Rabbit and Tortoise Optimization Algorithm with Mutual Information Based Adaptive Strategy for Network Intrusion Detection
In the modern era of highly interconnectedness, data and information are constantly transmitted over networks. Ensuring the security of confidential information and protecting computer systems from network threats has become very important. Therefore, it is important to develop an effective network...
Uloženo v:
| Vydáno v: | Programming and computer software Ročník 51; číslo 6; s. 359 - 372 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Moscow
Pleiades Publishing
01.12.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 0361-7688, 1608-3261 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In the modern era of highly interconnectedness, data and information are constantly transmitted over networks. Ensuring the security of confidential information and protecting computer systems from network threats has become very important. Therefore, it is important to develop an effective network intrusion detection system (NIDS) using optimal features. These optimal features can be identified through computational intelligence by learning patterns and relationships among features using machine learning techniques. This paper presents a rabbit and tortoise optimization technique for selecting optimal features. For evaluation, the UNSW-NB15 dataset is utilized. The optimization results achieve an accuracy of 94.12% for binary classification and 93.92% for multiclass classification, with 26 optimal features selected from the entire feature set. To improve the approach, an adaptive strategy based on mutual information is used to control the number of optimal features. This strategy, together with the Rabbit and Tortoise algorithm, improves the accuracy, showing 94.69% for binary classification and 94.03% for multiclass classification, while reducing the number of selected features to 9 only. The comparative performance analysis shows that the proposed feature selection method outperforms other state-of-the-art methods, providing more accurate and reliable results in identifying cyber threats. In addition, the relationship plot between the number of optimal features and the accuracy of the model shows that selecting only 9 features is effective in achieving high accuracy in detecting and predicting cyber attacks. |
|---|---|
| AbstractList | In the modern era of highly interconnectedness, data and information are constantly transmitted over networks. Ensuring the security of confidential information and protecting computer systems from network threats has become very important. Therefore, it is important to develop an effective network intrusion detection system (NIDS) using optimal features. These optimal features can be identified through computational intelligence by learning patterns and relationships among features using machine learning techniques. This paper presents a rabbit and tortoise optimization technique for selecting optimal features. For evaluation, the UNSW-NB15 dataset is utilized. The optimization results achieve an accuracy of 94.12% for binary classification and 93.92% for multiclass classification, with 26 optimal features selected from the entire feature set. To improve the approach, an adaptive strategy based on mutual information is used to control the number of optimal features. This strategy, together with the Rabbit and Tortoise algorithm, improves the accuracy, showing 94.69% for binary classification and 94.03% for multiclass classification, while reducing the number of selected features to 9 only. The comparative performance analysis shows that the proposed feature selection method outperforms other state-of-the-art methods, providing more accurate and reliable results in identifying cyber threats. In addition, the relationship plot between the number of optimal features and the accuracy of the model shows that selecting only 9 features is effective in achieving high accuracy in detecting and predicting cyber attacks. |
