A big graph clustering method to support parallel processing by perceiving graph’s application algorithm semantics

As the size of graph data grows exponentially, it is usually processed by parallel and distributed computing environment. During parallel processing, the first step is to divide the graph data into many subgraphs and then place them on different computational nodes. However, the existing graph clust...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Journal of supercomputing Ročník 80; číslo 2; s. 2838 - 2861
Hlavní autori: Cheng, Tengteng, Zeng, Guosun, Sun, Zhipeng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.01.2024
Springer Nature B.V
Predmet:
ISSN:0920-8542, 1573-0484
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract As the size of graph data grows exponentially, it is usually processed by parallel and distributed computing environment. During parallel processing, the first step is to divide the graph data into many subgraphs and then place them on different computational nodes. However, the existing graph clustering methods cannot adapt to parallel processing or improve computing performance. The main reason is that these methods only focus on the graph data but do not care about the graph’s application algorithm. Therefore, this paper addresses a graph clustering method that supports parallel processing by perceiving the application algorithm semantics. We specifically focus on the characteristic of "tight inside and loose outside". Based on this characteristic, we give a new formula for calculating the modularity of the subgraph. In a graph application, graph data and its associated application algorithm are not separated from each other. Thus, we also focus on the execution patterns of the application algorithm. Combining the modularity of a subgraph and execution patterns of an application algorithm, we present the critical concept of semantic serial degree as a new criterion for big graph clustering. Consequently, we propose a graph clustering method that effectively balances the importance between the graph data and its associated application algorithm. By achieving this balance, our approach ensures that the final clustering results are more suitable for parallel and distributed processing. Extended experiments show that our proposed graph clustering method is more general and compatible with traditional clustering methods. Compared with FastUnfolding, a state-of-the-art graph clustering method, the completion times of an application algorithm are significantly reduced due to the help of the proposed graph clustering method.
AbstractList As the size of graph data grows exponentially, it is usually processed by parallel and distributed computing environment. During parallel processing, the first step is to divide the graph data into many subgraphs and then place them on different computational nodes. However, the existing graph clustering methods cannot adapt to parallel processing or improve computing performance. The main reason is that these methods only focus on the graph data but do not care about the graph’s application algorithm. Therefore, this paper addresses a graph clustering method that supports parallel processing by perceiving the application algorithm semantics. We specifically focus on the characteristic of "tight inside and loose outside". Based on this characteristic, we give a new formula for calculating the modularity of the subgraph. In a graph application, graph data and its associated application algorithm are not separated from each other. Thus, we also focus on the execution patterns of the application algorithm. Combining the modularity of a subgraph and execution patterns of an application algorithm, we present the critical concept of semantic serial degree as a new criterion for big graph clustering. Consequently, we propose a graph clustering method that effectively balances the importance between the graph data and its associated application algorithm. By achieving this balance, our approach ensures that the final clustering results are more suitable for parallel and distributed processing. Extended experiments show that our proposed graph clustering method is more general and compatible with traditional clustering methods. Compared with FastUnfolding, a state-of-the-art graph clustering method, the completion times of an application algorithm are significantly reduced due to the help of the proposed graph clustering method.
