Machine Learning-Enabled Battery Management System on FPGA for Electric Vehicles

This study presents an FPGA-based implementation of an adaptive power management unit (APMU) for electric vehicles (EVs), leveraging a hybrid bidirectional long short-term memory (Bi-LSTM) network and decision tree classifier to optimize power distribution in real time. Developed on the Zynq UltraSc...

Full description

Saved in:
Bibliographic Details
Published in:Programming and computer software Vol. 51; no. 6; pp. 373 - 384
Main Authors: Daisy Merina. R, Saravana Ram. R, Lordwin Cecil Prabhaker Micheal
Format: Journal Article
Language:English
Published: Moscow Pleiades Publishing 01.12.2025
Springer Nature B.V
Subjects:
ISSN:0361-7688, 1608-3261
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This study presents an FPGA-based implementation of an adaptive power management unit (APMU) for electric vehicles (EVs), leveraging a hybrid bidirectional long short-term memory (Bi-LSTM) network and decision tree classifier to optimize power distribution in real time. Developed on the Zynq UltraScale+ MPSoC platform, the proposed system estimates the state of charge (SoC) and classifies driving conditions to dynamically allocate power to onboard components. The FPGA testbed models a mid-range EV by simulating key parameters such as throttle position, vehicle speed, battery voltage/current, and GPS data at 30-second intervals. Experimental results demonstrate significant improvements in power efficiency and computational latency compared to conventional battery management units (BMUs). The proposed system consumes approximately 0.98 W, achieves a latency of 5.6 µs, and operates at 181.6 operations per watt-far surpassing traditional microcontroller or DSP-based BMUs. Range estimation shows up to a 25% increase under highway conditions using the Bi-LSTM + decision tree model, validating the effectiveness of the adaptive strategy for intelligent energy management in EVs.
AbstractList This study presents an FPGA-based implementation of an adaptive power management unit (APMU) for electric vehicles (EVs), leveraging a hybrid bidirectional long short-term memory (Bi-LSTM) network and decision tree classifier to optimize power distribution in real time. Developed on the Zynq UltraScale+ MPSoC platform, the proposed system estimates the state of charge (SoC) and classifies driving conditions to dynamically allocate power to onboard components. The FPGA testbed models a mid-range EV by simulating key parameters such as throttle position, vehicle speed, battery voltage/current, and GPS data at 30-second intervals. Experimental results demonstrate significant improvements in power efficiency and computational latency compared to conventional battery management units (BMUs). The proposed system consumes approximately 0.98 W, achieves a latency of 5.6 µs, and operates at 181.6 operations per watt-far surpassing traditional microcontroller or DSP-based BMUs. Range estimation shows up to a 25% increase under highway conditions using the Bi-LSTM + decision tree model, validating the effectiveness of the adaptive strategy for intelligent energy management in EVs.
Author Saravana Ram. R
Daisy Merina. R
Lordwin Cecil Prabhaker Micheal
Author_xml – sequence: 1
  surname: Daisy Merina. R
  fullname: Daisy Merina. R
  email: rdaisymerina@gmail.com
  organization: Department of Artificial Intelligence and Data Science, Vel Tech Multi Tech Dr. Rangarajan Dr. Sakunthala Engineering College
– sequence: 2
  surname: Saravana Ram. R
  fullname: Saravana Ram. R
  email: saravanaramkrishnan@gmail.com
  organization: Department of Electronics and Communication Engineering, Anna University – Regional Campus
– sequence: 3
  surname: Lordwin Cecil Prabhaker Micheal
  fullname: Lordwin Cecil Prabhaker Micheal
  email: drlordwin@veltech.edu.in
  organization: Department of Electronics and Communication Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology
BookMark eNp1kE9PwkAQxTcGEwH9AN428Vzd_y1HJIAmEElQr83uMIWSssXdcui3twQTD8bTHN7vvZl5A9LztUdC7jl75FyqpzWThqcmy4ROGROKXZE-NyxLpDC8R_pnOTnrN2QQ454xzphSfbJaWtiVHukCbfCl3yZTb12FG_psmwZDS5fW2y0e0Dd03cYGD7T2dLaaj2lRBzqtEJpQAv3EXQkVxltyXdgq4t3PHJKP2fR98pIs3uavk_EiAZGyJkHLHABqIcE5V2i9GUkAIwuJTmjobuNcgdWZ1miUVkobATqVxqUSjQU5JA-X3GOov04Ym3xfn4LvVubdy9lICKHSjuIXCkIdY8AiP4byYEObc5afi8v_FNd5xMUTO9ZvMfwm_2_6Bmq1b_c
