How to Prevent Fake Cycles in DFG Models Discovered from Event Logs?

Process mining methods are aimed at modelling and analysing process data generated by information systems. The processes often contain nonrecurring events that occur no more than once per case. Thus, a process model should not contain cycles with such events. If a cycle contains a nonrecurring event...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Programming and computer software Ročník 51; číslo 6; s. 395 - 408
Hlavní autoři: Shaimov, N. D., Lomazova, I. A., Nesterov, R. A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Moscow Pleiades Publishing 01.12.2025
Springer Nature B.V
Témata:
ISSN:0361-7688, 1608-3261
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Process mining methods are aimed at modelling and analysing process data generated by information systems. The processes often contain nonrecurring events that occur no more than once per case. Thus, a process model should not contain cycles with such events. If a cycle contains a nonrecurring event, we refer to it as a fake cycle. Existing process discovery algorithms produce process models with fake cycles that distort the observed behaviour of the process and reduce model precision. Fake cycles can be avoided by allowing multiple vertex instances for the same event in a process model, which breaks the cycles. In this paper, we propose a new algorithm to discover directly-follows graph process models without fake cycles. The algorithm partitions the event log into sublogs and merges the models discovered from these sublogs while preserving structural correctness. The effectiveness of the algorithm is tested on both real and synthetic event logs. The results demonstrate that the partition-merge approach produces models that preserve fitness while avoiding the introduction of fake cycles.
AbstractList Process mining methods are aimed at modelling and analysing process data generated by information systems. The processes often contain nonrecurring events that occur no more than once per case. Thus, a process model should not contain cycles with such events. If a cycle contains a nonrecurring event, we refer to it as a fake cycle. Existing process discovery algorithms produce process models with fake cycles that distort the observed behaviour of the process and reduce model precision. Fake cycles can be avoided by allowing multiple vertex instances for the same event in a process model, which breaks the cycles. In this paper, we propose a new algorithm to discover directly-follows graph process models without fake cycles. The algorithm partitions the event log into sublogs and merges the models discovered from these sublogs while preserving structural correctness. The effectiveness of the algorithm is tested on both real and synthetic event logs. The results demonstrate that the partition-merge approach produces models that preserve fitness while avoiding the introduction of fake cycles.
Author Nesterov, R. A.
Lomazova, I. A.
Shaimov, N. D.
Author_xml – sequence: 1
  givenname: N. D.
  surname: Shaimov
  fullname: Shaimov, N. D.
  email: nikshaim@gmail.com
  organization: HSE University
– sequence: 2
  givenname: I. A.
  surname: Lomazova
  fullname: Lomazova, I. A.
  email: ilomazova@hse.ru
  organization: HSE University
– sequence: 3
  givenname: R. A.
  surname: Nesterov
  fullname: Nesterov, R. A.
  email: rnesterov@hse.ru
  organization: HSE University
BookMark eNp1kE9LAzEQxYNUsK1-AG8Bz6uTbDZJTyL9K1QU1POym0xKa7upybal395dK3gQT3N4v_dm5vVIp_IVEnLN4JaxVNy9QiqZklrzTAFwKc5Il0nQScol65BuKyetfkF6Ma4AGIAQXTKa-QOtPX0JuMeqppPiA-nwaNYY6bKio8mUPnmL60hHy2j8HgNa6oLf0PE3P_eLeH9Jzl2xjnj1M_vkfTJ-G86S-fP0cfgwTwxXUCcOLKArrRNOAdfWCCl0xgoJmdQKMHPglGwOBVAGUZXOFdoN0rKwwtjMpX1yc8rdBv-5w1jnK78LVbMyb97UA845yIZiJ8oEH2NAl2_DclOEY84gb8vK_5TVePjJExu2WmD4Tf7f9AWmtGtl
