How to Prevent Fake Cycles in DFG Models Discovered from Event Logs?
Process mining methods are aimed at modelling and analysing process data generated by information systems. The processes often contain nonrecurring events that occur no more than once per case. Thus, a process model should not contain cycles with such events. If a cycle contains a nonrecurring event...
Uloženo v:
| Vydáno v: | Programming and computer software Ročník 51; číslo 6; s. 395 - 408 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Moscow
Pleiades Publishing
01.12.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 0361-7688, 1608-3261 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Process mining methods are aimed at modelling and analysing process data generated by information systems. The processes often contain nonrecurring events that occur no more than once per case. Thus, a process model should not contain cycles with such events. If a cycle contains a nonrecurring event, we refer to it as a fake cycle. Existing process discovery algorithms produce process models with fake cycles that distort the observed behaviour of the process and reduce model precision. Fake cycles can be avoided by allowing multiple vertex instances for the same event in a process model, which breaks the cycles. In this paper, we propose a new algorithm to discover directly-follows graph process models without fake cycles. The algorithm partitions the event log into sublogs and merges the models discovered from these sublogs while preserving structural correctness. The effectiveness of the algorithm is tested on both real and synthetic event logs. The results demonstrate that the partition-merge approach produces models that preserve fitness while avoiding the introduction of fake cycles. |
|---|---|
| AbstractList | Process mining methods are aimed at modelling and analysing process data generated by information systems. The processes often contain nonrecurring events that occur no more than once per case. Thus, a process model should not contain cycles with such events. If a cycle contains a nonrecurring event, we refer to it as a fake cycle. Existing process discovery algorithms produce process models with fake cycles that distort the observed behaviour of the process and reduce model precision. Fake cycles can be avoided by allowing multiple vertex instances for the same event in a process model, which breaks the cycles. In this paper, we propose a new algorithm to discover directly-follows graph process models without fake cycles. The algorithm partitions the event log into sublogs and merges the models discovered from these sublogs while preserving structural correctness. The effectiveness of the algorithm is tested on both real and synthetic event logs. The results demonstrate that the partition-merge approach produces models that preserve fitness while avoiding the introduction of fake cycles. |
| Author | Nesterov, R. A. Lomazova, I. A. Shaimov, N. D. |
| Author_xml | – sequence: 1 givenname: N. D. surname: Shaimov fullname: Shaimov, N. D. email: nikshaim@gmail.com organization: HSE University – sequence: 2 givenname: I. A. surname: Lomazova fullname: Lomazova, I. A. email: ilomazova@hse.ru organization: HSE University – sequence: 3 givenname: R. A. surname: Nesterov fullname: Nesterov, R. A. email: rnesterov@hse.ru organization: HSE University |