| Author | Bhuvaneswari, T. Soundar, K. Ruba Sekar, R. Chandra Guru |
| Author_xml | – sequence: 1 givenname: T. surname: Bhuvaneswari fullname: Bhuvaneswari, T. email: bhuvanait2011@gmail.com organization: Department of Computer Science and Engineering, Mepco Schlenk Engineering College – sequence: 2 givenname: K. Ruba surname: Soundar fullname: Soundar, K. Ruba organization: Department of Computer Science and Engineering, Mepco Schlenk Engineering College – sequence: 3 givenname: R. Chandra Guru surname: Sekar fullname: Sekar, R. Chandra Guru organization: Department of Mathematics, Mepco Schlenk Engineering College |
| BookMark | eNp1kF1LwzAUhoNMcJv-AO8CXlfz0abp5Zxfg-nAzeuStMnsXJuZpI7t15tSwQvx5hwO53nOgXcEBo1pFACXGF1jTOObJaIMp4xzkqQIEZqdgCFmiEeUMDwAw24ddfszMHJugxBGKI6H4PgqpKw8FE0JV8Z6UzkFFztf1dVR-Mo0cLJdG1v59xruQ4XPrW_FFs4abWzdE7fCqRJOShG0LwWX3gqv1gcYCPii_N7Yj8B727qOvlNeFZ13Dk612Dp18dPH4O3hfjV9iuaLx9l0Mo8KkiIfKaqSopSEiCTWmdZSMlyoUmY0URoxLRMqhJacpRzzkhUpF1iGOeMyJppKOgZX_d2dNZ-tcj7fmNY24WUewuEZIeFPoHBPFdY4Z5XOd7aqhT3kGOVdxPmfiINDescFtlkr-3v5f-kbu4uCnQ |
| Cites_doi | 10.1109/MilCIS.2015.7348942 10.1109/access.2021.3128837 10.1007/s00521-017-3128-z 10.1016/j.procs.2020.03.367 10.1016/j.jnlssr.2023.12.004 10.1016/j.simpat.2019.102031 10.1002/ett.4150 10.1186/s40537-023-00697-5 10.1007/s10207-019-00482-7 10.1007/s00521-021-06093-5 10.1145/2939672.2939785 10.1007/978-981-16-8193-6 10.48550/arXiv.1810.11363 10.1007/s00500-021-06067-8 10.1016/j.compeleceng.2024.109113 10.1007/s10586-019-03008-x 10.1007/s10207-023-00803-x 10.3390/sym12061046 10.1007/s00500-023-09610-x 10.1016/j.cose.2020.102158 10.1016/j.cose.2017.06.005 10.1016/j.eswa.2020.113249 10.1016/j.eij.2024.100476 10.1016/j.eswa.2014.04.019 10.1186/s40537-021-00531-w 10.1186/s42400-021-00103-8 10.1108/IJIUS-06-2019-0029 10.1016/j.csa.2024.100063 10.1002/cpe.5927 10.1186/s40537-020-00379-6 10.1002/cpe.7110 10.1016/j.cose.2018.11.005 10.3390/cancers13174297 10.1155/2021/5557577 10.14569/IJACSA.2017.080651 10.1080/19393555.2015.1125974 10.1109/TBDATA.2017.2715166 10.1023/a:1010933404324 10.1016/j.cose.2024.103730 10.1109/BADGERS.2015.014 10.3390/electronics9020219 10.4225/75/57a84d4fbefbb |
| ContentType | Journal Article |
| Copyright | Pleiades Publishing, Ltd. 2025 ISSN 0361-7688, Programming and Computer Software, 2025, Vol. 51, No. 6, pp. 359–372. © Pleiades Publishing, Ltd., 2025.Russian Text © The Author(s), 2025, published in Proceedings of ISP RAS, 2025, Vol. 37, No. 4. Pleiades Publishing, Ltd. 2025. |
| Copyright_xml | – notice: Pleiades Publishing, Ltd. 2025 ISSN 0361-7688, Programming and Computer Software, 2025, Vol. 51, No. 6, pp. 359–372. © Pleiades Publishing, Ltd., 2025.Russian Text © The Author(s), 2025, published in Proceedings of ISP RAS, 2025, Vol. 37, No. 4. – notice: Pleiades Publishing, Ltd. 2025. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1134/S0361768825700239 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1608-3261 |
| EndPage | 372 |
| ExternalDocumentID | 10_1134_S0361768825700239 |
