A symmetric formula for hypergeometric series
In terms of Dougall’s 2 H 2 series identity and the series rearrangement method, we establish a symmetric formula for hypergeometric series. Then it is utilized to derive a known nonterminating form of Saalschütz’s theorem. Similarly, we also show that Bailey’s 6 ψ 6 series identity implies the nont...
Uloženo v:
| Vydáno v: | The Ramanujan journal Ročník 55; číslo 3; s. 919 - 927 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.08.2021
Springer Nature B.V |
| Témata: | |
| ISSN: | 1382-4090, 1572-9303 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In terms of Dougall’s
2
H
2
series identity and the series rearrangement method, we establish a symmetric formula for hypergeometric series. Then it is utilized to derive a known nonterminating form of Saalschütz’s theorem. Similarly, we also show that Bailey’s
6
ψ
6
series identity implies the nonterminating form of Jackson’s
8
ϕ
7
summation formula. Considering the reversibility of the proofs, it is routine to show that Dougall’s
2
H
2
series identity is equivalent to a known nonterminating form of Saalschütz’s theorem and Bailey’s
6
ψ
6
series identity is equivalent to the nonterminating form of Jackson’s
8
ϕ
7
summation formula. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1382-4090 1572-9303 |
| DOI: | 10.1007/s11139-019-00248-8 |