A big graph clustering method to support parallel processing by perceiving graph’s application algorithm semantics
As the size of graph data grows exponentially, it is usually processed by parallel and distributed computing environment. During parallel processing, the first step is to divide the graph data into many subgraphs and then place them on different computational nodes. However, the existing graph clust...
Uložené v:
| Vydané v: | The Journal of supercomputing Ročník 80; číslo 2; s. 2838 - 2861 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.01.2024
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0920-8542, 1573-0484 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | As the size of graph data grows exponentially, it is usually processed by parallel and distributed computing environment. During parallel processing, the first step is to divide the graph data into many subgraphs and then place them on different computational nodes. However, the existing graph clustering methods cannot adapt to parallel processing or improve computing performance. The main reason is that these methods only focus on the graph data but do not care about the graph’s application algorithm. Therefore, this paper addresses a graph clustering method that supports parallel processing by perceiving the application algorithm semantics. We specifically focus on the characteristic of "tight inside and loose outside". Based on this characteristic, we give a new formula for calculating the modularity of the subgraph. In a graph application, graph data and its associated application algorithm are not separated from each other. Thus, we also focus on the execution patterns of the application algorithm. Combining the modularity of a subgraph and execution patterns of an application algorithm, we present the critical concept of semantic serial degree as a new criterion for big graph clustering. Consequently, we propose a graph clustering method that effectively balances the importance between the graph data and its associated application algorithm. By achieving this balance, our approach ensures that the final clustering results are more suitable for parallel and distributed processing. Extended experiments show that our proposed graph clustering method is more general and compatible with traditional clustering methods. Compared with FastUnfolding, a state-of-the-art graph clustering method, the completion times of an application algorithm are significantly reduced due to the help of the proposed graph clustering method. |
|---|---|
| AbstractList | As the size of graph data grows exponentially, it is usually processed by parallel and distributed computing environment. During parallel processing, the first step is to divide the graph data into many subgraphs and then place them on different computational nodes. However, the existing graph clustering methods cannot adapt to parallel processing or improve computing performance. The main reason is that these methods only focus on the graph data but do not care about the graph’s application algorithm. Therefore, this paper addresses a graph clustering method that supports parallel processing by perceiving the application algorithm semantics. We specifically focus on the characteristic of "tight inside and loose outside". Based on this characteristic, we give a new formula for calculating the modularity of the subgraph. In a graph application, graph data and its associated application algorithm are not separated from each other. Thus, we also focus on the execution patterns of the application algorithm. Combining the modularity of a subgraph and execution patterns of an application algorithm, we present the critical concept of semantic serial degree as a new criterion for big graph clustering. Consequently, we propose a graph clustering method that effectively balances the importance between the graph data and its associated application algorithm. By achieving this balance, our approach ensures that the final clustering results are more suitable for parallel and distributed processing. Extended experiments show that our proposed graph clustering method is more general and compatible with traditional clustering methods. Compared with FastUnfolding, a state-of-the-art graph clustering method, the completion times of an application algorithm are significantly reduced due to the help of the proposed graph clustering method. |