Author Cheng, Tengteng
Zeng, Guosun
Sun, Zhipeng
Author_xml – sequence: 1
  givenname: Tengteng
  surname: Cheng
  fullname: Cheng, Tengteng
  organization: Department of Computer Science and Technology, Tongji University, Tongji Branch, National Engineering and Technology Center of High-Performance Computer
– sequence: 2
  givenname: Guosun
  surname: Zeng
  fullname: Zeng, Guosun
  email: gszeng@tongji.edu.cn
  organization: Department of Computer Science and Technology, Tongji University, Tongji Branch, National Engineering and Technology Center of High-Performance Computer
– sequence: 3
  givenname: Zhipeng
  surname: Sun
  fullname: Sun, Zhipeng
  organization: Department of Computer Science and Technology, Tongji University, Tongji Branch, National Engineering and Technology Center of High-Performance Computer
BookMark eNp9kE1OwzAQhS1UJNrCBVhZYh3wTxIny6riT6rEBtaW49hpqiQ2tovaHdfgepwEp0Fix2o00ntv5n0LMBvMoAC4xugWI8TuPMaEsAQRmqAsYyQ5nIE5zlhc0yKdgTkqCUqKLCUXYOH9DiGUUkbnIKxg1TawccJuoez2PijXDg3sVdiaGgYD_d5a4wK0womuUx20zkjl_aiqjtAqJ1X7MW6nkO_PLw-FtV0rRWjNAEXXGNeGbQ-96sUQWukvwbkWnVdXv3MJ3h7uX9dPyebl8Xm92iSSMBQSJXOty5qyWBEXNatYmpWlKvJKa0GqFNc51SWJRURd5ZJiXROVY62EllKSjC7BzZQbX37fKx_4zuzdEE9ySrI8K9MS0agik0o6471TmlvX9sIdOUZ8pMsnujzS5Se6_BBNdDJ5O_JS7i_6H9cPLamDwQ
Cites_doi 10.1145/2522968.2522981
10.1007/s11227-020-03510-9
10.1145/1273496.1273595
10.1109/2.989932
10.1016/S0020-0190(00)00142-3
10.1103/PhysRevE.76.036106
10.1109/TBDATA.2019.2931532
10.1016/j.eswa.2019.113020
10.1145/2623330.2623629
10.23974/ijol.2019.vol4.1.106
10.1371/journal.pone.0018209
10.1145/3385415
10.1016/j.jnca.2018.02.011
10.26421/JDI1.2-1
10.1109/TKDE.2018.2866424
10.1109/TAI.2021.3065894
10.1145/2484425.2484427
10.1109/TPAMI.2006.227
10.1088/1742-5468/2008/10/P10008
10.1109/HPEC.2014.7040973
10.1080/01972240590925348
10.1145/1582716.1582723
10.48550/arXiv.1510.05043
10.1109/ICDE.2018.00115
10.1109/ACCESS.2019.2921477
10.1016/j.ins.2019.10.076
10.1109/TPAMI.2019.2926033
10.1103/PhysRevE.69.026113
10.1016/j.future.2017.06.027
10.48550/arXiv.0711.0189
10.1109/HPEC.2019.8916299
10.1126/science.1184819
10.1140/epjb/e2004-00111-4
10.48550/arXiv.2106.05610
10.1073/pnas.0605965104
10.1103/PhysRevE.69.066133
10.1186/1471-2105-10-99
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11227-023-05572-x
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
EndPage 2861
ExternalDocumentID 10_1007_s11227_023_05572_x
GrantInformation_xml – fundername: the National Natural Science Foundation of China
  grantid: 62072337; 62072337; 62072337
– fundername: the National Key R&D Program of China
  grantid: 2019YFB1704100; 2019YFB1704100; 2019YFB1704100
– fundername: the National Social Science Foundation of China
  grantid: 17BTQ086; 17BTQ086; 17BTQ086
– fundername: the Subproject of National Seafloor Observatory System of China
  grantid: 2970000001/001/016; 2970000001/001/016; 2970000001/001/016
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c270t-ec6ff9d3710018d7b74599e86bffa2b41d63f92437adb6c31fd2e61feafccc253
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001052459100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-8542
IngestDate Sun Nov 30 04:23:39 EST 2025
Sat Nov 29 04:27:45 EST 2025
Fri Feb 21 02:41:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Graph clustering
Parallel processing
Semantic serial degree
Big graph
Modularity of a subgraph
Graph’s application algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-ec6ff9d3710018d7b74599e86bffa2b41d63f92437adb6c31fd2e61feafccc253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3256594903
PQPubID 2043774
PageCount 24
ParticipantIDs proquest_journals_3256594903
crossref_primary_10_1007_s11227_023_05572_x
springer_journals_10_1007_s11227_023_05572_x
