8RgoBy4QaQuaZbkOBDVLjykAZq4VGmbwqSxTW3Zmf_AP-SXkPRBB4ID3FqldSs7ju3Y_gJw7AqmWEgi7AqlsNsR2qyD9jAzoQUjXFtQrfywCX51JQYDeVM2haVVtXuVksxX6rlmN8k4ttXnxsXhLqaLsMQsBJKN0fv3NdSuqLCXCaaEyrJV5mcaX81R7WN-S4vm1sZb_99_bsBa6V2ibjEdNmFBj7dgdQ5z0NxdfgK1ptvw4JlX8PVU59l21DcuaV4IjWZDhRTyJomtqn1_fTuz-3zFZU-NYlyOoO7ocZIMs6dnZHd0kQltNSpKmHfgzru4Pe_h8rgFHBLuZDgmbcp4IIzWy9iJKAtlGKsO59wRWmrV5pFkNHBCHhkfgWgSBcawuSpULI5MPEt3oTGejPUeIONH0NiKWRsdDEgglXINGRbQQBKleRNOKq770wJVw6_xky3_fMM_P-efT5vQqgTjlxqW-sR824RaRLImnFaCqId_p7b_t8cPYIVYWeb1ey1oZMmLPoTlcJYN0-Qon3kffrTSYg
  priority: 102
  providerName: Springer Nature
Title Four-Operator Splitting via a Forward–Backward–Half-Forward Algorithm with Line Search
URI https://link.springer.com/article/10.1007/s10957-022-02074-3
https://www.proquest.com/docview/2718753295
Volume 195
WOSCitedRecordID wos000852104500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1573-2878
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009874
  issn: 0022-3239
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB5R6KEcePShhpd86I1abOw1tk8VICKkKg8lfYRcVt5dbxsJkpAsnPsf-If8EsaOt9tWgksvo11Za3k99vjzePwNwIdYCSMyltNYGUPjY2XRDrpkZsoqwaR1pFo-2YTsdNRwqHvB4bYIYZWVTfSGOp9mzkd-xNCIIrRmWnya3VCXNcqdroYUGi9gDRdq4TIYyO-XNemuqliYGeWM63BpJlyd00JSV4KAScaU_70w1WjznwNSv-60Nv-3xVuwERAnOVkOkW1YsZPXsP4HDyG-tX-Tty7ewKiFn9DuzPoTeDJAmOqDo8nd2BBDWtO5i7R9-HV_6nx_y8cLc1XQUEJOrn5gO8qf18R5eQludy1ZhjW_ha-t8y9nFzSkYKAZk1FJC9bkQqYKLYEuopyLTGeFOZZSRspqa5oy14KnUSZzxA3MsjzFv45NZkSR4x6Xv4PVyXRi3wNBbMELp3qL8zJlqTYmxmpEylPNjJUNOKz6P5ktmTaSmlPZaStBbSVeWwlvwF7V6UmYdYuk7vEGfKzUVhc_XdvO87XtwivmRoqP4duD1XJ-a_fhZXZXjhfzAz_mDmDt9LzT6-PbZ0lRtqMzJ1nXy56TcoCyJ0Yo-4NvjwTX5Oo
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NThsxEB4FigQcKL8ihYIPcAKLYK9j-1BVaUsUFAhIBCnisnh3vYAESZqkVL3xDrxHH6pP0vH-sIAENw7cdjXaWXnn25mxPf4GYMNTwoiQRdRTxlCvqiz6QdfMTFklmLSOVCtpNiFbLdXp6OMS_M3PwriyytwnJo466oVujXyHoRPF1Jpp8bX_k7quUW53NW-hkcKiaf_8xinb8Mv-D7TvJmP1vfb3Bs26CtCQycqIxmyXCxkoBLeOKxEXoQ5jU5VSVpTV1uzKSAseVEIZYShklkUBvtozoRFxhNM2jnrH4IPHVdVx9TclLUh-Vc76zChnXGeHdLKjelpI6iSYoEmP8qeBsMhun23IJnGu_vG9faFZmMkyalJLf4E5KNnuPEw_4lnEu8MHctrhApzV8RF61LdJhQE5wTQ8Kf4mt1eGGFLvDVwl8b-7-29ubTO9bJjrmGYSUru-wHGPLm-IW8UmOJ23JC3bXoTTNxnqEox3e127DARzJx47aFv0OwELtDEeqhEBDzQzVpZhK7e330-ZRPyCM9qhw0d0-Ak6fF6G1dzIfuZVhn5h4TJs5zApxC9r-_S6tnWYbLQPD_yD_VZzBaaYQ2lSr7gK46PBL_sZJsLb0dVwsJbgncD5W8PnP0ZWOHY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1BT9swFH4q3YTGYRtsE2Vs-MBOYBHsuLYP08TWRSCgQwIktEtwEmdUKm1pu0677T_s3-zn7Jfs2UnIhsRuHLglsvIU5315frY_fw9gPVTCiJRlNFTG0LCtLMZBV8xMWSWYtE5UyxebkN2uOjvTRw34VZ2FcbTKKib6QJ0NU7dGvsUwiGJqzbTYyktaxFEneje6oq6ClNtprcppFBDZt9-_4fRt8navg75-w1j08eTDLi0rDNCUyWBKc7bNhUwUAl3nQcZFqtPctKWUgbLamm2ZacGTIJUZDovMsizB1whNakSe4RSOo905eCDDdsA8bfC4FvxVlQI0o5xxXR7YKY_taSGpa8FkTYaU_zso1pnujc1ZP-ZFT-7z13oKj8tMm-wUv8YiNOxgCRb-0l_Eu8Nr0drJM_gc4SP008h65gE5xvTck8LJrGeIIdFw7BjGv3_8fO_WPIvLXdPPadlCdvpfsN_Ti0viVrcJTvMtKejcz-H0Trr6ApqD4cAuA8GciucO8hbjUcISbUyIZkTCE82MlS3YqHwfjwqFkbjWknZIiREpsUdKzFuwWjk8LqPNJK693YLNCjJ18-3WVv5vbQ3mETXxwV53_yU8Yg6wnsa4Cs3p-Kt9BQ_T2bQ3Gb_20Cdwftfo-QNiLEF-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Four-Operator+Splitting+via+a+Forward%E2%80%93Backward%E2%80%93Half-Forward+Algorithm+with+Line+Search&rft.jtitle=Journal+of+optimization+theory+and+applications&rft.au=Brice%C3%B1o-Arias%2C+Luis+M.&rft.au=Rold%C3%A1n%2C+Fernando&rft.date=2022-10-01&rft.issn=0022-3239&rft.eissn=1573-2878&rft.volume=195&rft.issue=1&rft.spage=205&rft.epage=225&rft_id=info:doi/10.1007%2Fs10957-022-02074-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10957_022_02074_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3239&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3239&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3239&client=summon