Cites_doi 10.1007/s10619-013-7127-5
10.1007/978-3-319-49451-7
10.1007/978-3-540-75183-0_24
10.1007/978-3-031-08848-3
10.1016/j.is.2013.12.007
10.1007/978-3-642-38697-8_17
10.1007/978-3-319-19488-2_15
10.1007/978-3-031-08848-3_2
10.1109/tkde.2018.2841877
10.1145/2851613.2851645
10.1007/978-3-319-99414-7
10.1016/j.knosys.2024.112431
10.1016/j.jbi.2022.103994
10.1016/j.simpa.2023.100556
10.1007/978-3-319-07734-5_5
10.1016/j.procs.2019.12.189
10.1016/j.knosys.2019.105054
10.1007/978-3-319-59536-8_34
10.1007/11494744_5
10.1007/978-3-662-49851-4
10.1007/978-3-319-16071-9
10.1002/widm.1045
10.1016/j.knosys.2015.04.012
10.1145/2980764
10.1142/S0218843014400012
10.1016/j.eswa.2023.122747
10.1007/978-3-319-17482-2
10.1109/CIDM.2011.5949453
10.1016/j.knosys.2025.112970
10.48550/arXiv.2502.00499
10.1016/j.is.2007.07.001
10.1007/s00607-015-0441-1
10.3390/app11094265
10.1007/s10257-014-0234-7
10.3233/fi-2020-1946
10.3233/FI-2014-1071
10.1007/978-3-540-68746-7_24
10.1016/j.knosys.2016.03.003
10.3103/s0146411617070306
10.1007/978-1-4684-2001-2_9
10.1016/j.knosys.2012.05.010
10.1007/978-3-030-40172-6_21
10.1007/978-3-540-75183-0_27
10.1007/978-3-662-45563-0_26
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2025 ISSN 0361-7688, Programming and Computer Software, 2025, Vol. 51, No. 6, pp. 395–408. © Pleiades Publishing, Ltd., 2025.
Pleiades Publishing, Ltd. 2025.
Copyright_xml – notice: Pleiades Publishing, Ltd. 2025 ISSN 0361-7688, Programming and Computer Software, 2025, Vol. 51, No. 6, pp. 395–408. © Pleiades Publishing, Ltd., 2025.
– notice: Pleiades Publishing, Ltd. 2025.
DBID AAYXX
CITATION
JQ2
DOI 10.1134/S0361768825700264
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1608-3261
EndPage 408
ExternalDocumentID 10_1134_S0361768825700264
GroupedDBID -Y2
.86
.DC
.VR
06D
0R~
0VY
123
1N0
29P
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
408
409
40D
40E
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABBBX
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFFHD
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P9O
PF0
PHGZM
PHGZT
PQGLB
PT4
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
ZMTXR
~A9
AAYXX
CITATION
JQ2
ID FETCH-LOGICAL-c270t-f0d0efbdf4f7028dc464851a6056870e5f0f76361007cee7bffa8f93bad4cd5f3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001610337500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0361-7688
IngestDate Fri Nov 07 23:34:25 EST 2025
Thu Nov 13 04:32:53 EST 2025
Thu Nov 06 11:43:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-f0d0efbdf4f7028dc464851a6056870e5f0f76361007cee7bffa8f93bad4cd5f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3268922206
PQPubID 2043762
PageCount 14
ParticipantIDs proquest_journals_3268922206
crossref_primary_10_1134_S0361768825700264
springer_journals_10_1134_S0361768825700264
PublicationCentury 2000
PublicationDate 20251200
2025-12-00
20251201
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 20251200
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: New York
PublicationTitle Programming and computer software
PublicationTitleAbbrev Program Comput Soft
PublicationYear 2025
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References D. Fahland (3958_CR55) 2015; 47
A. Rozinat (3958_CR29) 2008; 33
J. De Smedt (3958_CR47) 2014
A.A. Mitsyuk (3958_CR56) 2017; 51
3958_CR14
3958_CR17
F. Mannhardt (3958_CR27) 2017
W.M.P. Van der Aalst (3958_CR58) 2013; 31
3958_CR19
3958_CR18
J.C. Vidal (3958_CR4) 2016; 100
3958_CR53
A.A. Kalenkova (3958_CR50) 2014; 133
3958_CR10
3958_CR54
3958_CR13
A. Adriansyah (3958_CR33) 2015; 13
3958_CR12
3958_CR6
3958_CR5
W.M.P. Van der Aalst (3958_CR16) 2019; 164
T. Liu (3958_CR7) 2012; 35
3958_CR8
A. Kalenkova (3958_CR49) 2014
W. Van der Aalst (3958_CR51) 2015
3958_CR9
R. Bergenthum (3958_CR38) 2007