| Author | Cheng, Tengteng Zeng, Guosun Sun, Zhipeng |
| Author_xml | – sequence: 1 givenname: Tengteng surname: Cheng fullname: Cheng, Tengteng organization: Department of Computer Science and Technology, Tongji University, Tongji Branch, National Engineering and Technology Center of High-Performance Computer – sequence: 2 givenname: Guosun surname: Zeng fullname: Zeng, Guosun email: gszeng@tongji.edu.cn organization: Department of Computer Science and Technology, Tongji University, Tongji Branch, National Engineering and Technology Center of High-Performance Computer – sequence: 3 givenname: Zhipeng surname: Sun fullname: Sun, Zhipeng organization: Department of Computer Science and Technology, Tongji University, Tongji Branch, National Engineering and Technology Center of High-Performance Computer |
| BookMark | eNp9kE1OwzAQhS1UJNrCBVhZYh3wTxIny6riT6rEBtaW49hpqiQ2tovaHdfgepwEp0Fix2o00ntv5n0LMBvMoAC4xugWI8TuPMaEsAQRmqAsYyQ5nIE5zlhc0yKdgTkqCUqKLCUXYOH9DiGUUkbnIKxg1TawccJuoez2PijXDg3sVdiaGgYD_d5a4wK0womuUx20zkjl_aiqjtAqJ1X7MW6nkO_PLw-FtV0rRWjNAEXXGNeGbQ-96sUQWukvwbkWnVdXv3MJ3h7uX9dPyebl8Xm92iSSMBQSJXOty5qyWBEXNatYmpWlKvJKa0GqFNc51SWJRURd5ZJiXROVY62EllKSjC7BzZQbX37fKx_4zuzdEE9ySrI8K9MS0agik0o6471TmlvX9sIdOUZ8pMsnujzS5Se6_BBNdDJ5O_JS7i_6H9cPLamDwQ |
| Cites_doi | 10.1145/2522968.2522981 10.1007/s11227-020-03510-9 10.1145/1273496.1273595 10.1109/2.989932 10.1016/S0020-0190(00)00142-3 10.1103/PhysRevE.76.036106 10.1109/TBDATA.2019.2931532 10.1016/j.eswa.2019.113020 10.1145/2623330.2623629 10.23974/ijol.2019.vol4.1.106 10.1371/journal.pone.0018209 10.1145/3385415 10.1016/j.jnca.2018.02.011 10.26421/JDI1.2-1 10.1109/TKDE.2018.2866424 10.1109/TAI.2021.3065894 10.1145/2484425.2484427 10.1109/TPAMI.2006.227 10.1088/1742-5468/2008/10/P10008 10.1109/HPEC.2014.7040973 10.1080/01972240590925348 10.1145/1582716.1582723 10.48550/arXiv.1510.05043 10.1109/ICDE.2018.00115 10.1109/ACCESS.2019.2921477 10.1016/j.ins.2019.10.076 10.1109/TPAMI.2019.2926033 10.1103/PhysRevE.69.026113 10.1016/j.future.2017.06.027 10.48550/arXiv.0711.0189 10.1109/HPEC.2019.8916299 10.1126/science.1184819 10.1140/epjb/e2004-00111-4 10.48550/arXiv.2106.05610 10.1073/pnas.0605965104 10.1103/PhysRevE.69.066133 10.1186/1471-2105-10-99 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s11227-023-05572-x |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0484 |
| EndPage | 2861 |
| ExternalDocumentID | 10_1007_s11227_023_05572_x |
| GrantInformation_xml | – fundername: the National Natural Science Foundation of China grantid: 62072337; 62072337; 62072337 – fundername: the National Key R&D Program of China grantid: 2019YFB1704100; 2019YFB1704100; 2019YFB1704100 – fundername: the National Social Science Foundation of China grantid: 17BTQ086; 17BTQ086; 17BTQ086 – fundername: the Subproject of National Seafloor Observatory System of China grantid: 2970000001/001/016; 2970000001/001/016; 2970000001/001/016 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBD EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7X Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c270t-ec6ff9d3710018d7b74599e86bffa2b41d63f92437adb6c31fd2e61feafccc253 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001052459100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0920-8542 |