| GroupedDBID | -Y2 .86 .DC .VR 06D 0R~ 0VY 123 1N0 29P 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 408 409 40D 40E 5VS 67Z 6NX 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABAKF ABBBX ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFFHD AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ K7- KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P9O PF0 PHGZM PHGZT PQGLB PT4 QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR ZMTXR ~A9 AAYXX CITATION JQ2 |
| ID | FETCH-LOGICAL-c270t-e3e5cdb22a54f9ffbb61cedb935ef06fb53aafb867818d6c78a1bfb898b42f3b3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001610337500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0361-7688 |
| IngestDate | Fri Nov 07 23:25:52 EST 2025 Thu Nov 13 04:27:31 EST 2025 Thu Nov 06 11:43:53 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | wrapper based feature selection rabbit and tortoise optimization algorithm (RTOA) mutual information (MI) metaheuristic optimization algorithm network intrusion detection system (NIDS) feature selection (FS) |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c270t-e3e5cdb22a54f9ffbb61cedb935ef06fb53aafb867818d6c78a1bfb898b42f3b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3268922270 |
| PQPubID | 2043762 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_3268922270 crossref_primary_10_1134_S0361768825700239 springer_journals_10_1134_S0361768825700239 |
| PublicationCentury | 2000 |
| PublicationDate | 20251200 2025-12-00 20251201 |
| PublicationDateYYYYMMDD | 2025-12-01 |
| PublicationDate_xml | – month: 12 year: 2025 text: 20251200 |
| PublicationDecade | 2020 |
| PublicationPlace | Moscow |
| PublicationPlace_xml | – name: Moscow – name: New York |
| PublicationTitle | Programming and computer software |
| PublicationTitleAbbrev | Program Comput Soft |
| PublicationYear | 2025 |
| Publisher | Pleiades Publishing Springer Nature B.V |
| Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
| References | A. Jung (3955_CR45) 2022 B. Selvakumar (3955_CR3) 2019; 81 Ya.K. Saheed (3955_CR7) 2024; 23 3955_CR6 3955_CR19 3955_CR1 V. Kumar (3955_CR25) 2020; 23 3955_CR35 L. Breiman (3955_CR41) 2001; 45 3955_CR33 3955_CR39 3955_CR18 3955_CR9 P.K. Keserwani (3955_CR12) 2023; 35 3955_CR15 3955_CR8 N. Kabilan (3955_CR14) 2024; 5 P. Rana (3955_CR5) 2021; 13 3955_CR31 N. Hoque (3955_CR47) 2014; 41 3955_CR10 Ya.K. Saheed (3955_CR21) 2021; 9 S. Meftah (3955_CR26) 2019; 8 A. Shiravani (3955_CR23) 2023; 10 N. Moustafa (3955_CR34) 2019; 5 Ch. Khammassi (3955_CR36) 2017; 70 A.B. Feroz Khan (3955_CR16) 2020; 9 M. Yousefnezhad (3955_CR13) 2021; 25 S.M. Kasongo (3955_CR24) 2020; 7 M. Srinivasan (3955_CR48) 2024; 28 V. Kumar (3955_CR38) 2020; 23 S. Choudhary (3955_CR2) 2020; 167 R.A. Disha (3955_CR11) 2022; 5 3955_CR46 3955_CR22 3955_CR44 3955_CR29 O. Almomani (3955_CR27) 2020; 12 A.A. Megantara (3955_CR17) 2021; 8 N. Moustafa (3955_CR30) 2016; 25 K. Sethi (3955_CR37) 2020; 19 Z. Ahmad (3955_CR28) 2021; 32 B.A. Tama (3955_CR32) 2019; 31 3955_CR20 3955_CR42 T. Bhuvaneswari (3955_CR4) 2022; 20 3955_CR43 3955_CR40 |
| References_xml | – ident: 3955_CR1 doi: 10.1109/MilCIS.2015.7348942 – volume: 9 start-page: 161546 year: 2021 ident: 3955_CR21 publication-title: IEEE Access doi: 10.1109/access.2021.3128837 – volume: 31 start-page: 955 year: 2019 ident: 3955_CR32 publication-title: Neural Computing and Applications doi: 10.1007/s00521-017-3128-z – ident: 3955_CR46 – volume: 167 start-page: 1561 year: 2020 ident: 3955_CR2 publication-title: Procedia Computer Science doi: 10.1016/j.procs.2020.03.367 – volume: 5 start-page: 119 year: 2024 ident: 3955_CR14 publication-title: J. Saf. Sci. Resilience doi: 10.1016/j.jnlssr.2023.12.004 – ident: 3955_CR18 doi: 10.1016/j.simpat.2019.102031 – ident: 3955_CR44 – volume: 32 start-page: 4150 year: 2021 ident: 3955_CR28 publication-title: Trans. Emerging Telecommun. Technol. doi: 