| BookMark | eNp1kE9LAzEQxYNUsK1-AG8Bz6uTbDZJTyL9K1QU1POym0xKa7upybal395dK3gQT3N4v_dm5vVIp_IVEnLN4JaxVNy9QiqZklrzTAFwKc5Il0nQScol65BuKyetfkF6Ma4AGIAQXTKa-QOtPX0JuMeqppPiA-nwaNYY6bKio8mUPnmL60hHy2j8HgNa6oLf0PE3P_eLeH9Jzl2xjnj1M_vkfTJ-G86S-fP0cfgwTwxXUCcOLKArrRNOAdfWCCl0xgoJmdQKMHPglGwOBVAGUZXOFdoN0rKwwtjMpX1yc8rdBv-5w1jnK78LVbMyb97UA845yIZiJ8oEH2NAl2_DclOEY84gb8vK_5TVePjJExu2WmD4Tf7f9AWmtGtl |
| Cites_doi | 10.1007/s10619-013-7127-5 10.1007/978-3-319-49451-7 10.1007/978-3-540-75183-0_24 10.1007/978-3-031-08848-3 10.1016/j.is.2013.12.007 10.1007/978-3-642-38697-8_17 10.1007/978-3-319-19488-2_15 10.1007/978-3-031-08848-3_2 10.1109/tkde.2018.2841877 10.1145/2851613.2851645 10.1007/978-3-319-99414-7 10.1016/j.knosys.2024.112431 10.1016/j.jbi.2022.103994 10.1016/j.simpa.2023.100556 10.1007/978-3-319-07734-5_5 10.1016/j.procs.2019.12.189 10.1016/j.knosys.2019.105054 10.1007/978-3-319-59536-8_34 10.1007/11494744_5 10.1007/978-3-662-49851-4 10.1007/978-3-319-16071-9 10.1002/widm.1045 10.1016/j.knosys.2015.04.012 10.1145/2980764 10.1142/S0218843014400012 10.1016/j.eswa.2023.122747 10.1007/978-3-319-17482-2 10.1109/CIDM.2011.5949453 10.1016/j.knosys.2025.112970 10.48550/arXiv.2502.00499 10.1016/j.is.2007.07.001 10.1007/s00607-015-0441-1 10.3390/app11094265 10.1007/s10257-014-0234-7 10.3233/fi-2020-1946 10.3233/FI-2014-1071 10.1007/978-3-540-68746-7_24 10.1016/j.knosys.2016.03.003 10.3103/s0146411617070306 10.1007/978-1-4684-2001-2_9 10.1016/j.knosys.2012.05.010 10.1007/978-3-030-40172-6_21 10.1007/978-3-540-75183-0_27 10.1007/978-3-662-45563-0_26 |
| ContentType | Journal Article |
| Copyright | Pleiades Publishing, Ltd. 2025 ISSN 0361-7688, Programming and Computer Software, 2025, Vol. 51, No. 6, pp. 395–408. © Pleiades Publishing, Ltd., 2025. Pleiades Publishing, Ltd. 2025. |
| Copyright_xml | – notice: Pleiades Publishing, Ltd. 2025 ISSN 0361-7688, Programming and Computer Software, 2025, Vol. 51, No. 6, pp. 395–408. © Pleiades Publishing, Ltd., 2025. – notice: Pleiades Publishing, Ltd. 2025. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1134/S0361768825700264 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1608-3261 |
| EndPage | 408 |
| ExternalDocumentID | 10_1134_S0361768825700264 |
| GroupedDBID | -Y2 .86 .DC .VR 06D 0R~ 0VY 123 1N0 29P 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 408 409 40D 40E 5VS 67Z 6NX 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABAKF ABBBX ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFFHD AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ K7- KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P9O PF0 PHGZM PHGZT PQGLB PT4 QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR ZMTXR ~A9 AAYXX CITATION JQ2 |
| ID | FETCH-LOGICAL-c270t-f0d0efbdf4f7028dc464851a6056870e5f0f76361007cee7bffa8f93bad4cd5f3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001610337500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0361-7688 |
| IngestDate | Fri Nov 07 23:34:25 EST 2025 Thu Nov 13 04:32:53 EST 2025 Thu Nov 06 11:43:55 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c270t-f0d0efbdf4f7028dc464851a6056870e5f0f76361007cee7bffa8f93bad4cd5f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3268922206 |
| PQPubID | 2043762 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_3268922206 crossref_primary_10_1134_S0361768825700264 springer_journals_10_1134_S0361768825700264 |
| PublicationCentury | 2000 |