| IngestDate | Sun Nov 30 04:23:39 EST 2025 Sat Nov 29 04:27:45 EST 2025 Fri Feb 21 02:41:21 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Graph clustering Parallel processing Semantic serial degree Big graph Modularity of a subgraph Graph’s application algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c270t-ec6ff9d3710018d7b74599e86bffa2b41d63f92437adb6c31fd2e61feafccc253 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3256594903 |
| PQPubID | 2043774 |
| PageCount | 24 |
| ParticipantIDs | proquest_journals_3256594903 crossref_primary_10_1007_s11227_023_05572_x springer_journals_10_1007_s11227_023_05572_x |
| PublicationCentury | 2000 |
| PublicationDate | 20240100 2024-01-00 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 1 year: 2024 text: 20240100 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | An International Journal of High-Performance Computer Design, Analysis, and Use |
| PublicationTitle | The Journal of supercomputing |
| PublicationTitleAbbrev | J Supercomput |
| PublicationYear | 2024 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Xin RS, Gonzalez JE, Franklin MJ et al (2013) Graphx: a resilient distributed graph system on spark. In: First international workshop on graph data management experiences and systems, p 1–6. https://doi.org/10.1145/2484425.2484427 RaghavanUNAlbertRKumaraSNear linear time algorithm to detect community structures in large-scale networksPhys Rev E200776311110.1103/PhysRevE.76.036106 Dasgupta S (2016) A cost function for similarity-based hierarchical clustering. In: Proceedings of the forty-eighth annual ACM symposium on theory of computing, p 118–127. https://doi.org/10.48550/arXiv.1510.05043 TaoCShanRLiHAn agglomerative-adapted partition approach for large-scale graphsInt J Librariansh20194131810.23974/ijol.2019.vol4.1.106 WangYHeWShiJCommunity detection algorithm based on community densityAppl Res Comput201734719751979 FortunatoSBarthélemyMResolution limit in community detectionProc Natl Acad Sci20071041364110.1073/pnas.0605965104 LuxburgUVA tutorial on spectral clusteringStat Comput2007174395416240980310.48550/arXiv.0711.0189 Gonzalez JE, Low Y, Gu H, Bickson D et al (2012) PowerGraph: distributed graph-parallel computation on natural graphs. In: 10th USENIX symposium on operating systems design and implementation, p 17–30 NewmanMEFast algorithm for detecting community structure in networksPhys Rev E20046961510.1103/PhysRevE.69.066133 HuKZengGDingSCluster-scheduling big graph traversal task for parallel processing in heterogeneous cloud based on DAG transformationIEEE Access20197770707708210.1109/ACCESS.2019.2921477 FrantiPVirmajokiOHautamakiVFast agglomerative clustering using a k-nearest neighbor graphIEEE Trans Pattern Anal Mach Intell200628111875188110.1109/TPAMI.2006.227 HartuvEShamirRA clustering algorithm based on graph connectivityInf Process Lett2000764–6175181180767610.1016/S0020-0190(00)00142-3 Malewicz G, Austern MH, Bik AJ et al (2010) Pregel: a system for large-scale graph processing. In: Proceedings of the 2010 ACM SIGMOD international conference on management of data, p135–146. https://doi.org/10.1145/1582716.1582723 NewmanMEGirvanMFinding and evaluating community structure in networksPhys Rev E200469211610.1103/PhysRevE.69.026113 RosvallMBergstromCTMultilevel compression of random walks on networks reveals hierarchical organization in large integrated systemsPLoS ONE20116411010.1371/journal.pone.0018209 LiTZhangYFast compressive spectral clustering for large-scale sparse graphIEEE Trans Big Data20228119320210.1109/TBDATA.2019.2931532 SunHHeFHuangJNetwork embedding for community detection in attributed networksACM Trans Knowl Discov Data202014312510.1145/3385415 LuMZhangZLPANNI: Overlapping community detection using label propagation in large-scale complex networksIEEE Trans Knowl Data Eng20183191736174910.1109/TKDE.2018.2866424 MohammadiMFazlaliMHosseinzadehMAccelerating Louvain community