Cites_doi 10.24846/v27i1y201808
10.1142/s0218126623500470
10.1016/j.jpowsour.2018.10.04
10.1007/s10470-025-02370-8
10.1016/j.segan.2024.101348
10.1016/j.jpowsour.2018.05.078
10.1016/j.physd.2019.132306
10.1016/j.heliyon.2024.e35183
10.18100/ijamec.1233451
10.3390/electronics12122647
10.1016/j.est.2023.108876
10.3390/en18051188
10.1142/s0218126621500432
10.3390/en10030264
10.1007/978-981-19-4502-1_9
10.1007/s00521-021-06247-5
10.4271/12-07-03-0016
10.1109/ACCESS.2023.3250221
10.1109/access.2018.2824559
10.3390/wevj15110484
10.1016/j.microrel.2018.03.015
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2025 ISSN 0361-7688, Programming and Computer Software, 2025, Vol. 51, No. 6, pp. 373–384. © Pleiades Publishing, Ltd., 2025.Russian Text © The Author(s), 2025, published in Proceedings of ISP RAS, 2025, Vol. 37, No. 4.
Pleiades Publishing, Ltd. 2025.
Copyright_xml – notice: Pleiades Publishing, Ltd. 2025 ISSN 0361-7688, Programming and Computer Software, 2025, Vol. 51, No. 6, pp. 373–384. © Pleiades Publishing, Ltd., 2025.Russian Text © The Author(s), 2025, published in Proceedings of ISP RAS, 2025, Vol. 37, No. 4.
– notice: Pleiades Publishing, Ltd. 2025.
DBID AAYXX
CITATION
JQ2
DOI 10.1134/S0361768825700240
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1608-3261
EndPage 384
ExternalDocumentID 10_1134_S0361768825700240
GroupedDBID -Y2
.86
.DC
.VR
06D
0R~
0VY
123
1N0
29P
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
408
409
40D
40E
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABBBX
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFFHD
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P9O
PF0
PHGZM
PHGZT
PQGLB
PT4
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
ZMTXR
~A9
AAYXX
CITATION
JQ2
ID FETCH-LOGICAL-c270t-ea0bcce523cbbbf55d93cc63f3eb25c044114ca5855e64544562c5736b73e6ac3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001610337500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0361-7688
IngestDate Fri Nov 07 23:38:39 EST 2025
Thu Nov 13 04:27:31 EST 2025
Thu Nov 06 11:43:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords driving pattern recognition using machine learning
battery management system (BMS) for electric vehicles
long short-term memory (LSTM) networks
bidirectional LSTM (Bi-LSTM) architecture
decision tree classification
state of charge (SoC) estimation algorithms
FPGA-based embedded implementation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-ea0bcce523cbbbf55d93cc63f3eb25c044114ca5855e64544562c5736b73e6ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3268922247
PQPubID 2043762
PageCount 12
ParticipantIDs proquest_journals_3268922247
crossref_primary_10_1134_S0361768825700240
springer_journals_10_1134_S0361768825700240
PublicationCentury 2000
PublicationDate 20251200
2025-12-00
20251201
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 20251200
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: New York
PublicationTitle Programming and computer software
PublicationTitleAbbrev Program Comput Soft
PublicationYear 2025
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References 3956_CR8
W. Zhou (3956_CR3) 2018; 407
3956_CR13
3956_CR12
3956_CR10
3956_CR21
A. Sherstinsky (3956_CR5) 2020
T. Rahman (3956_CR7) 2024; 15
F. Xue (3956_CR15) 2017; 10
A. Saday (3956_CR18) 2023; 11
S.D. Nagarale (3956_CR1) 2024; 7
H. Li (3956_CR4) 2018; 395
B. Kumar (3956_CR19) 2018; 84
R.D. Merina (3956_CR14) 2025; 123
3956_CR6
J. Lu (3956_CR11) 2018; 6
G. Gatica (3956_CR20) 2018; 27
M. Al-Dhaifallah (3956_CR16) 2021; 33
3956_CR2
S. Thangavel (3956_CR9) 2023; 11
F. Ping (3956_CR17) 2023; 12
References_xml – volume: 27
  start-page: 73
  year: 2018
  ident: 3956_CR20
  publication-title: Stud. Inf. Control
  doi: 10.24846/v27i1y201808
– ident: 3956_CR21
  doi: 10.1142/s0218126623500470
– volume: 407
  start-page: 92
  year: 2018
  ident: 3956_CR3
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.10.04
– volume: 123
  start-page: 42
  year: 2025
  ident: 3956_CR14
  publication-title: Analog Integr. Circuits Signal Process.
  doi: 10.1007/s10470-025-02370-8
– ident: 3956_CR2
  doi: 10.1016/j.segan.2024.101348
– volume: 395
  start-page: 262
  year: 2018
  ident: 3956_CR4
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.05.078
– volume-title: Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network, Phys. D
  year: 2020
  ident: 3956_CR5
  doi: 10.1016/j.physd.2019.132306
– ident: 3956_CR6
  doi: 10.1016/j.heliyon.2024.e35183
– volume: 11
  start-page: 55
  year: 2023
  ident: 3956_CR18
  publication-title: International Journal of Applied Mathematics Electronics and Computers
  doi: 10.18100/ijamec.1233451
– volume: 12
  start-page: 2647
  year: 2023
  ident: 3956_CR17
  publication-title: Electronics
  doi: 10.3390/electronics12122647
– ident: 3956_CR12
  doi: 10.1016/j.est.2023.108876
– ident: 3956_CR8
  doi: 10.3390/en18051188
– ident: 3956_CR13
  doi: 10.1142/s0218126621500432
– volume: 10
  start-page: 264
  year: 2017
  ident: 3956_CR15
  publication-title: Energies
  doi: 10.3390/en10030264
– ident: 3956_CR10
  doi: 10.1007/978-981-19-4502-1_9
– volume: 33
  start-page: 16095
  year: 2021
  ident: 3956_CR16
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-021-06247-5
– volume: 7
  start-page: 261
  year: 2024
  ident: 3956_CR1
  publication-title: SAE Int. J. Connected Autom. Veh.
  doi: 10.4271/12-07-03-0016
– volume: 11
  start-page: 20994
  year: 2023
  ident: 3956_CR9
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3250221
– volume: 6
  start-page: 20868
  year: 2018
  ident: 3956_CR11
  publication-title: IEEE Access
  doi: 10.1109/access.2018.2824559
– volume: 15
  start-page: 484
  year: 2024
  ident: 3956_CR7
  publication-title: World Electr. Veh. J.
  doi: 10.3390/wevj15110484
– volume: 84
  start-page: 66
  year: 2018
  ident: 3956_CR19
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2018.03.015
SSID ssj0010044
Score 2.337226
Snippet This study presents an FPGA-based implementation of an adaptive power management unit (APMU) for electric vehicles (EVs), leveraging a hybrid bidirectional...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 373
SubjectTerms Accuracy
Artificial Intelligence
Batteries
Computer Science
Cost control
Decision trees
Driving conditions
Electric vehicles
Emissions
Energy consumption
Energy efficiency
Energy management
Field programmable gate arrays
Genetic algorithms
Lithium
Machine learning
Neural networks
Operating Systems
Power efficiency
Power management
Software Engineering
Software Engineering/Programming and Operating Systems
State of charge
Traffic speed
Title Machine Learning-Enabled Battery Management System on FPGA for Electric Vehicles
URI https://link.springer.com/article/10.1134/S0361768825700240
https://www.proquest.com/docview/3268922247
Volume 51
WOSCitedRecordID wos001610337500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1608-3261
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010044
  issn: 0361-7688
  databaseCode: RSV
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1BYWChfIpCQR6YQBZpHNfJWKEWBqgqClW3yDk70CVFbUHi32M7DhVfA8yxTsnF9t3p3b0HcBqzQKGwEz2tSNFIMEFlgpwiBkJLLlE45bnRjej34_E4Gfg57nnV7V5Bku6mLnVHoouhuWtbxmpsddcsM9cqrJloF1u9hrvh6AM6sBBlCVC2qF3uocwfTXwORssM8wso6mJNr_6vt9yCTZ9akk65F7ZhRRc7UK9kG4g_xbswuHUNlJp4btVH2nUDVIqUZJtvZNkTQ0pGczItSG9w1SEmxSVdp5wzQTLST66pbg8eet37y2vqhRUohiJYUC2DDFGbGhSzLMs5VwlDbLOcmTqbo3GgqZJQmkqCa8v4Zask5IK1M8F0WyLbh1oxLfQBEKZzJc3HJqjCSMg8Cd2oKwYqwEDmWQPOKg-nzyV_RurqDhal33zVgGb1D1J_lOapyS9jY9VYb8B55fPl41-NHf5p9RFshFbZ1zWqNKG2mL3oY1jH18VkPjtxO-wd3pTIFQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8JAEJ0omuhF_Iwo6h48aTaWbsu2R2JAjECIIOHWbGe3yqUYQBP_vbvbVuLXQc_dTNrp7s5M3sx7AOcBcyRyM9FT8yT1OONUhOhTRIcr4QvkVnlu1OG9XjAeh_18jntedLsXkKS9qTPdEe9qoO_amrYaGN01w8y1CmueDliGMP9-MPqADgxEmQGUNWqW51DmjyY-B6NlhvkFFLWxplX-11tuw1aeWpJGthd2YEWlu1AuZBtIfor3oN-1DZSK5Nyqj7RpB6gkycg238iyJ4ZkjOZkmpJW_6ZBdIpLmlY5Z4JkpJ5sU90-PLSaw-s2zYUVKLrcWVAlnBhR6RoU4zhOfF-GDLHOEqbrbB-1A3WVhEJXEr4yjF-mSkKfs3rMmaoLZAdQSqepOgTCVCKF_tgQpetxkYSuHXVFRzroiCSuwEXh4eg548-IbN3BvOibrypQLf5BlB-leaTzy0Bb1dYrcFn4fPn4V2NHf1p9BhvtYbcTdW57d8ew6RqVX9u0UoXSYvaiTmAdXxeT-ezU7rZ3SbPK-Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEJ5oNcaL9RmrVffgSbORstCFY6NFjbUhqTa9kWVYtBfatGjiv3d3ARtfB-OZzbAM-5gvM_N9AKcesxLkuqOn5STU4YxT4aNLES0uhSuQG-W5YY_3-95o5Ielzum8qnavUpJFT4Nmacryi2mSlhokzsVAnbst9QZPa7Bplq5lWHF0Hb2G64PhRxpBpyuLZGWL6uFlWvNHE58vpkW0-SVBau6doP7vGW_CRhlykk6xRrZgSWbbUK_kHEi5u3cgvDeFlZKUnKtPtGsaqxJSkHC-kUWtDCmYzskkI0F43SEq9CVdo6gzRjKUz6bYbhceg-7D5Q0tBRco2tzKqRRWjCgVNsU4jlPXTXyG2GYpU_jbReVMhZ5QKIThSs0EptETupy1Y85kWyDbg1o2yeQ-ECbTRKiP9TGxHS5S3zYtsGglFloijRtwVnk7mha8GpHBI8yJvvmqAc3qf0TlFptHKu70lFVlvQHnlf8Xj381dvCn0SewFl4FUe-2f3cI67YW_zW1LE2o5bMXeQSr-JqP57Njs_DeAbAc090
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning-Enabled+Battery+Management+System+on+FPGA+for+Electric+Vehicles&rft.jtitle=Programming+and+computer+software&rft.au=Daisy+Merina+R&rft.au=Saravana%2C+Ram+R&rft.au=Lordwin+Cecil+Prabhaker+Micheal&rft.date=2025-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0361-7688&rft.eissn=1608-3261&rft.volume=51&rft.issue=6&rft.spage=373&rft.epage=384&rft_id=info:doi/10.1134%2FS0361768825700240&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-7688&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-7688&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-7688&client=summon