W.M.P. Van der Aalst (3958_CR52) 2020; 175
3958_CR26
3958_CR25
3958_CR20
W. Van der Aalst (3958_CR43) 2005
3958_CR22
3958_CR21
3958_CR3
3958_CR23
W. Van der Aalst (3958_CR28) 2012; 2
P. Delias (3958_CR2) 2015; 84
Ch.W. Günther (3958_CR42) 2007
3958_CR37
3958_CR39
W.M.P. van der Aalst (3958_CR1) 2016
3958_CR31
J. Muñoz-Gama (3958_CR32) 2010
3958_CR30
A. Augusto (3958_CR44) 2019; 31
A. Polyvyanyy (3958_CR57) 2017; 25
3958_CR35
3958_CR34
J. Carmona (3958_CR36) 2018
F. Mannhardt (3958_CR24) 2016; 98
3958_CR48
W. Van der Aalst (3958_CR15) 2020
3958_CR40
3958_CR41
F. Milani (3958_CR11) 2022
3958_CR46
3958_CR45
References_xml – volume: 31
  start-page: 471
  year: 2013
  ident: 3958_CR58
  publication-title: Distrib. Parallel Databases
  doi: 10.1007/s10619-013-7127-5
– ident: 3958_CR37
  doi: 10.1007/978-3-319-49451-7
– volume-title: Fuzzy mining—Adaptive process simplification based on multi-perspective metrics, Business Process Management
  year: 2007
  ident: 3958_CR42
  doi: 10.1007/978-3-540-75183-0_24
– ident: 3958_CR35
  doi: 10.1007/978-3-031-08848-3
– ident: 3958_CR21
– volume: 47
  start-page: 220
  year: 2015
  ident: 3958_CR55
  publication-title: Inf. Syst.
  doi: 10.1016/j.is.2013.12.007
– ident: 3958_CR40
  doi: 10.1007/978-3-642-38697-8_17
– volume-title: Process discovery using localized events, Application and Theory of Petri Nets and Concurrency
  year: 2015
  ident: 3958_CR51
  doi: 10.1007/978-3-319-19488-2_15
– ident: 3958_CR17
  doi: 10.1007/978-3-031-08848-3_2
– volume: 31
  start-page: 686
  year: 2019
  ident: 3958_CR44
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/tkde.2018.2841877
– ident: 3958_CR48
  doi: 10.1145/2851613.2851645
– volume-title: Conformance Checking: Relating Processes and Models
  year: 2018
  ident: 3958_CR36
  doi: 10.1007/978-3-319-99414-7
– ident: 3958_CR6
  doi: 10.1016/j.knosys.2024.112431
– ident: 3958_CR3
  doi: 10.1016/j.jbi.2022.103994
– ident: 3958_CR12
  doi: 10.1016/j.simpa.2023.100556
– ident: 3958_CR53
– ident: 3958_CR25
– ident: 3958_CR30
– volume-title: Process model discovery: A method based on transition system decomposition, Application and Theory of Petri Nets and Concurrency
  year: 2014
  ident: 3958_CR49
  doi: 10.1007/978-3-319-07734-5_5
– volume: 164
  start-page: 321
  year: 2019
  ident: 3958_CR16
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2019.12.189
– ident: 3958_CR8
  doi: 10.1016/j.knosys.2019.105054
– volume-title: Data-driven process discovery—Revealing conditional infrequent behavior from event logs, Advanced Information Systems Engineering
  year: 2017
  ident: 3958_CR27
  doi: 10.1007/978-3-319-59536-8_34
– volume-title: Genetic process mining, Applications and Theory of Petri Nets
  year: 2005
  ident: 3958_CR43
  doi: 10.1007/11494744_5
– volume-title: Process Mining: Data Science in Action
  year: 2016
  ident: 3958_CR1
  doi: 10.1007/978-3-662-49851-4
– ident: 3958_CR45
  doi: 10.1007/978-3-319-16071-9
– volume: 2
  start-page: 182
  year: 2012
  ident: 3958_CR28
  publication-title: Data Min. Knowl. Discovery
  doi: 10.1002/widm.1045
– ident: 3958_CR20
– ident: 3958_CR14
– volume: 84
  start-page: 203
  year: 2015
  ident: 3958_CR2
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.04.012
– volume: 25
  start-page: 1
  year: 2017
  ident: 3958_CR57
  publication-title: ACM Trans. Software Eng. Methodology
  doi: 10.1145/2980764
– ident: 3958_CR31
  doi: 10.1142/S0218843014400012
– ident: 3958_CR9
  doi: 10.1016/j.eswa.2023.122747
– ident: 3958_CR34
  doi: 10.1007/978-3-319-17482-2
– ident: 3958_CR41
  doi: 10.1109/CIDM.2011.5949453
– ident: 3958_CR10
  doi: 10.1016/j.knosys.2025.112970
– ident: 3958_CR18
  doi: 10.48550/arXiv.2502.00499
– volume: 33
  start-page: 64
  year: 2008
  ident: 3958_CR29
  publication-title: Inf. Syst.
  doi: 10.1016/j.is.2007.07.001
– volume: 98
  start-page: 407
  year: 2016
  ident: 3958_CR24
  publication-title: Computing
  doi: 10.1007/s00607-015-0441-1
– ident: 3958_CR5
  doi: 10.3390/app11094265
– volume: 13
  start-page: 37
  year: 2015
  ident: 3958_CR33
  publication-title: Inf. Syst. e-Bus. Manage.
  doi: 10.1007/s10257-014-0234-7
– ident: 3958_CR13
– volume: 175
  start-page: 1
  year: 2020
  ident: 3958_CR52
  publication-title: Fundam. Inf.
  doi: 10.3233/fi-2020-1946
– volume-title: Process mining: A guide for practitioners, Research Challenges in Information Science
  year: 2022
  ident: 3958_CR11
– volume: 133
  start-page: 197
  year: 2014
  ident: 3958_CR50
  publication-title: Fundam. Inf.
  doi: 10.3233/FI-2014-1071
– ident: 3958_CR39
  doi: 10.1007/978-3-540-68746-7_24
– ident: 3958_CR23
– volume: 100
  start-page: 160
  year: 2016
  ident: 3958_CR4
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2016.03.003
– ident: 3958_CR46
– volume: 51
  start-page: 709
  year: 2017
  ident: 3958_CR56
  publication-title: Autom. Control Comput. Sci.
  doi: 10.3103/s0146411617070306
– ident: 3958_CR22
– ident: 3958_CR19
  doi: 10.1007/978-1-4684-2001-2_9
– ident: 3958_CR54
– volume-title: A Fresh Look at Precision in Process Conformance, Business Process Management
  year: 2010
  ident: 3958_CR32
– ident: 3958_CR26
– volume: 35
  start-page: 320
  year: 2012
  ident: 3958_CR7
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2012.05.010
– volume-title: Academic view: Development of the process mining discipline, Process Mining in Action: Principles, Use Cases and Outlook
  year: 2020
  ident: 3958_CR15
  doi: 10.1007/978-3-030-40172-6_21
– volume-title: Process mining based on regions of languages, Business Process Management, Alonso., G.
  year: 2007
  ident: 3958_CR38
  doi: 10.1007/978-3-540-75183-0_27
– volume-title: Multi-paradigm process mining: Retrieving better models by combining rules and sequences, On the Move to Meaningful Internet Systems: OTM 2014 Conferences
  year: 2014
  ident: 3958_CR47
  doi: 10.1007/978-3-662-45563-0_26
SSID ssj0010044
Score 2.3376005
Snippet Process mining methods are aimed at modelling and analysing process data generated by information systems. The processes often contain nonrecurring events that...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 395
SubjectTerms Algorithms
Artificial Intelligence
Computer Science
Information systems
Operating Systems
Software Engineering
Software Engineering/Programming and Operating Systems
Title How to Prevent Fake Cycles in DFG Models Discovered from Event Logs?