| PublicationDate | 20251200 2025-12-00 20251201 |
| PublicationDateYYYYMMDD | 2025-12-01 |
| PublicationDate_xml | – month: 12 year: 2025 text: 20251200 |
| PublicationDecade | 2020 |
| PublicationPlace | Moscow |
| PublicationPlace_xml | – name: Moscow – name: New York |
| PublicationTitle | Programming and computer software |
| PublicationTitleAbbrev | Program Comput Soft |
| PublicationYear | 2025 |
| Publisher | Pleiades Publishing Springer Nature B.V |
| Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
| References | D. Fahland (3958_CR55) 2015; 47 A. Rozinat (3958_CR29) 2008; 33 J. De Smedt (3958_CR47) 2014 A.A. Mitsyuk (3958_CR56) 2017; 51 3958_CR14 3958_CR17 F. Mannhardt (3958_CR27) 2017 W.M.P. Van der Aalst (3958_CR58) 2013; 31 3958_CR19 3958_CR18 J.C. Vidal (3958_CR4) 2016; 100 3958_CR53 A.A. Kalenkova (3958_CR50) 2014; 133 3958_CR10 3958_CR54 3958_CR13 A. Adriansyah (3958_CR33) 2015; 13 3958_CR12 3958_CR6 3958_CR5 W.M.P. Van der Aalst (3958_CR16) 2019; 164 T. Liu (3958_CR7) 2012; 35 3958_CR8 A. Kalenkova (3958_CR49) 2014 W. Van der Aalst (3958_CR51) 2015 3958_CR9 R. Bergenthum (3958_CR38) 2007 W.M.P. Van der Aalst (3958_CR52) 2020; 175 3958_CR26 3958_CR25 3958_CR20 W. Van der Aalst (3958_CR43) 2005 3958_CR22 3958_CR21 3958_CR3 3958_CR23 W. Van der Aalst (3958_CR28) 2012; 2 P. Delias (3958_CR2) 2015; 84 Ch.W. Günther (3958_CR42) 2007 3958_CR37 3958_CR39 W.M.P. van der Aalst (3958_CR1) 2016 3958_CR31 J. Muñoz-Gama (3958_CR32) 2010 3958_CR30 A. Augusto (3958_CR44) 2019; 31 A. Polyvyanyy (3958_CR57) 2017; 25 3958_CR35 3958_CR34 J. Carmona (3958_CR36) 2018 F. Mannhardt (3958_CR24) 2016; 98 3958_CR48 W. Van der Aalst (3958_CR15) 2020 3958_CR40 3958_CR41 F. Milani (3958_CR11) 2022 3958_CR46 3958_CR45 |
| References_xml | – volume: 31 start-page: 471 year: 2013 ident: 3958_CR58 publication-title: Distrib. Parallel Databases doi: 10.1007/s10619-013-7127-5 – ident: 3958_CR37 doi: 10.1007/978-3-319-49451-7 – volume-title: Fuzzy mining—Adaptive process simplification based on multi-perspective metrics, Business Process Management year: 2007 ident: 3958_CR42 doi: 10.1007/978-3-540-75183-0_24 – ident: 3958_CR35 doi: 10.1007/978-3-031-08848-3 – ident: 3958_CR21 – volume: 47 start-page: 220 year: 2015 ident: 3958_CR55 publication-title: Inf. Syst. doi: 10.1016/j.is.2013.12.007 – ident: 3958_CR40 doi: 10.1007/978-3-642-38697-8_17 – volume-title: Process discovery using localized events, Application and Theory of Petri Nets and Concurrency year: 2015 ident: 3958_CR51 doi: 10.1007/978-3-319-19488-2_15 – ident: 3958_CR17 doi: 10.1007/978-3-031-08848-3_2 – volume: 31 start-page: 686 year: 2019 ident: 3958_CR44 publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/tkde.2018.2841877 – ident: 3958_CR48 doi: 10.1145/2851613.2851645 – volume-title: Conformance Checking: Relating Processes and Models year: 2018 ident: 3958_CR36 doi: 10.1007/978-3-319-99414-7 – ident: 3958_CR6 doi: 10.1016/j.knosys.2024.112431 – ident: 3958_CR3 doi: 10.1016/j.jbi.2022.103994 – ident: 3958_CR12 doi: 10.1016/j.simpa.2023.100556 – ident: 3958_CR53 – ident: 3958_CR25 – ident: 3958_CR30 – volume-title: Process model discovery: A method based on transition system decomposition, Application and Theory of Petri Nets and Concurrency year: 2014 ident: 3958_CR49 doi: 10.1007/978-3-319-07734-5_5 – volume: 164 start-page: 321 year: 2019 ident: 3958_CR16 publication-title: Procedia Computer Science doi: 10.1016/j.procs.2019.12.189 – ident: 3958_CR8 doi: 10.1016/j.knosys.2019.105054 – volume-title: Data-driven process discovery—Revealing conditional infrequent behavior from event logs, Advanced Information Systems Engineering year: 2017 ident: 3958_CR27 doi: 10.1007/978-3-319-59536-8_34 – volume-title: Genetic process mining, Applications and Theory of Petri Nets year: 2005 ident: 3958_CR43 doi: 10.1007/11494744_5 – volume-title: Process Mining: Data Science in Action year: 2016 ident: 3958_CR1 doi: 10.1007/978-3-662-49851-4 – ident: 3958_CR45 doi: 10.1007/978-3-319-16071-9 – volume: 2 start-page: 182 year: 2012 ident: 3958_CR28 publication-title: Data Min. Knowl. Discovery doi: 10.1002/widm.1045 – ident: 3958_CR20 – ident: 3958_CR14 – volume: 84 start-page: 203 year: 2015 ident: 3958_CR2 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.04.012 – volume: 25 start-page: 1 year: 2017 ident: 3958_CR57 publication-title: ACM Trans. Software Eng. Methodology doi: 10.1145/2980764 – ident: 3958_CR31 doi: 10.1142/S0218843014400012 – ident: 3958_CR9 doi: 10.1016/j.eswa.2023.122747 – ident: 3958_CR34 doi: 10.1007/978-3-319-17482-2 – ident: 3958_CR41 doi: 10.1109/CIDM.2011.5949453 – ident: 3958_CR10 doi: 10.1016/j.knosys.2025.112970 – ident: 3958_CR18 doi: 10.48550/arXiv.2502.00499 – volume: 33 start-page: 64 year: 2008 ident: 3958_CR29 publication-title: Inf. Syst. doi: 10.1016/j.is.2007.07.001 – volume: 98 start-page: 407 year: 2016 ident: 3958_CR24 publication-title: Computing doi: 10.1007/s00607-015-0441-1 – ident: 3958_CR5 doi: 10.3390/app11094265 – volume: 13 start-page: 37 year: 2015 ident: 3958_CR33 publication-title: Inf. Syst. e-Bus. Manage. doi: 10.1007/s10257-014-0234-7 – ident: 3958_CR13 – volume: 175 start-page: 1 year: 2020 ident: 3958_CR52 publication-title: Fundam. Inf. doi: 10.3233/fi-2020-1946 – volume-title: Process mining: A guide for practitioners, Research Challenges in Information Science year: 2022 ident: 3958_CR11 – volume: 133 start-page: 197 year: 2014 ident: 3958_CR50 publication-title: Fundam. Inf. doi: 10.3233/FI-2014-1071 – ident: 3958_CR39 doi: 10.1007/978-3-540-68746-7_24 – ident: 3958_CR23 – volume: 100 start-page: 160 year: 2016 ident: 3958_CR4 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2016.03.003 – ident: 3958_CR46 – volume: 51 start-page: 709 year: 2017 ident: 3958_CR56 publication-title: Autom. Control Comput. Sci. doi: 10.3103/s0146411617070306 – ident: 3958_CR22 – ident: 3958_CR19 doi: 10.1007/978-1-4684-2001-2_9 – ident: 3958_CR54 – volume-title: A Fresh Look at Precision in Process Conformance, Business Process Management year: 2010 ident: 3958_CR32 – ident: 3958_CR26 – volume: 35 start-page: 320 year: 2012 ident: 3958_CR7 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2012.05.010 – volume-title: Academic view: Development of the process mining discipline, Process Mining in Action: Principles, Use Cases and Outlook year: 2020 ident: 3958_CR15 doi: 10.1007/978-3-030-40172-6_21 – volume-title: Process mining based on regions of languages, Business Process Management, Alonso., G. year: 2007 ident: 3958_CR38 doi: 10.1007/978-3-540-75183-0_27 – volume-title: Multi-paradigm process mining: Retrieving better models by combining rules and sequences, On the Move to Meaningful Internet Systems: OTM 2014 Conferences year: 2014 ident: 3958_CR47 doi: 10.1007/978-3-662-45563-0_26 |
| SSID | ssj0010044 |
| Score | 2.3376005 |
| Snippet | Process mining methods are aimed at modelling and analysing process data generated by information systems. The processes often contain nonrecurring events that... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 395 |
| SubjectTerms | Algorithms Artificial Intelligence Computer Science Information systems Operating Systems Software Engineering Software Engineering/Programming and Operating Systems |
| Title | How to Prevent Fake Cycles in DFG Models Discovered from Event Logs? |
| URI | https://link.springer.com/article/10.1134/S0361768825700264 https://www.proquest.com/docview/3268922206 |
| Volume | 51 |
| WOSCitedRecordID | wos001610337500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Journals New Starts & Take-Overs Collection customDbUrl: eissn: 1608-3261 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010044 issn: 0361-7688 databaseCode: RSV dateStart: 20000101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60evBifWK1yh48KcGYbJLdk0jb2EMpQlV6C0l2V4qSSBMV_72zm8Ti66DnDEMYdma-4ZsHwLGijhP7PLEcPf5LY9ezEsaE5SibqcQVikszKDwKxmM2nfLreo67aLrdG0rSROrq7gg9m2CsPUdwzPTdNawc6DKseHrZjC7RJ3cf1IGmKCuC8tzS4jWV-aOKz8logTC_kKIm14Ttf_3lBqzX0JJcVm9hE5ZktgXt5mwDqb14G_rD_JWUOam3N5EwfpCk96bb48gsI_3wiugLaY8F6c-KVLd4SkH0GAoZGPlRfl9c7MBtOLjpDa36mIKVOoFdWsoWtlSJUFQFiClESn2KaCvGcsZHn5WeshXGGl93TWDiDBKlYqa4m8SCpsJT7i60sjyTe0CkmV1A4IjFCcVYyRHkSJ7w2PVTVC87cNJYNXqqdmZEptZwafTNPh3oNnaPavcpIsSUjCNysf0OnDZ2Xnz-Vdn-n6QPYM3R13xNc0oXWuX8WR7CavpSzor5kXlV7-B5wvo |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB20CnqxfmK16h48KcE02SbZk0jbWDEWoVW8hSS7K0VJpYmK_97ZTWLx66DnDEsYdmbe8Gb2ARxKalmRw2LDUuu_NLLbRux53LCk6cnY5pIJvSgcuIOBd3fHrss97qyadq8oSZ2pC90RejLEXNtCcOwp3TXsHOg8LFClsqNa9OHtB3WgKMqCoGwZyrykMn884nMxmiHML6SorjV-_V9_uQorJbQkZ8VdWIM5ka5DvZJtIGUUb0C3P3kl-YSUrzcRP3oQpPOmxuPIOCVd_5wohbTHjHTHWaJGPAUnag2F9LR9MLnPTjfhxu-NOn2jFFMwEss1c0Oa3BQy5pJKFzEFT6hDEW1F2M44GLOiLU2JucZRUxNYON1YysiTzI4jThPelvYW1NJJKraBCL27gMARmxOKuZIhyBEsZpHtJHi8aMBR5dXwqXgzI9S9hk3Db_5pQLPye1iGTxYipvQYIhfTacBx5efZ518P2_mT9QEs9UdXQRhcDC53YdlSyr56UKUJtXz6LPZgMXnJx9l0X9-wdw6cxd4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60inixPrFadQ-elGCabPM4iTSNFUspVqW3kGR3pShJaaLiv3c22Vh8HcRzhmGZ7Mx8w8zsB3AsqGGElhtphlz_paHZ1iLHYZohdEdEJhMuLxaF-_Zg4IzH7lDxnGbVtHvVkix3GuQrTUl-NmVCcZDQsxHG3RYCZUdysGEVQRdhiWIhI2e6bkb3H20E2a4sm5UtTYqrtuaPKj4npjna_NIgLfKOX__3iddhTUFOclHekQ1Y4Mkm1Cs6B6K8ewu8XvpK8pSoV52IHz5y0nmTY3NkkhDPvySSOe0pI94ki-XoJ2dErqeQbiHfTx-y822487u3nZ6mSBa02LD1XBM607mImKDCRqzBYmpRRGEhljkW-jJvC11gDLLkNAUmVDsSInSEa0YhozFrC3MHakma8F0gvNhpQECJRQvFGOoi-OFu5IamFaN63oCTysLBtHxLIyhqEJMG3-zTgGb1DwLlVlmAWNNxEdHoVgNOK5vPP_-qbO9P0kewMvT8oH81uN6HVUMS_hbzK02o5bNnfgDL8Us-yWaHxWV7BxYAzsI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+to+Prevent+Fake+Cycles+in+DFG+Models+Discovered+from+Event+Logs%3F&rft.jtitle=Programming+and+computer+software&rft.au=Shaimov%2C+N.+D.&rft.au=Lomazova%2C+I.+A.&rft.au=Nesterov%2C+R.+A.&rft.date=2025-12-01&rft.pub=Pleiades+Publishing&rft.issn=0361-7688&rft.eissn=1608-3261&rft.volume=51&rft.issue=6&rft.spage=395&rft.epage=408&rft_id=info:doi/10.1134%2FS0361768825700264&rft.externalDocID=10_1134_S0361768825700264 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-7688&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-7688&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-7688&client=summon |