10.1002/ett.4150 – volume: 10 start-page: 27 year: 2023 ident: 3955_CR23 publication-title: J. Big Data doi: 10.1186/s40537-023-00697-5 – volume: 19 start-page: 657 year: 2020 ident: 3955_CR37 publication-title: Int. J. Inf. Secur. doi: 10.1007/s10207-019-00482-7 – volume: 35 start-page: 4993 year: 2023 ident: 3955_CR12 publication-title: Neural Computing and Applications doi: 10.1007/s00521-021-06093-5 – ident: 3955_CR43 doi: 10.1145/2939672.2939785 – volume-title: Machine Learning: The Basics year: 2022 ident: 3955_CR45 doi: 10.1007/978-981-16-8193-6 – ident: 3955_CR42 doi: 10.48550/arXiv.1810.11363 – volume: 25 start-page: 12667 year: 2021 ident: 3955_CR13 publication-title: Soft Comput. doi: 10.1007/s00500-021-06067-8 – ident: 3955_CR8 doi: 10.1016/j.compeleceng.2024.109113 – volume: 23 start-page: 1397 year: 2020 ident: 3955_CR25 publication-title: Cluster Comput. doi: 10.1007/s10586-019-03008-x – ident: 3955_CR40 – volume: 23 start-page: 1557 year: 2024 ident: 3955_CR7 publication-title: Int. J. Inf. Secur. doi: 10.1007/s10207-023-00803-x – volume: 12 start-page: 1046 year: 2020 ident: 3955_CR27 publication-title: Symmetry doi: 10.3390/sym12061046 – volume: 28 start-page: 4519 year: 2024 ident: 3955_CR48 publication-title: Soft Comput. doi: 10.1007/s00500-023-09610-x – ident: 3955_CR33 doi: 10.1016/j.cose.2020.102158 – volume: 70 start-page: 255 year: 2017 ident: 3955_CR36 publication-title: Comput. Secur. doi: 10.1016/j.cose.2017.06.005 – ident: 3955_CR15 doi: 10.1016/j.eswa.2020.113249 – ident: 3955_CR10 doi: 10.1016/j.eij.2024.100476 – volume: 41 start-page: 6371 year: 2014 ident: 3955_CR47 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.04.019 – volume: 8 start-page: 142 year: 2021 ident: 3955_CR17 publication-title: J. Big Data doi: 10.1186/s40537-021-00531-w – volume: 5 start-page: 1 year: 2022 ident: 3955_CR11 publication-title: Cybersecurity doi: 10.1186/s42400-021-00103-8 – volume: 9 start-page: 178 year: 2020 ident: 3955_CR16 publication-title: Int. J. Intell. Unmanned Syst. doi: 10.1108/IJIUS-06-2019-0029 – ident: 3955_CR6 doi: 10.1016/j.csa.2024.100063 – ident: 3955_CR31 doi: 10.1002/cpe.5927 – volume: 7 start-page: 105 year: 2020 ident: 3955_CR24 publication-title: J. Big Data doi: 10.1186/s40537-020-00379-6 – ident: 3955_CR22 doi: 10.1002/cpe.7110 – volume: 81 start-page: 148 year: 2019 ident: 3955_CR3 publication-title: Comput. Secur. doi: 10.1016/j.cose.2018.11.005 – volume: 13 start-page: 4297 year: 2021 ident: 3955_CR5 publication-title: Cancers doi: 10.3390/cancers13174297 – ident: 3955_CR20 doi: 10.1155/2021/5557577 – ident: 3955_CR29 doi: 10.14569/IJACSA.2017.080651 – volume: 25 start-page: 18 year: 2016 ident: 3955_CR30 publication-title: Inf. Secur. J. doi: 10.1080/19393555.2015.1125974 – volume: 20 start-page: 1296 year: 2022 ident: 3955_CR4 publication-title: NeuroQuantology – volume: 5 start-page: 481 year: 2019 ident: 3955_CR34 publication-title: IEEE Trans. Big Data doi: 10.1109/TBDATA.2017.2715166 – volume: 45 start-page: 5 year: 2001 ident: 3955_CR41 publication-title: Mach. Learn. doi: 10.1023/a:1010933404324 – ident: 3955_CR9 doi: 10.1016/j.cose.2024.103730 – ident: 3955_CR39 doi: 10.1109/BADGERS.2015.014 – volume: 8 start-page: 478 year: 2019 ident: 3955_CR26 publication-title: International Journal of Computing and Digital Systems – volume: 23 start-page: 1397 year: 2020 ident: 3955_CR38 publication-title: Cluster Comput. doi: 10.1007/s10586-019-03008-x – ident: 3955_CR19 doi: 10.3390/electronics9020219 – ident: 3955_CR35 doi: 10.4225/75/57a84d4fbefbb |
| SSID | ssj0010044 |
| Score | 2.3375123 |
| Snippet | In the modern era of highly interconnectedness, data and information are constantly transmitted over networks. Ensuring the security of confidential... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 359 |
| SubjectTerms | Accuracy Algorithms Artificial Intelligence Classification Computer Science Cybersecurity Datasets Feature selection Intrusion detection systems Machine learning Methods Missing data Neural networks Operating Systems Optimization Optimization algorithms Optimization techniques Software Engineering Software Engineering/Programming and Operating Systems Support vector machines |
| Title | Rabbit and Tortoise Optimization Algorithm with Mutual Information Based Adaptive Strategy for Network Intrusion Detection |
| URI | https://link.springer.com/article/10.1134/S0361768825700239 https://www.proquest.com/docview/3268922270 |
| Volume | 51 |
| WOSCitedRecordID | wos001610337500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1608-3261 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010044 issn: 0361-7688 databaseCode: RSV dateStart: 20000101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMLBQnqJQkAcmUEQTx64zlkfFQkFtQWyRnxCJplUbkODXYzsOFa8BxignK7LPd-d89_kD4JCbtMNjYrsbJA9iJlXAMNFBaFEbIjBShDuxiXavR-_vkxvP455V3e4VJOkidak7Ep8MTKwNTXFMre6apWQugiWT7ajVa-gP7j6gAwtRlgBlGFhzD2X-OMTnZDSvML-Aoi7XdOv_-so1sOpLS9gpfWEdLKh8A9Qr2Qbod_EmeOszzrMCslzCoam-x9lMwWsTOkaekwk7Tw_jaVY8jqD9TQuvni3JBHrmkrM4NclPwo5kExsuob_j9hUaC9grO8uNvSV0WOtzVbiOr3wL3HYvhmeXgZdgCETUbhWBQgoLyaOI4VgnWnNOQqEkTxBWukU0x4gxzalJeSGVRLQpC7l5TowDRBpxtA1q-ThXOwBKgiKZKEGxUjFDlBOptcZIMGRPbWEDHFVrkU7KmzZSd0JBcfptVhugWa1W6jfdLDWVKE0st7fVAMfV6sxf_zrY7p-s98BKZDWAXUtLE9TMVKp9sCxeimw2PXC--A7TwNr8 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgIMGF8RSDATlwAlWsTZu1x_GYhtgG2gbiViVNApVYN20FCX49SZsy8TrAsaoVVbFjO_382QCHTIUd5hJd3cCZ5VIuLOoRadkatSGRhwVh2bCJerfr398HN4bHPS2q3QtIMvPU-dwR96SvfK2tkmNfz13TlMx5WHBVwNIN83v9uw_oQEOUOUBpW1rcQJk_LvE5GM0yzC-gaBZrmuV_feUqrJjUEjVyW1iDOZGsQ7kY24DMKd6Atx5lLE4RTTgaqOx7FE8FulauY2g4majx9DCaxOnjEOnftKjzrEkmyDCXMolTFfw4anA61u4SmR63r0hJoG5eWa7kNaFDS5-LNKv4SjbhtnkxOGtZZgSDFTn1WmoJLLyIM8ehnisDKRkjdiQ4C7AnZI1I5mFKJfNVyLN9TqK6T22mngNlAI7EDG9BKRklYhsQJ9jhgYh8TwiXYp8RLqX0cESxvrXZFTgqdBGO804bYXZDwW74bVcrUC20FZpDNw1VJuoHmttbq8BxoZ3Z618X2_mT9AEstQaddti-7F7twrKj5wFn5S1VKKltFXuwGL2k8XSyn9nlOyDG3eA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFPHFecXp1Dz4pBTXps3ax-kcijqHN3wrSZPoQLvhqqC_3pw2dXh7EB9LD6Hkci79zpcPYFuYsCN8ht0NUjg-l8rhAdOOi6gNSwKqmMjFJprdbnh7G_Wszumo7HYvIcmC04C3NKXZ3lBqq0Hi710av-uaRDlEDTakZ07ClI999FiuX958wAgIVxZgpeuguYU1fxzic2AaZ5tfANI87nSq__7ieZizKSdpFXtkASZUugjVUs6B2NO9BG8XXIh-RngqyZXJygf9kSLnxqU8Wq4maT3cDZ762f0jwd-35OwZySfEMppyi30TFCVpST5EN0rs3bevxFiQbtFxbuyR6IHWbZXlnWDpMlx3Dq8OjhwrzeAkXrOROYqqIJHC83jg60hrIZibKCkiGijdYFoElHMtQhMK3VCypBlyV5jnyGwMT1NBV6CSDlK1CkQy6slIJWGglM9pKJjUWgc04RSrObcGO-W6xMPiBo44r1yoH3-b1RrUy5WL7WEcxSZDDSPk_DZqsFuu1Pj1r4Ot_cl6C2Z67U58etw9WYdZD2WC866XOlTMrKoNmE5esv7oaTPfou_8N-bE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rabbit+and+Tortoise+Optimization+Algorithm+with+Mutual+Information+Based+Adaptive+Strategy+for+Network+Intrusion+Detection&rft.jtitle=Programming+and+computer+software&rft.au=Bhuvaneswari%2C+T.&rft.au=Soundar%2C+K.+Ruba&rft.au=Sekar%2C+R.+Chandra+Guru&rft.date=2025-12-01&rft.pub=Pleiades+Publishing&rft.issn=0361-7688&rft.eissn=1608-3261&rft.volume=51&rft.issue=6&rft.spage=359&rft.epage=372&rft_id=info:doi/10.1134%2FS0361768825700239&rft.externalDocID=10_1134_S0361768825700239 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-7688&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-7688&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-7688&client=summon |