URI https://link.springer.com/article/10.1134/S0361768825700264
https://www.proquest.com/docview/3268922206
Volume 51
WOSCitedRecordID wos001610337500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals New Starts & Take-Overs Collection
  customDbUrl:
  eissn: 1608-3261
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010044
  issn: 0361-7688
  databaseCode: RSV
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60evBifWK1yh48KcGYbJLdk0jb2EMpQlV6C0l2V4qSSBMV_72zm8Ti66DnDEMYdma-4ZsHwLGijhP7PLEcPf5LY9ezEsaE5SibqcQVikszKDwKxmM2nfLreo67aLrdG0rSROrq7gg9m2CsPUdwzPTdNawc6DKseHrZjC7RJ3cf1IGmKCuC8tzS4jWV-aOKz8logTC_kKIm14Ttf_3lBqzX0JJcVm9hE5ZktgXt5mwDqb14G_rD_JWUOam3N5EwfpCk96bb48gsI_3wiugLaY8F6c-KVLd4SkH0GAoZGPlRfl9c7MBtOLjpDa36mIKVOoFdWsoWtlSJUFQFiClESn2KaCvGcsZHn5WeshXGGl93TWDiDBKlYqa4m8SCpsJT7i60sjyTe0CkmV1A4IjFCcVYyRHkSJ7w2PVTVC87cNJYNXqqdmZEptZwafTNPh3oNnaPavcpIsSUjCNysf0OnDZ2Xnz-Vdn-n6QPYM3R13xNc0oXWuX8WR7CavpSzor5kXlV7-B5wvo
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB20CnqxfmK16h48KcE02SbZk0jbWDEWoVW8hSS7K0VJpYmK_97ZTWLx66DnDEsYdmbe8Gb2ARxKalmRw2LDUuu_NLLbRux53LCk6cnY5pIJvSgcuIOBd3fHrss97qyadq8oSZ2pC90RejLEXNtCcOwp3TXsHOg8LFClsqNa9OHtB3WgKMqCoGwZyrykMn884nMxmiHML6SorjV-_V9_uQorJbQkZ8VdWIM5ka5DvZJtIGUUb0C3P3kl-YSUrzcRP3oQpPOmxuPIOCVd_5wohbTHjHTHWaJGPAUnag2F9LR9MLnPTjfhxu-NOn2jFFMwEss1c0Oa3BQy5pJKFzEFT6hDEW1F2M44GLOiLU2JucZRUxNYON1YysiTzI4jThPelvYW1NJJKraBCL27gMARmxOKuZIhyBEsZpHtJHi8aMBR5dXwqXgzI9S9hk3Db_5pQLPye1iGTxYipvQYIhfTacBx5efZ518P2_mT9QEs9UdXQRhcDC53YdlSyr56UKUJtXz6LPZgMXnJx9l0X9-wdw6cxd4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60inixPrFadQ-elGCabPM4iTSNFUspVqW3kGR3pShJaaLiv3c22Vh8HcRzhmGZ7Mx8w8zsB3AsqGGElhtphlz_paHZ1iLHYZohdEdEJhMuLxaF-_Zg4IzH7lDxnGbVtHvVkix3GuQrTUl-NmVCcZDQsxHG3RYCZUdysGEVQRdhiWIhI2e6bkb3H20E2a4sm5UtTYqrtuaPKj4npjna_NIgLfKOX__3iddhTUFOclHekQ1Y4Mkm1Cs6B6K8ewu8XvpK8pSoV52IHz5y0nmTY3NkkhDPvySSOe0pI94ki-XoJ2dErqeQbiHfTx-y822487u3nZ6mSBa02LD1XBM607mImKDCRqzBYmpRRGEhljkW-jJvC11gDLLkNAUmVDsSInSEa0YhozFrC3MHakma8F0gvNhpQECJRQvFGOoi-OFu5IamFaN63oCTysLBtHxLIyhqEJMG3-zTgGb1DwLlVlmAWNNxEdHoVgNOK5vPP_-qbO9P0kewMvT8oH81uN6HVUMS_hbzK02o5bNnfgDL8Us-yWaHxWV7BxYAzsI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+to+Prevent+Fake+Cycles+in+DFG+Models+Discovered+from+Event+Logs%3F&rft.jtitle=Programming+and+computer+software&rft.au=Shaimov%2C+N.+D.&rft.au=Lomazova%2C+I.+A.&rft.au=Nesterov%2C+R.+A.&rft.date=2025-12-01&rft.pub=Pleiades+Publishing&rft.issn=0361-7688&rft.eissn=1608-3261&rft.volume=51&rft.issue=6&rft.spage=395&rft.epage=408&rft_id=info:doi/10.1134%2FS0361768825700264&rft.externalDocID=10_1134_S0361768825700264
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-7688&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-7688&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-7688&client=summon