detection algorithm on graphic processing unitJ Supercomput20217766056607710.1007/s11227-020-03510-9 HuKZengGPartitioning big graph with respect to arbitrary proportions in a streaming mannerFutur Gener Comput Syst20188011110.1016/j.future.2017.06.027 Dhulipala L, Eisenstat D, Łącki J et al (2021) Hierarchical agglomerative graph clustering in nearly-linear time. In: International conference on machine learning, p 2676–2686. https://doi.org/10.48550/arXiv.2106.05610 BarthelemyMBetweenness centrality in large complex networksEur Phys J B200438216316810.1140/epjb/e2004-00111-4 ZubaroğluAAtalayVData stream clustering: a reviewArtif Intell Rev20215421201123610.1145/2522968.2522981 TylerJRWilkinsonDMEmail as spectroscopy: automated discovery of community structure within organizationsInf Soc200521214315310.1080/01972240590925348 Rattigan MJ, Maier M et al (2007) Graph clustering with network structure indices. In: Proceedings of the 24th international conference on machine learning, p 783–790. https://doi.org/10.1145/1273496.1273595 FlakeGWLawrenceSGilesCLSelf-organization and identification of web communitiesComputer2002353667010.1109/2.989932 ZhuJChenBCommunity detection based on modularity and k-plexesInf Sci202051312714210.1016/j.ins.2019.10.076 ShiokawaHFutamuraYEfficient vector partitioning algorithms for modularity-based graph clusteringJ Data Intell20191210112310.26421/JDI1.2-1 ChaoGSunSBiJA survey on multiview clusteringIEEE Trans Artif Intell20212214616810.1109/TAI.2021.3065894 El KouniIBKarouiWRomdhaneLBNode importance-based label propagation algorithm for overlapping community detection in networksExpert Syst Appl202016211310.1016/j.eswa.2019.113020 JavedMAYounisMSLatifSCommunity detection in networks: a multidisciplinary reviewJ Netw Comput Appl20181088711110.1016/j.jnca.2018.02.011 BlondelVDGuillaumeJLFast unfolding of communities in large networksJ Stat Mech: Theory Exp200820081011210.1088/1742-5468/2008/10/P10008 Duan L, Street WN, Liu Y, Lu H (2014) Community detection in graphs through correlation. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, p 1376–1385. https://doi.org/10.1145/2623330.2623629 Ghosh S, Halappanavar M, Tumeo A et al (2019) Scaling and quality of modularity optimization methods for graph clustering. In: IEEE high performance extreme computing conference, p 1–6. https://doi.org/10.1109/HPEC.2019.8916299 OkudaMSatohSICommunity detection using restrained random-walk similarityIEEE Trans Pattern Anal Mach Intell20194318910310.1109/TPAMI.2019.2926033 Deng CH, Zhao WL (2018) Fast k-means based on k-nn graph. In: 2018 IEEE 34th international conference on data engineering, p 1220–1223. https://doi.org/10.1109/ICDE.2018.00115 MuchaPJRichardsonTCommunity structure in time-dependent, multiscale, and multiplex networksScience20103285980876878266259010.1126/science.1184819 VlasblomJWodakSJMarkov clustering versus affinity propagation for the partitioning of protein interaction graphsBMC Bioinf200910111410.1186/1471-2105-10-99 WickramaarachchiCFrincuMSmallPFast parallel algorithm for unfolding of communities in large graphsIEEE High Perform Extrem Comput Conf201420141610.1109/HPEC.2014.7040973 Y Wang (5572_CR19) 2017; 34 M Rosvall (5572_CR30) 2011; 6 MA Javed (5572_CR6) 2018; 108 M Mohammadi (5572_CR24) 2021; 77 IB El Kouni (5572_CR27) 2020; 162 M Okuda (5572_CR31) 2019; 43 G Chao (5572_CR7) 2021; 2 C Wickramaarachchi (5572_CR21) 2014; 2014 GW Flake (5572_CR37) 2002; 35 5572_CR2 5572_CR1 H Sun (5572_CR22) 2020; 14 E Hartuv (5572_CR36) 2000; 76 ME Newman (5572_CR4) 2004; 69 J Zhu (5572_CR18) 2020; 513 UN Raghavan (5572_CR26) 2007; 76 5572_CR25 VD Blondel (5572_CR20) 2008; 2008 UV Luxburg (5572_CR32) 2007; 17 A Zubaroğlu (5572_CR8) 2021; 54 JR Tyler (5572_CR9) 2005; 21 K Hu (5572_CR39) 2018; 80 T Li (5572_CR34) 2022; 8 ME Newman (5572_CR15) 2004; 69 M Lu (5572_CR28) 2018; 31 S Fortunato (5572_CR16) 2007; 104 5572_CR3 J Vlasblom (5572_CR29) 2009; 10 PJ Mucha (5572_CR35) 2010; 328 H Shiokawa (5572_CR23) 2019; 1 5572_CR17 C Tao (5572_CR14) 2019; 4 5572_CR12 K Hu (5572_CR38) 2019; 7 M Barthelemy (5572_CR5) 2004; 38 P Franti (5572_CR13) 2006; 28 5572_CR10 5572_CR11 5572_CR33 |
| References_xml | – reference: Duan L, Street WN, Liu Y, Lu H (2014) Community detection in graphs through correlation. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, p 1376–1385. https://doi.org/10.1145/2623330.2623629 – reference: El KouniIBKarouiWRomdhaneLBNode importance-based label propagation algorithm for overlapping community detection in networksExpert Syst Appl202016211310.1016/j.eswa.2019.113020 – reference: VlasblomJWodakSJMarkov clustering versus affinity propagation for the partitioning of protein interaction graphsBMC Bioinf200910111410.1186/1471-2105-10-99 – reference: Dhulipala L, Eisenstat D, Łącki J et al (2021) Hierarchical agglomerative graph clustering in nearly-linear time. In: International conference on machine learning, p 2676–2686. https://doi.org/10.48550/arXiv.2106.05610 – reference: OkudaMSatohSICommunity detection using restrained random-walk similarityIEEE Trans Pattern Anal Mach Intell20194318910310.1109/TPAMI.2019.2926033 – reference: Dasgupta S (2016) A cost function for similarity-based hierarchical clustering. In: Proceedings of the forty-eighth annual ACM symposium on theory of computing, p 118–127. https://doi.org/10.48550/arXiv.1510.05043 – reference: Ghosh S, Halappanavar M, Tumeo A et al (2019) Scaling and quality of modularity optimization methods for graph clustering. In: IEEE high performance extreme computing conference, p 1–6. https://doi.org/10.1109/HPEC.2019.8916299 – reference: NewmanMEGirvanMFinding and evaluating community structure in networksPhys Rev E200469211610.1103/PhysRevE.69.026113 – reference: ZubaroğluAAtalayVData stream clustering: a reviewArtif Intell Rev20215421201123610.1145/2522968.2522981 – reference: BarthelemyMBetweenness centrality in large complex networksEur Phys J B200438216316810.1140/epjb/e2004-00111-4 – reference: HuKZengGDingSCluster-scheduling big graph traversal task for parallel processing in heterogeneous cloud based on DAG transformationIEEE Access20197770707708210.1109/ACCESS.2019.2921477 – reference: JavedMAYounisMSLatifSCommunity detection in networks: a multidisciplinary reviewJ Netw Comput Appl20181088711110.1016/j.jnca.2018.02.011 – reference: LiTZhangYFast compressive spectral clustering for large-scale sparse graphIEEE Trans Big Data20228119320210.1109/TBDATA.2019.2931532 – reference: Rattigan MJ, Maier M et al (2007) Graph clustering with network structure indices. In: Proceedings of the 24th international conference on machine learning, p 783–790. https://doi.org/10.1145/1273496.1273595 – reference: RaghavanUNAlbertRKumaraSNear linear time algorithm to detect community structures in large-scale networksPhys Rev E200776311110.1103/PhysRevE.76.036106 – reference: LuxburgUVA tutorial on spectral clusteringStat Comput2007174395416240980310.48550/arXiv.0711.0189 – reference: Gonzalez JE, Low Y, Gu H, Bickson D et al (2012) PowerGraph: distributed graph-parallel computation on natural graphs. In: 10th USENIX symposium on operating systems design and implementation, p 17–30 – reference: FortunatoSBarthélemyMResolution limit in community detectionProc Natl Acad Sci20071041364110.1073/pnas.0605965104 – reference: HuKZengGPartitioning big graph with respect to arbitrary proportions in a streaming mannerFutur Gener Comput Syst20188011110.1016/j.future.2017.06.027 – reference: WangYHeWShiJCommunity detection algorithm based on community densityAppl Res Comput201734719751979 – reference: NewmanMEFast algorithm for detecting community structure in networksPhys Rev E20046961510.1103/PhysRevE.69.066133 – reference: ChaoGSunSBiJA survey on multiview clusteringIEEE