PublicationCentury 2000
PublicationDate 20240100
2024-01-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 1
  year: 2024
  text: 20240100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Xin RS, Gonzalez JE, Franklin MJ et al (2013) Graphx: a resilient distributed graph system on spark. In: First international workshop on graph data management experiences and systems, p 1–6. https://doi.org/10.1145/2484425.2484427
RaghavanUNAlbertRKumaraSNear linear time algorithm to detect community structures in large-scale networksPhys Rev E200776311110.1103/PhysRevE.76.036106
Dasgupta S (2016) A cost function for similarity-based hierarchical clustering. In: Proceedings of the forty-eighth annual ACM symposium on theory of computing, p 118–127. https://doi.org/10.48550/arXiv.1510.05043
TaoCShanRLiHAn agglomerative-adapted partition approach for large-scale graphsInt J Librariansh20194131810.23974/ijol.2019.vol4.1.106
WangYHeWShiJCommunity detection algorithm based on community densityAppl Res Comput201734719751979
FortunatoSBarthélemyMResolution limit in community detectionProc Natl Acad Sci20071041364110.1073/pnas.0605965104
LuxburgUVA tutorial on spectral clusteringStat Comput2007174395416240980310.48550/arXiv.0711.0189
Gonzalez JE, Low Y, Gu H, Bickson D et al (2012) PowerGraph: distributed graph-parallel computation on natural graphs. In: 10th USENIX symposium on operating systems design and implementation, p 17–30
NewmanMEFast algorithm for detecting community structure in networksPhys Rev E20046961510.1103/PhysRevE.69.066133
HuKZengGDingSCluster-scheduling big graph traversal task for parallel processing in heterogeneous cloud based on DAG transformationIEEE Access20197770707708210.1109/ACCESS.2019.2921477
FrantiPVirmajokiOHautamakiVFast agglomerative clustering using a k-nearest neighbor graphIEEE Trans Pattern Anal Mach Intell200628111875188110.1109/TPAMI.2006.227
HartuvEShamirRA clustering algorithm based on graph connectivityInf Process Lett2000764–6175181180767610.1016/S0020-0190(00)00142-3
Malewicz G, Austern MH, Bik AJ et al (2010) Pregel: a system for large-scale graph processing. In: Proceedings of the 2010 ACM SIGMOD international conference on management of data, p135–146. https://doi.org/10.1145/1582716.1582723
NewmanMEGirvanMFinding and evaluating community structure in networksPhys Rev E200469211610.1103/PhysRevE.69.026113
RosvallMBergstromCTMultilevel compression of random walks on networks reveals hierarchical organization in large integrated systemsPLoS ONE20116411010.1371/journal.pone.0018209
LiTZhangYFast compressive spectral clustering for large-scale sparse graphIEEE Trans Big Data20228119320210.1109/TBDATA.2019.2931532
SunHHeFHuangJNetwork embedding for community detection in attributed networksACM Trans Knowl Discov Data202014312510.1145/3385415
LuMZhangZLPANNI: Overlapping community detection using label propagation in large-scale complex networksIEEE Trans Knowl Data Eng20183191736174910.1109/TKDE.2018.2866424
MohammadiMFazlaliMHosseinzadehMAccelerating Louvain community detection algorithm on graphic processing unitJ Supercomput20217766056607710.1007/s11227-020-03510-9
HuKZengGPartitioning big graph with respect to arbitrary proportions in a streaming mannerFutur Gener Comput Syst20188011110.1016/j.future.2017.06.027
Dhulipala L, Eisenstat D, Łącki J et al (2021) Hierarchical agglomerative graph clustering in nearly-linear time. In: International conference on machine learning, p 2676–2686. https://doi.org/10.48550/arXiv.2106.05610
BarthelemyMBetweenness centrality in large complex networksEur Phys J B200438216316810.1140/epjb/e2004-00111-4
ZubaroğluAAtalayVData stream clustering: a reviewArtif Intell Rev20215421201123610.1145/2522968.2522981
TylerJRWilkinsonDMEmail as spectroscopy: automated discovery of community structure within organizationsInf Soc200521214315310.1080/01972240590925348
Rattigan MJ, Maier M et al (2007) Graph clustering with network structure indices. In: Proceedings of the 24th international conference on machine learning, p 783–790. https://doi.org/10.1145/1273496.1273595
FlakeGWLawrenceSGilesCLSelf-organization and identification of web communitiesComputer2002353667010.1109/2.989932
ZhuJChenBCommunity detection based on modularity and k-plexesInf Sci202051312714210.1016/j.ins.2019.10.076
ShiokawaHFutamuraYEfficient vector partitioning algorithms for modularity-based graph clusteringJ Data Intell20191210112310.26421/JDI1.2-1
ChaoGSunSBiJA survey on multiview clusteringIEEE Trans Artif Intell20212214616810.1109/TAI.2021.3065894
El KouniIBKarouiWRomdhaneLBNode importance-based label propagation algorithm for overlapping community detection in networksExpert Syst Appl202016211310.1016/j.eswa.2019.113020
JavedMAYounisMSLatifSCommunity detection in networks: a multidisciplinary reviewJ Netw Comput Appl20181088711110.1016/j.jnca.2018.02.011
BlondelVDGuillaumeJLFast unfolding of communities in large networksJ Stat Mech: Theory Exp200820081011210.1088/1742-5468/2008/10/P10008
Duan L, Street WN, Liu Y, Lu H (2014) Community detection in graphs through correlation. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, p 1376–1385. https://doi.org/10.1145/2623330.2623629
Ghosh S, Halappanavar M, Tumeo A et al (2019) Scaling and quality of modularity optimization methods for graph clustering. In: IEEE high performance extreme computing conference, p 1–6. https://doi.org/10.1109/HPEC.2019.8916299
OkudaMSatohSICommunity detection using restrained random-walk similarityIEEE Trans Pattern Anal Mach Intell20194318910310.1109/TPAMI.2019.2926033
Deng CH, Zhao WL (2018) Fast k-means based on k-nn graph. In: 2018 IEEE 34th international conference on data engineering, p 1220–1223. https://doi.org/10.1109/ICDE.2018.00115
MuchaPJRichardsonTCommunity structure in time-dependent, multiscale, and multiplex networksScience20103285980876878266259010.1126/science.1184819
VlasblomJWodakSJMarkov clustering versus affinity propagation for the partitioning of protein interaction graphsBMC Bioinf200910111410.1186/1471-2105-10-99
WickramaarachchiCFrincuMSmallPFast parallel algorithm for unfolding of communities in large graphsIEEE High Perform Extrem Comput Conf201420141610.1109/HPEC.2014.7040973
Y Wang (5572_CR19) 2017; 34
M Rosvall (5572_CR30) 2011; 6
MA Javed (5572_CR6) 2018; 108
M Mohammadi (5572_CR24) 2021; 77
IB El Kouni (5572_CR27) 2020; 162
M Okuda (5572_CR31) 2019; 43
G Chao (5572_CR7) 2021; 2
C Wickramaarachchi (5572_CR21) 2014; 2014
GW Flake (5572_CR37) 2002; 35
5572_CR2
5572_CR1
H Sun (5572_CR22) 2020; 14
E Hartuv (5572_CR36) 2000; 76
ME Newman (5572_CR4) 2004; 69
J Zhu (5572_CR18) 2020; 513
UN Raghavan (5572_CR26) 2007; 76
5572_CR25
VD Blondel (5572_CR20) 2008; 2008
UV Luxburg (5572_CR32) 2007; 17
A Zubaroğlu (5572_CR8) 2021; 54
JR Tyler (5572_CR9) 2005; 21
K Hu (5572_CR39) 2018; 80
T Li (5572_CR34) 2022; 8
ME Newman (5572_CR15) 2004; 69
M Lu (5572_CR28) 2018; 31
S Fortunato (5572_CR16) 2007; 104
5572_CR3
J Vlasblom (5572_CR29) 2009; 10
PJ Mucha (5572_CR35) 2010; 328
H Shiokawa (5572_CR23) 2019; 1
5572_CR17
C Tao (5572_CR14) 2019; 4
5572_CR12
K Hu (5572_CR38) 2019; 7
M Barthelemy (5572_CR5) 2004; 38
P Franti (5572_CR13) 2006; 28
5572_CR10
5572_CR11
5572_CR33
References_xml – reference: Duan L, Street WN, Liu Y, Lu H (2014) Community detection in graphs through correlation. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, p 1376–1385. https://doi.org/10.1145/2623330.2623629
– reference: El KouniIBKarouiWRomdhaneLBNode importance-based label propagation algorithm for overlapping community detection in networksExpert Syst Appl202016211310.1016/j.eswa.2019.113020
– reference: VlasblomJWodakSJMarkov clustering versus affinity propagation for the partitioning of protein interaction graphsBMC Bioinf200910111410.1186/1471-2105-10-99
– reference: Dhulipala L, Eisenstat D, Łącki J et al (2021) Hierarchical agglomerative graph clustering in nearly-linear time. In: International conference on machine learning, p 2676–2686. https://doi.org/10.48550/arXiv.2106.05610
– reference: OkudaMSatohSICommunity detection using restrained random-walk similarityIEEE Trans Pattern Anal Mach Intell20194318910310.1109/TPAMI.2019.2926033
– reference: Dasgupta S (2016) A cost function for similarity-based hierarchical clustering. In: Proceedings of the forty-eighth annual ACM symposium on theory of computing, p 118–127. https://doi.org/10.48550/arXiv.1510.05043
– reference: Ghosh S, Halappanavar M, Tumeo A et al (2019) Scaling and quality of modularity optimization methods for graph clustering. In: IEEE high performance extreme computing conference, p 1–6. https://doi.org/10.1109/HPEC.2019.8916299
– reference: NewmanMEGirvanMFinding and evaluating community structure in networksPhys Rev E200469211610.1103/PhysRevE.69.026113
– reference: ZubaroğluAAtalayVData stream clustering: a reviewArtif Intell Rev20215421201123610.1145/2522968.2522981
– reference: BarthelemyMBetweenness centrality in large complex networksEur Phys J B200438216316810.1140/epjb/e2004-00111-4
– reference: HuKZengGDingSCluster-scheduling big graph traversal task for parallel processing in heterogeneous cloud based on DAG transformationIEEE Access20197770707708210.1109/ACCESS.2019.2921477
– reference: JavedMAYounisMSLatifSCommunity detection in networks: a multidisciplinary reviewJ Netw Comput Appl20181088711110.1016/j.jnca.2018.02.011
– reference: LiTZhangYFast compressive spectral clustering for large-scale sparse graphIEEE Trans Big Data20228119320210.1109/TBDATA.2019.2931532
– reference: Rattigan MJ, Maier M et al (2007) Graph clustering with network structure indices. In: Proceedings of the 24th international conference on machine learning, p 783–790. https://doi.org/10.1145/1273496.1273595
– reference: RaghavanUNAlbertRKumaraSNear linear time algorithm to detect community structures in large-scale networksPhys Rev E200776311110.1103/PhysRevE.76.036106
– reference: LuxburgUVA tutorial on spectral clusteringStat Comput2007174395416240980310.48550/arXiv.0711.0189
– reference: Gonzalez JE, Low Y, Gu H, Bickson D et al (2012) PowerGraph: distributed graph-parallel computation on natural graphs. In: 10th USENIX symposium on operating systems design and implementation, p 17–30
– reference: FortunatoSBarthélemyMResolution limit in community detectionProc Natl Acad Sci20071041364110.1073/pnas.0605965104
– reference: HuKZengGPartitioning big graph with respect to arbitrary proportions in a streaming mannerFutur Gener Comput Syst20188011110.1016/j.future.2017.06.027
– reference: WangYHeWShiJCommunity detection algorithm based on community densityAppl Res Comput201734719751979
– reference: NewmanMEFast algorithm for detecting community structure in networksPhys Rev E20046961510.1103/PhysRevE.69.066133
– reference: ChaoGSunSBiJA survey on multiview clusteringIEEE Trans Artif Intell20212214616810.1109/TAI.2021.3065894
– reference: TylerJRWilkinsonDMEmail as spectroscopy: automated discovery of community structure within organizationsInf Soc200521214315310.1080/01972240590925348
– reference: MuchaPJRichardsonTCommunity structure in time-dependent, multiscale, and multiplex networksScience20103285980876878266259010.1126/science.1184819
– reference: ZhuJChenBCommunity detection based on modularity and k-plexesInf Sci202051312714210.1016/j.ins.2019.10.076
– reference: MohammadiMFazlaliMHosseinzadehMAccelerating Louvain community detection algorithm on graphic processing unitJ Supercomput20217766056607710.1007/s11227-020-03510-9
– reference: Xin RS, Gonzalez JE, Franklin MJ et al (2013) Graphx: a resilient distributed graph system on spark. In: First international workshop on graph data management experiences and systems, p 1–6. https://doi.org/10.1145/2484425.2484427
– reference: BlondelVDGuillaumeJLFast unfolding of communities in large networksJ Stat Mech: Theory Exp200820081011210.1088/1742-5468/2008/10/P10008
– reference: WickramaarachchiCFrincuMSmallPFast parallel algorithm for unfolding of communities in large graphsIEEE High Perform Extrem Comput Conf201420141610.1109/HPEC.2014.7040973
– reference: TaoCShanRLiHAn agglomerative-adapted partition approach for large-scale graphsInt J Librariansh20194131810.23974/ijol.2019.vol4.1.106
– reference: ShiokawaHFutamuraYEfficient vector partitioning algorithms for modularity-based graph clusteringJ Data Intell20191210112310.26421/JDI1.2-1
– reference: LuMZhangZLPANNI: Overlapping community detection using label propagation in large-scale complex networksIEEE Trans Knowl Data Eng20183191736174910.1109/TKDE.2018.2866424
– reference: Deng CH, Zhao WL (2018) Fast k-means based on k-nn graph. In: 2018 IEEE 34th international conference on data engineering, p 1220–1223. https://doi.org/10.1109/ICDE.2018.00115
– reference: FlakeGWLawrenceSGilesCLSelf-organization and identification of web communitiesComputer2002353667010.1109/2.989932
– reference: Malewicz G, Austern MH, Bik AJ et al (2010) Pregel: a system for large-scale graph processing. In: Proceedings of the 2010 ACM SIGMOD international conference on management of data, p135–146. https://doi.org/10.1145/1582716.1582723
– reference: SunHHeFHuangJNetwork embedding for community detection in attributed networksACM Trans Knowl Discov Data202014312510.1145/3385415
– reference: HartuvEShamirRA clustering algorithm based on graph connectivityInf Process Lett2000764–6175181180767610.1016/S0020-0190(00)00142-3
– reference: FrantiPVirmajokiOHautamakiVFast agglomerative clustering using a k-nearest neighbor graphIEEE Trans Pattern Anal Mach Intell200628111875188110.1109/TPAMI.2006.227
– reference: RosvallMBergstromCTMultilevel compression of random walks on networks reveals hierarchical organization in large integrated systemsPLoS ONE20116411010.1371/journal.pone.0018209
– volume: 54
  start-page: 1201
  issue: 2
  year: 2021
  ident: 5572_CR8
  publication-title: Artif Intell Rev
  doi: 10.1145/2522968.2522981
– volume: 77
  start-page: 6056
  issue: 6
  year: 2021
  ident: 5572_CR24
  publication-title: J Supercomput
  doi: 10.1007/s11227-020-03510-9
– ident: 5572_CR10
  doi: 10.1145/1273496.1273595
– volume: 35
  start-page: 66
  issue: 3
  year: 2002
  ident: 5572_CR37
  publication-title: Computer
  doi: 10.1109/2.989932
– volume: 76
  start-page: 175
  issue: 4–6
  year: 2000
  ident: 5572_CR36
  publication-title: Inf Process Lett
  doi: 10.1016/S0020-0190(00)00142-3
– volume: 76
  start-page: 1
  issue: 3
  year: 2007
  ident: 5572_CR26
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.76.036106
– volume: 8
  start-page: 193
  issue: 1
  year: 2022
  ident: 5572_CR34
  publication-title: IEEE Trans Big Data
  doi: 10.1109/TBDATA.2019.2931532
– volume: 162
  start-page: 1
  year: 2020
  ident: 5572_CR27
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.113020
– ident: 5572_CR17
  doi: 10.1145/2623330.2623629
– volume: 4
  start-page: 3
  issue: 1
  year: 2019
  ident: 5572_CR14
  publication-title: Int J Librariansh
  doi: 10.23974/ijol.2019.vol4.1.106
– volume: 6
  start-page: 1
  issue: 4
  year: 2011
  ident: 5572_CR30
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0018209
– volume: 14
  start-page: 1
  issue: 3
  year: 2020
  ident: 5572_CR22
  publication-title: ACM Trans Knowl Discov Data
  doi: 10.1145/3385415
– volume: 108
  start-page: 87
  year: 2018
  ident: 5572_CR6
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2018.02.011
– volume: 1
  start-page: 101
  issue: 2
  year: 2019
  ident: 5572_CR23
  publication-title: J Data Intell
  doi: 10.26421/JDI1.2-1
– volume: 31
  start-page: 1736
  issue: 9
  year: 2018
  ident: 5572_CR28
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2018.2866424
– volume: 2
  start-page: 146
  issue: 2
  year: 2021
  ident: 5572_CR7
  publication-title: IEEE Trans Artif Intell
  doi: 10.1109/TAI.2021.3065894
– ident: 5572_CR3
  doi: 10.1145/2484425.2484427
– volume: 28
  start-page: 1875
  issue: 11
  year: 2006
  ident: 5572_CR13
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2006.227
– volume: 2008
  start-page: 1
  issue: 10
  year: 2008
  ident: 5572_CR20
  publication-title: J Stat Mech: Theory Exp
  doi: 10.1088/1742-5468/2008/10/P10008
– volume: 2014
  start-page: 1
  year: 2014
  ident: 5572_CR21
  publication-title: IEEE High Perform Extrem Comput Conf
  doi: 10.1109/HPEC.2014.7040973
– volume: 21
  start-page: 143
  issue: 2
  year: 2005
  ident: 5572_CR9
  publication-title: Inf Soc
  doi: 10.1080/01972240590925348
– ident: 5572_CR2
  doi: 10.1145/1582716.1582723
– ident: 5572_CR12
  doi: 10.48550/arXiv.1510.05043
– ident: 5572_CR33
  doi: 10.1109/ICDE.2018.00115
– volume: 7
  start-page: 77070
  year: 2019
  ident: 5572_CR38
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2921477
– ident: 5572_CR1
– volume: 513
  start-page: 127
  year: 2020
  ident: 5572_CR18
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2019.10.076
– volume: 43
  start-page: 89
  issue: 1
  year: 2019
  ident: 5572_CR31
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2019.2926033
– volume: 69
  start-page: 1
  issue: 2
  year: 2004
  ident: 5572_CR4
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.69.026113
– volume: 80
  start-page: 1
  year: 2018
  ident: 5572_CR39
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2017.06.027
– volume: 17
  start-page: 395
  issue: 4
  year: 2007
  ident: 5572_CR32
  publication-title: Stat Comput
  doi: 10.48550/arXiv.0711.0189
– ident: 5572_CR25
  doi: 10.1109/HPEC.2019.8916299
– volume: 328
  start-page: 876
  issue: 5980
  year: 2010
  ident: 5572_CR35
  publication-title: Science
  doi: 10.1126/science.1184819
– volume: 38
  start-page: 163
  issue: 2
  year: 2004
  ident: 5572_CR5
  publication-title: Eur Phys J B
  doi: 10.1140/epjb/e2004-00111-4
– ident: 5572_CR11
  doi: 10.48550/arXiv.2106.05610
– volume: 34
  start-page: 1975
  issue: 7
  year: 2017
  ident: 5572_CR19
  publication-title: Appl Res Comput
– volume: 104
  start-page: 36
  issue: 1
  year: 2007
  ident: 5572_CR16
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0605965104
– volume: 69
  start-page: 1
  issue: 6
  year: 2004
  ident: 5572_CR15
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.69.066133
– volume: 10
  start-page: 1
  issue: 1
  year: 2009
  ident: 5572_CR29
  publication-title: BMC Bioinf
  doi: 10.1186/1471-2105-10-99
SSID ssj0004373
Score 2.3299708
Snippet As the size of graph data grows exponentially, it is usually processed by parallel and distributed computing environment. During parallel processing, the first...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 2838
SubjectTerms Algorithms
Clustering
Communication
Compilers
Computer Science
Distributed processing
Graph theory
Interpreters
Methods
Modularity
Parallel processing
Processor Architectures
Programming Languages
Semantics
Social networks
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagMLBQnqJQkAc2sKgdJ7EnVCEqpgoJkLpFiR-lUmhDk6Ky8Tf4e_wS7DhRAAkW5kSnkz_bd77HdwCc0jCWcaIkYkwyRLHEiCkVI6l9Y6w4pmGQlMMmwuGQjUb8tgq45VVZZX0nlhe1nAkbI7_wjG32OeU97zJ7RnZqlM2uViM0VsGaZUnAZeneXdMX6bkMMzdPJOZTUjXNuNY5TEiIjMVCloWKoOV3w9R4mz8SpKXdGbT_q_EW2Kw8Tth3W2QbrKjpDmjX0xxgdbh3QdGHyWQMSwZrKNKFZVAwGkE3YxoWM5gvMuutQ0sXnqYqhZnrMrB_Ja8wszUyExugcEI-3t5z-CVBDuN0bPQrHp9grp4MohOR74GHwfX91Q2qZjIgQcJegZQItObSs6RAmMkwCanPuWJBonVMEgN24GluWQ5jmQTCw1oSFWCtYi2EIL63D1rT2VQdAMiE5qHi5gGLOcVKMO0ps2LK71GMAxl3wFkNSJQ56o2oIVm28EUGvqiEL1p2QLdGIaqOYR41EHTAeY1j8_l3aYd_SzsCG8Q4Ny4U0wWtYr5Qx2BdvBSTfH5SbsJPljnnEQ
  priority: 102
  providerName: ProQuest
Title A big graph clustering method to support parallel processing by perceiving graph’s application algorithm semantics
URI https://link.springer.com/article/10.1007/s11227-023-05572-x
https://www.proquest.com/docview/3256594903
Volume 80
WOSCitedRecordID wos001052459100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: P5Z
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: K7-
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: M7S
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4VlgMXaHmILXTlQ29gae08bB8p2lWlSqvVbkErLlHiB0TKPrTJIrj1b_D3-CW181AAtYf2kkusSTRjez57Zr4B-OqzWMWJVphzxbFPFMFc6xgrE1hnJYjPwqRsNsFGIz6biXFdFJY32e5NSLLcqdtiN0Ipw9bHYMcbRbFFjh3r7rhr2DCZ3rTVkF4VVxb2YMQDn9alMn-W8dYdtRjzXVi09DbD_f_7z4-wV6NLdFlNh0_wQS8OYL_p3IDqhXwIxSVK0jtUslUjmW0cW4L9Bqr6SaNiifLNyiFz5KjBs0xnaFVVFLhRyRNauXyY1F1GVEJefj3n6FUwHMXZ3XKdFvdzlOu5tV4q8yO4Hg5-Xn3Hdf8FLCnrF1jL0BihPEcARLhiCfMDITQPE2NimljDhp4RjtEwVkkoPWIU1SExOjZSShp4x7C9WC70CSAujWBa2MMqET7RkhtPWyipg75PSKjiLpw3ZohWFc1G1BIqO4VGVqFRqdDosQtnjaWiesnlkWfBWyB80fe6cNFYpn39d2mf_234KexSC2yqa5gz2C7WG_0FduRDkebrHnS-DUbjSQ-2fjDcc5mkU_scB7e9cpL-BskV4iA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VBQkulF-xUMAHOIHF2nFi-4BQBVSttqw4FKm3kNjjslK6G5ostDdeg5fgoXgS7DhRAAluPXBOZCWezzMee-b7AB4LWdiiREuVsooKZhlViAW1LvXBSjMhs7ITm5DzuTo60u824PvQCxPKKgef2DlquzLhjPx54mNzqoWeJi_rTzSoRoXb1UFCI8JihudffMrWvNh_7e37hPPdN4ev9mivKkANl9OWosmc0zYJtDZMWVlKkWqNKiudK3jpPzdLnA48fYUtM5MwZzlmzGHhjDE8qER4l39JJEqGdTWTdOzDTOKNtvYpmUoF75t0Yqse41xSHyFpYL3i9Oz3QDjubv-4kO3i3O7W_zZD1-Fav6MmO3EJ3IANXN6ErUGtgvTO6xa0O6RcHJOOoZuYah0YIvwMkKihTdoVadZ1yEZIoEOvKqxIHbsowlvlOalDDdAiHMDEQX58_daQXwoASFEd-_loP56QBk88YhemuQ3vL-Tf78DmcrXEu0CUcVqi9gk604KhUS5BbyFMp4KxzBYTeDoAIK8jtUg-kkgHuOQeLnkHl_xsAtuD1fPezTT5aPIJPBtwMz7--2j3_j3aI7iyd_j2ID_Yn8_uw1XuN3Lx2GkbNtvTNT6Ay-Zzu2hOH3YLgMCHi8bTT6xVRl0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6yinjxLa7PHLxp2E2atslR1EVRFsEHeyttHmuh7pZtV_Tm3_Dv-UtM-qAqehDPDZMykzDfZGa-AeCA-qEMIyURY5IhiiVGTKkQSe0aZ8Ux9b2oGDbh9_tsMODXn7r4i2r3OiVZ9jRYlqZR3kml7jSNb5gQHxl_gyyHFEEGRc5SW0hv4_Wb-6Yz0ilzzNwEScylpGqb-VnGV9fU4M1vKdLC8_SW_v_Py2CxQp3wuDwmK2BGjVbBUj3RAVYXfA3kxzCKh7BgsYYimVoWBbMfLOdMw3wMs2lqETu0lOFJohKYlp0GdlX0AlNbJxPbR4pSyPvrWwY_JclhmAzHkzh_eISZejRWjUW2Du56Z7cn56iay4AE8bs5UsLTmkvHEgNhJv3Ipy7ninmR1iGJjME9R3PLdBjKyBMO1pIoD2sVaiEEcZ0N0BqNR2oTQCY09xU3QSzmFCvBtKMMxFRul2LsybANDmuTBGlJvxE0RMtWoYFRaFAoNHhug53aakF1FbPAMaDO5ZR3nTY4qq3UfP5d2tbflu-D-evTXnB10b_cBgvEYJ_ypWYHtPLJVO2COfGUx9lkrzihH2An6YY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+big+graph+clustering+method+to+support+parallel+processing+by+perceiving+graph%E2%80%99s+application+algorithm+semantics&rft.jtitle=The+Journal+of+supercomputing&rft.au=Cheng%2C+Tengteng&rft.au=Zeng%2C+Guosun&rft.au=Sun%2C+Zhipeng&rft.date=2024-01-01&rft.pub=Springer+US&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=80&rft.issue=2&rft.spage=2838&rft.epage=2861&rft_id=info:doi/10.1007%2Fs11227-023-05572-x&rft.externalDocID=10_1007_s11227_023_05572_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon