Machine Learning-Enabled Battery Management System on FPGA for Electric Vehicles
This study presents an FPGA-based implementation of an adaptive power management unit (APMU) for electric vehicles (EVs), leveraging a hybrid bidirectional long short-term memory (Bi-LSTM) network and decision tree classifier to optimize power distribution in real time. Developed on the Zynq UltraSc...
Uložené v:
| Vydané v: | Programming and computer software Ročník 51; číslo 6; s. 373 - 384 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Moscow
Pleiades Publishing
01.12.2025
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0361-7688, 1608-3261 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This study presents an FPGA-based implementation of an adaptive power management unit (APMU) for electric vehicles (EVs), leveraging a hybrid bidirectional long short-term memory (Bi-LSTM) network and decision tree classifier to optimize power distribution in real time. Developed on the Zynq UltraScale+ MPSoC platform, the proposed system estimates the state of charge (SoC) and classifies driving conditions to dynamically allocate power to onboard components. The FPGA testbed models a mid-range EV by simulating key parameters such as throttle position, vehicle speed, battery voltage/current, and GPS data at 30-second intervals. Experimental results demonstrate significant improvements in power efficiency and computational latency compared to conventional battery management units (BMUs). The proposed system consumes approximately 0.98 W, achieves a latency of 5.6 µs, and operates at 181.6 operations per watt-far surpassing traditional microcontroller or DSP-based BMUs. Range estimation shows up to a 25% increase under highway conditions using the Bi-LSTM + decision tree model, validating the effectiveness of the adaptive strategy for intelligent energy management in EVs. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0361-7688 1608-3261 |
| DOI: | 10.1134/S0361768825700240 |