Trans Artif Intell20212214616810.1109/TAI.2021.3065894 – reference: TylerJRWilkinsonDMEmail as spectroscopy: automated discovery of community structure within organizationsInf Soc200521214315310.1080/01972240590925348 – reference: MuchaPJRichardsonTCommunity structure in time-dependent, multiscale, and multiplex networksScience20103285980876878266259010.1126/science.1184819 – reference: ZhuJChenBCommunity detection based on modularity and k-plexesInf Sci202051312714210.1016/j.ins.2019.10.076 – reference: MohammadiMFazlaliMHosseinzadehMAccelerating Louvain community detection algorithm on graphic processing unitJ Supercomput20217766056607710.1007/s11227-020-03510-9 – reference: Xin RS, Gonzalez JE, Franklin MJ et al (2013) Graphx: a resilient distributed graph system on spark. In: First international workshop on graph data management experiences and systems, p 1–6. https://doi.org/10.1145/2484425.2484427 – reference: BlondelVDGuillaumeJLFast unfolding of communities in large networksJ Stat Mech: Theory Exp200820081011210.1088/1742-5468/2008/10/P10008 – reference: WickramaarachchiCFrincuMSmallPFast parallel algorithm for unfolding of communities in large graphsIEEE High Perform Extrem Comput Conf201420141610.1109/HPEC.2014.7040973 – reference: TaoCShanRLiHAn agglomerative-adapted partition approach for large-scale graphsInt J Librariansh20194131810.23974/ijol.2019.vol4.1.106 – reference: ShiokawaHFutamuraYEfficient vector partitioning algorithms for modularity-based graph clusteringJ Data Intell20191210112310.26421/JDI1.2-1 – reference: LuMZhangZLPANNI: Overlapping community detection using label propagation in large-scale complex networksIEEE Trans Knowl Data Eng20183191736174910.1109/TKDE.2018.2866424 – reference: Deng CH, Zhao WL (2018) Fast k-means based on k-nn graph. In: 2018 IEEE 34th international conference on data engineering, p 1220–1223. https://doi.org/10.1109/ICDE.2018.00115 – reference: FlakeGWLawrenceSGilesCLSelf-organization and identification of web communitiesComputer2002353667010.1109/2.989932 – reference: Malewicz G, Austern MH, Bik AJ et al (2010) Pregel: a system for large-scale graph processing. In: Proceedings of the 2010 ACM SIGMOD international conference on management of data, p135–146. https://doi.org/10.1145/1582716.1582723 – reference: SunHHeFHuangJNetwork embedding for community detection in attributed networksACM Trans Knowl Discov Data202014312510.1145/3385415 – reference: HartuvEShamirRA clustering algorithm based on graph connectivityInf Process Lett2000764–6175181180767610.1016/S0020-0190(00)00142-3 – reference: FrantiPVirmajokiOHautamakiVFast agglomerative clustering using a k-nearest neighbor graphIEEE Trans Pattern Anal Mach Intell200628111875188110.1109/TPAMI.2006.227 – reference: RosvallMBergstromCTMultilevel compression of random walks on networks reveals hierarchical organization in large integrated systemsPLoS ONE20116411010.1371/journal.pone.0018209 – volume: 54 start-page: 1201 issue: 2 year: 2021 ident: 5572_CR8 publication-title: Artif Intell Rev doi: 10.1145/2522968.2522981 – volume: 77 start-page: 6056 issue: 6 year: 2021 ident: 5572_CR24 publication-title: J Supercomput doi: 10.1007/s11227-020-03510-9 – ident: 5572_CR10 doi: 10.1145/1273496.1273595 – volume: 35 start-page: 66 issue: 3 year: 2002 ident: 5572_CR37 publication-title: Computer doi: 10.1109/2.989932 – volume: 76 start-page: 175 issue: 4–6 year: 2000 ident: 5572_CR36 publication-title: Inf Process Lett doi: 10.1016/S0020-0190(00)00142-3 – volume: 76 start-page: 1 issue: 3 year: 2007 ident: 5572_CR26 publication-title: Phys Rev E doi: 10.1103/PhysRevE.76.036106 – volume: 8 start-page: 193 issue: 1 year: 2022 ident: 5572_CR34 publication-title: IEEE Trans Big Data doi: 10.1109/TBDATA.2019.2931532 – volume: 162 start-page: 1 year: 2020 ident: 5572_CR27 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.113020 – ident: 5572_CR17 doi: 10.1145/2623330.2623629 – volume: 4 start-page: 3 issue: 1 year: 2019 ident: 5572_CR14 publication-title: Int J Librariansh doi: 10.23974/ijol.2019.vol4.1.106 – volume: 6 start-page: 1 issue: 4 year: 2011 ident: 5572_CR30 publication-title: PLoS ONE doi: 10.1371/journal.pone.0018209 – volume: 14 start-page: 1 issue: 3 year: 2020 ident: 5572_CR22 publication-title: ACM Trans Knowl Discov Data doi: 10.1145/3385415 – volume: 108 start-page: 87 year: 2018 ident: 5572_CR6 publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2018.02.011 – volume: 1 start-page: 101 issue: 2 year: 2019 ident: 5572_CR23 publication-title: J Data Intell doi: 10.26421/JDI1.2-1 – volume: 31 start-page: 1736 issue: 9 year: 2018 ident: 5572_CR28 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2018.2866424 – volume: 2 start-page: 146 issue: 2 year: 2021 ident: 5572_CR7 publication-title: IEEE Trans Artif Intell doi: 10.1109/TAI.2021.3065894 – ident: 5572_CR3 doi: 10.1145/2484425.2484427 – volume: 28 start-page: 1875 issue: 11 year: 2006 ident: 5572_CR13 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2006.227 – volume: 2008 start-page: 1 issue: 10 year: 2008 ident: 5572_CR20 publication-title: J Stat Mech: Theory Exp doi: 10.1088/1742-5468/2008/10/P10008 – volume: 2014 start-page: 1 year: 2014 ident: 5572_CR21 publication-title: IEEE High Perform Extrem Comput Conf doi: 10.1109/HPEC.2014.7040973 – volume: 21 start-page: 143 issue: 2 year: 2005 ident: 5572_CR9 publication-title: Inf Soc doi: 10.1080/01972240590925348 – ident: 5572_CR2 doi: 10.1145/1582716.1582723 – ident: 5572_CR12 doi: 10.48550/arXiv.1510.05043 – ident: 5572_CR33 doi: 10.1109/ICDE.2018.00115 – volume: 7 start-page: 77070 year: 2019 ident: 5572_CR38 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2921477 – ident: 5572_CR1 – volume: 513 start-page: 127 year: 2020 ident: 5572_CR18 publication-title: Inf Sci doi: 10.1016/j.ins.2019.10.076 – volume: 43 start-page: 89 issue: 1 year: 2019 ident: 5572_CR31 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2019.2926033 – volume: 69 start-page: 1 issue: 2 year: 2004 ident: 5572_CR4 publication-title: Phys Rev E doi: 10.1103/PhysRevE.69.026113 – volume: 80 start-page: 1 year: 2018 ident: 5572_CR39 publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2017.06.027 – volume: 17 start-page: 395 issue: 4 year: 2007 ident: 5572_CR32 publication-title: Stat Comput doi: 10.48550/arXiv.0711.0189 – ident: 5572_CR25 doi: 10.1109/HPEC.2019.8916299 – volume: 328 start-page: 876 issue: 5980 year: 2010 ident: 5572_CR35 publication-title: Science doi: 10.1126/science.1184819 – volume: 38 start-page: 163 issue: 2 year: 2004 ident: 5572_CR5 publication-title: Eur Phys J B doi: 10.1140/epjb/e2004-00111-4 – ident: 5572_CR11 doi: 10.48550/arXiv.2106.05610 – volume: 34 start-page: 1975 issue: 7 year: 2017 ident: 5572_CR19 publication-title: Appl Res Comput – volume: 104 start-page: 36 issue: 1 year: 2007 ident: 5572_CR16 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0605965104 – volume: 69 start-page: 1 issue: 6 year: 2004 ident: 5572_CR15 publication-title: Phys Rev E doi: 10.1103/PhysRevE.69.066133 – volume: 10 start-page: 1 issue: 1 year: 2009 ident: 5572_CR29 publication-title: BMC Bioinf doi: 10.1186/1471-2105-10-99 |
| SSID | ssj0004373 |
| Score | 2.3299708 |
| Snippet | As the size of graph data grows exponentially, it is usually processed by parallel and distributed computing environment. During parallel processing, the first... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 2838 |
| SubjectTerms | Algorithms Clustering Communication Compilers Computer Science Distributed processing Graph theory Interpreters Methods Modularity Parallel processing Processor Architectures Programming Languages Semantics Social networks |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagMLBQnqJQkAc2sKgdJ7EnVCEqpgoJkLpFiR-lUmhDk6Ky8Tf4e_wS7DhRAAkW5kSnkz_bd77HdwCc0jCWcaIkYkwyRLHEiCkVI6l9Y6w4pmGQlMMmwuGQjUb8tgq45VVZZX0nlhe1nAkbI7_wjG32OeU97zJ7RnZqlM2uViM0VsGaZUnAZeneXdMX6bkMMzdPJOZTUjXNuNY5TEiIjMVCloWKoOV3w9R4mz8SpKXdGbT_q_EW2Kw8Tth3W2QbrKjpDmjX0xxgdbh3QdGHyWQMSwZrKNKFZVAwGkE3YxoWM5gvMuutQ0sXnqYqhZnrMrB_Ja8wszUyExugcEI-3t5z-CVBDuN0bPQrHp9grp4MohOR74GHwfX91Q2qZjIgQcJegZQItObSs6RAmMkwCanPuWJBonVMEgN24GluWQ5jmQTCw1oSFWCtYi2EIL63D1rT2VQdAMiE5qHi5gGLOcVKMO0ps2LK71GMAxl3wFkNSJQ56o2oIVm28EUGvqiEL1p2QLdGIaqOYR41EHTAeY1j8_l3aYd_SzsCG8Q4Ny4U0wWtYr5Qx2BdvBSTfH5SbsJPljnnEQ priority: 102 providerName: ProQuest |
| Title | A big graph clustering method to support parallel processing by perceiving graph’s application algorithm semantics |
| URI | https://link.springer.com/article/10.1007/s11227-023-05572-x https://www.proquest.com/docview/3256594903 |
| Volume | 80 |
| WOSCitedRecordID | wos001052459100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-0484 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: P5Z dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-0484 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: K7- dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1573-0484 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: M7S dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-0484 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4VlgMXaHmILXTlQ29gae08bB8p2lWlSqvVbkErLlHiB0TKPrTJIrj1b_D3-CW181AAtYf2kkusSTRjez57Zr4B-OqzWMWJVphzxbFPFMFc6xgrE1hnJYjPwqRsNsFGIz6biXFdFJY32e5NSLLcqdtiN0Ipw9bHYMcbRbFFjh3r7rhr2DCZ3rTVkF4VVxb2YMQDn9alMn-W8dYdtRjzXVi09DbD_f_7z4-wV6NLdFlNh0_wQS8OYL_p3IDqhXwIxSVK0jtUslUjmW0cW4L9Bqr6SaNiifLNyiFz5KjBs0xnaFVVFLhRyRNauXyY1F1GVEJefj3n6FUwHMXZ3XKdFvdzlOu5tV4q8yO4Hg5-Xn3Hdf8FLCnrF1jL0BihPEcARLhiCfMDITQPE2NimljDhp4RjtEwVkkoPWIU1SExOjZSShp4x7C9WC70CSAujWBa2MMqET7RkhtPWyipg75PSKjiLpw3ZohWFc1G1BIqO4VGVqFRqdDosQtnjaWiesnlkWfBWyB80fe6cNFYpn39d2mf_234KexSC2yqa5gz2C7WG_0FduRDkebrHnS-DUbjSQ-2fjDcc5mkU_scB7e9cpL-BskV4iA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VBQkulF-xUMAHOIHF2nFi-4BQBVSttqw4FKm3kNjjslK6G5ostDdeg5fgoXgS7DhRAAluPXBOZCWezzMee-b7AB4LWdiiREuVsooKZhlViAW1LvXBSjMhs7ITm5DzuTo60u824PvQCxPKKgef2DlquzLhjPx54mNzqoWeJi_rTzSoRoXb1UFCI8JihudffMrWvNh_7e37hPPdN4ev9mivKkANl9OWosmc0zYJtDZMWVlKkWqNKiudK3jpPzdLnA48fYUtM5MwZzlmzGHhjDE8qER4l39JJEqGdTWTdOzDTOKNtvYpmUoF75t0Yqse41xSHyFpYL3i9Oz3QDjubv-4kO3i3O7W_zZD1-Fav6MmO3EJ3IANXN6ErUGtgvTO6xa0O6RcHJOOoZuYah0YIvwMkKihTdoVadZ1yEZIoEOvKqxIHbsowlvlOalDDdAiHMDEQX58_daQXwoASFEd-_loP56QBk88YhemuQ3vL-Tf78DmcrXEu0CUcVqi9gk604KhUS5BbyFMp4KxzBYTeDoAIK8jtUg-kkgHuOQeLnkHl_xsAtuD1fPezTT5aPIJPBtwMz7--2j3_j3aI7iyd_j2ID_Yn8_uw1XuN3Lx2GkbNtvTNT6Ay-Zzu2hOH3YLgMCHi8bTT6xVRl0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6yinjxLa7PHLxp2E2atslR1EVRFsEHeyttHmuh7pZtV_Tm3_Dv-UtM-qAqehDPDZMykzDfZGa-AeCA-qEMIyURY5IhiiVGTKkQSe0aZ8Ux9b2oGDbh9_tsMODXn7r4i2r3OiVZ9jRYlqZR3kml7jSNb5gQHxl_gyyHFEEGRc5SW0hv4_Wb-6Yz0ilzzNwEScylpGqb-VnGV9fU4M1vKdLC8_SW_v_Py2CxQp3wuDwmK2BGjVbBUj3RAVYXfA3kxzCKh7BgsYYimVoWBbMfLOdMw3wMs2lqETu0lOFJohKYlp0GdlX0AlNbJxPbR4pSyPvrWwY_JclhmAzHkzh_eISZejRWjUW2Du56Z7cn56iay4AE8bs5UsLTmkvHEgNhJv3Ipy7ninmR1iGJjME9R3PLdBjKyBMO1pIoD2sVaiEEcZ0N0BqNR2oTQCY09xU3QSzmFCvBtKMMxFRul2LsybANDmuTBGlJvxE0RMtWoYFRaFAoNHhug53aakF1FbPAMaDO5ZR3nTY4qq3UfP5d2tbflu-D-evTXnB10b_cBgvEYJ_ypWYHtPLJVO2COfGUx9lkrzihH2An6YY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+big+graph+clustering+method+to+support+parallel+processing+by+perceiving+graph%E2%80%99s+application+algorithm+semantics&rft.jtitle=The+Journal+of+supercomputing&rft.au=Cheng%2C+Tengteng&rft.au=Zeng%2C+Guosun&rft.au=Sun%2C+Zhipeng&rft.date=2024-01-01&rft.pub=Springer+US&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=80&rft.issue=2&rft.spage=2838&rft.epage=2861&rft_id=info:doi/10.1007%2Fs11227-023-05572-x&rft.externalDocID=10_1007_s11227_023_05572_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon |