Rabbit and Tortoise Optimization Algorithm with Mutual Information Based Adaptive Strategy for Network Intrusion Detection

In the modern era of highly interconnectedness, data and information are constantly transmitted over networks. Ensuring the security of confidential information and protecting computer systems from network threats has become very important. Therefore, it is important to develop an effective network...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Programming and computer software Ročník 51; číslo 6; s. 359 - 372
Hlavní autori: Bhuvaneswari, T., Soundar, K. Ruba, Sekar, R. Chandra Guru
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Moscow Pleiades Publishing 01.12.2025
Springer Nature B.V
Predmet:
ISSN:0361-7688, 1608-3261
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In the modern era of highly interconnectedness, data and information are constantly transmitted over networks. Ensuring the security of confidential information and protecting computer systems from network threats has become very important. Therefore, it is important to develop an effective network intrusion detection system (NIDS) using optimal features. These optimal features can be identified through computational intelligence by learning patterns and relationships among features using machine learning techniques. This paper presents a rabbit and tortoise optimization technique for selecting optimal features. For evaluation, the UNSW-NB15 dataset is utilized. The optimization results achieve an accuracy of 94.12% for binary classification and 93.92% for multiclass classification, with 26 optimal features selected from the entire feature set. To improve the approach, an adaptive strategy based on mutual information is used to control the number of optimal features. This strategy, together with the Rabbit and Tortoise algorithm, improves the accuracy, showing 94.69% for binary classification and 94.03% for multiclass classification, while reducing the number of selected features to 9 only. The comparative performance analysis shows that the proposed feature selection method outperforms other state-of-the-art methods, providing more accurate and reliable results in identifying cyber threats. In addition, the relationship plot between the number of optimal features and the accuracy of the model shows that selecting only 9 features is effective in achieving high accuracy in detecting and predicting cyber attacks.
AbstractList In the modern era of highly interconnectedness, data and information are constantly transmitted over networks. Ensuring the security of confidential information and protecting computer systems from network threats has become very important. Therefore, it is important to develop an effective network intrusion detection system (NIDS) using optimal features. These optimal features can be identified through computational intelligence by learning patterns and relationships among features using machine learning techniques. This paper presents a rabbit and tortoise optimization technique for selecting optimal features. For evaluation, the UNSW-NB15 dataset is utilized. The optimization results achieve an accuracy of 94.12% for binary classification and 93.92% for multiclass classification, with 26 optimal features selected from the entire feature set. To improve the approach, an adaptive strategy based on mutual information is used to control the number of optimal features. This strategy, together with the Rabbit and Tortoise algorithm, improves the accuracy, showing 94.69% for binary classification and 94.03% for multiclass classification, while reducing the number of selected features to 9 only. The comparative performance analysis shows that the proposed feature selection method outperforms other state-of-the-art methods, providing more accurate and reliable results in identifying cyber threats. In addition, the relationship plot between the number of optimal features and the accuracy of the model shows that selecting only 9 features is effective in achieving high accuracy in detecting and predicting cyber attacks.
Author Bhuvaneswari, T.
Soundar, K. Ruba
Sekar, R. Chandra Guru
Author_xml – sequence: 1
  givenname: T.
  surname: Bhuvaneswari
  fullname: Bhuvaneswari, T.
  email: bhuvanait2011@gmail.com
  organization: Department of Computer Science and Engineering, Mepco Schlenk Engineering College
– sequence: 2
  givenname: K. Ruba
  surname: Soundar
  fullname: Soundar, K. Ruba
  organization: Department of Computer Science and Engineering, Mepco Schlenk Engineering College
– sequence: 3
  givenname: R. Chandra Guru
  surname: Sekar
  fullname: Sekar, R. Chandra Guru
  organization: Department of Mathematics, Mepco Schlenk Engineering College
BookMark eNp1kF1LwzAUhoNMcJv-AO8CXlfz0abp5Zxfg-nAzeuStMnsXJuZpI7t15tSwQvx5hwO53nOgXcEBo1pFACXGF1jTOObJaIMp4xzkqQIEZqdgCFmiEeUMDwAw24ddfszMHJugxBGKI6H4PgqpKw8FE0JV8Z6UzkFFztf1dVR-Mo0cLJdG1v59xruQ4XPrW_FFs4abWzdE7fCqRJOShG0LwWX3gqv1gcYCPii_N7Yj8B727qOvlNeFZ13Dk612Dp18dPH4O3hfjV9iuaLx9l0Mo8KkiIfKaqSopSEiCTWmdZSMlyoUmY0URoxLRMqhJacpRzzkhUpF1iGOeMyJppKOgZX_d2dNZ-tcj7fmNY24WUewuEZIeFPoHBPFdY4Z5XOd7aqhT3kGOVdxPmfiINDescFtlkr-3v5f-kbu4uCnQ
Cites_doi 10.1109/MilCIS.2015.7348942
10.1109/access.2021.3128837
10.1007/s00521-017-3128-z
10.1016/j.procs.2020.03.367
10.1016/j.jnlssr.2023.12.004
10.1016/j.simpat.2019.102031
10.1002/ett.4150
10.1186/s40537-023-00697-5
10.1007/s10207-019-00482-7
10.1007/s00521-021-06093-5
10.1145/2939672.2939785
10.1007/978-981-16-8193-6
10.48550/arXiv.1810.11363
10.1007/s00500-021-06067-8
10.1016/j.compeleceng.2024.109113
10.1007/s10586-019-03008-x
10.1007/s10207-023-00803-x
10.3390/sym12061046
10.1007/s00500-023-09610-x
10.1016/j.cose.2020.102158
10.1016/j.cose.2017.06.005
10.1016/j.eswa.2020.113249
10.1016/j.eij.2024.100476
10.1016/j.eswa.2014.04.019
10.1186/s40537-021-00531-w
10.1186/s42400-021-00103-8
10.1108/IJIUS-06-2019-0029
10.1016/j.csa.2024.100063
10.1002/cpe.5927
10.1186/s40537-020-00379-6
10.1002/cpe.7110
10.1016/j.cose.2018.11.005
10.3390/cancers13174297
10.1155/2021/5557577
10.14569/IJACSA.2017.080651
10.1080/19393555.2015.1125974
10.1109/TBDATA.2017.2715166
10.1023/a:1010933404324
10.1016/j.cose.2024.103730
10.1109/BADGERS.2015.014
10.3390/electronics9020219
10.4225/75/57a84d4fbefbb
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2025 ISSN 0361-7688, Programming and Computer Software, 2025, Vol. 51, No. 6, pp. 359–372. © Pleiades Publishing, Ltd., 2025.Russian Text © The Author(s), 2025, published in Proceedings of ISP RAS, 2025, Vol. 37, No. 4.
Pleiades Publishing, Ltd. 2025.
Copyright_xml – notice: Pleiades Publishing, Ltd. 2025 ISSN 0361-7688, Programming and Computer Software, 2025, Vol. 51, No. 6, pp. 359–372. © Pleiades Publishing, Ltd., 2025.Russian Text © The Author(s), 2025, published in Proceedings of ISP RAS, 2025, Vol. 37, No. 4.
– notice: Pleiades Publishing, Ltd. 2025.
DBID AAYXX
CITATION
JQ2
DOI 10.1134/S0361768825700239
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1608-3261
EndPage 372
ExternalDocumentID 10_1134_S0361768825700239
GroupedDBID -Y2
.86
.DC
.VR
06D
0R~
0VY
123
1N0
29P
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
408
409
40D
40E
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABBBX
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFFHD
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P9O
PF0
PHGZM
PHGZT
PQGLB
PT4
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
ZMTXR
~A9
AAYXX
CITATION
JQ2
ID FETCH-LOGICAL-c270t-e3e5cdb22a54f9ffbb61cedb935ef06fb53aafb867818d6c78a1bfb898b42f3b3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001610337500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0361-7688
IngestDate Fri Nov 07 23:25:52 EST 2025
Thu Nov 13 04:27:31 EST 2025
Thu Nov 06 11:43:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords wrapper based feature selection
rabbit and tortoise optimization algorithm (RTOA)
mutual information (MI)
metaheuristic optimization algorithm
network intrusion detection system (NIDS)
feature selection (FS)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-e3e5cdb22a54f9ffbb61cedb935ef06fb53aafb867818d6c78a1bfb898b42f3b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3268922270
PQPubID 2043762
PageCount 14
ParticipantIDs proquest_journals_3268922270
crossref_primary_10_1134_S0361768825700239
springer_journals_10_1134_S0361768825700239
PublicationCentury 2000
PublicationDate 20251200
2025-12-00
20251201
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 20251200
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: New York
PublicationTitle Programming and computer software
PublicationTitleAbbrev Program Comput Soft
PublicationYear 2025
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References A. Jung (3955_CR45) 2022
B. Selvakumar (3955_CR3) 2019; 81
Ya.K. Saheed (3955_CR7) 2024; 23
3955_CR6
3955_CR19
3955_CR1
V. Kumar (3955_CR25) 2020; 23
3955_CR35
L. Breiman (3955_CR41) 2001; 45
3955_CR33
3955_CR39
3955_CR18
3955_CR9
P.K. Keserwani (3955_CR12) 2023; 35
3955_CR15
3955_CR8
N. Kabilan (3955_CR14) 2024; 5
P. Rana (3955_CR5) 2021; 13
3955_CR31
N. Hoque (3955_CR47) 2014; 41
3955_CR10
Ya.K. Saheed (3955_CR21) 2021; 9
S. Meftah (3955_CR26) 2019; 8
A. Shiravani (3955_CR23) 2023; 10
N. Moustafa (3955_CR34) 2019; 5
Ch. Khammassi (3955_CR36) 2017; 70
A.B. Feroz Khan (3955_CR16) 2020; 9
M. Yousefnezhad (3955_CR13) 2021; 25
S.M. Kasongo (3955_CR24) 2020; 7
M. Srinivasan (3955_CR48) 2024; 28
V. Kumar (3955_CR38) 2020; 23
S. Choudhary (3955_CR2) 2020; 167
R.A. Disha (3955_CR11) 2022; 5
3955_CR46
3955_CR22
3955_CR44
3955_CR29
O. Almomani (3955_CR27) 2020; 12
A.A. Megantara (3955_CR17) 2021; 8
N. Moustafa (3955_CR30) 2016; 25
K. Sethi (3955_CR37) 2020; 19
Z. Ahmad (3955_CR28) 2021; 32
B.A. Tama (3955_CR32) 2019; 31
3955_CR20
3955_CR42
T. Bhuvaneswari (3955_CR4) 2022; 20
3955_CR43
3955_CR40
References_xml – ident: 3955_CR1
  doi: 10.1109/MilCIS.2015.7348942
– volume: 9
  start-page: 161546
  year: 2021
  ident: 3955_CR21
  publication-title: IEEE Access
  doi: 10.1109/access.2021.3128837
– volume: 31
  start-page: 955
  year: 2019
  ident: 3955_CR32
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-017-3128-z
– ident: 3955_CR46
– volume: 167
  start-page: 1561
  year: 2020
  ident: 3955_CR2
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2020.03.367
– volume: 5
  start-page: 119
  year: 2024
  ident: 3955_CR14
  publication-title: J. Saf. Sci. Resilience
  doi: 10.1016/j.jnlssr.2023.12.004
– ident: 3955_CR18
  doi: 10.1016/j.simpat.2019.102031
– ident: 3955_CR44
– volume: 32
  start-page: 4150
  year: 2021
  ident: 3955_CR28
  publication-title: Trans. Emerging Telecommun. Technol.
  doi: 10.1002/ett.4150
– volume: 10
  start-page: 27
  year: 2023
  ident: 3955_CR23
  publication-title: J. Big Data
  doi: 10.1186/s40537-023-00697-5
– volume: 19
  start-page: 657
  year: 2020
  ident: 3955_CR37
  publication-title: Int. J. Inf. Secur.
  doi: 10.1007/s10207-019-00482-7
– volume: 35
  start-page: 4993
  year: 2023
  ident: 3955_CR12
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-021-06093-5
– ident: 3955_CR43
  doi: 10.1145/2939672.2939785
– volume-title: Machine Learning: The Basics
  year: 2022
  ident: 3955_CR45
  doi: 10.1007/978-981-16-8193-6
– ident: 3955_CR42
  doi: 10.48550/arXiv.1810.11363
– volume: 25
  start-page: 12667
  year: 2021
  ident: 3955_CR13
  publication-title: Soft Comput.
  doi: 10.1007/s00500-021-06067-8
– ident: 3955_CR8
  doi: 10.1016/j.compeleceng.2024.109113
– volume: 23
  start-page: 1397
  year: 2020
  ident: 3955_CR25
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-019-03008-x
– ident: 3955_CR40
– volume: 23
  start-page: 1557
  year: 2024
  ident: 3955_CR7
  publication-title: Int. J. Inf. Secur.
  doi: 10.1007/s10207-023-00803-x
– volume: 12
  start-page: 1046
  year: 2020
  ident: 3955_CR27
  publication-title: Symmetry
  doi: 10.3390/sym12061046
– volume: 28
  start-page: 4519
  year: 2024
  ident: 3955_CR48
  publication-title: Soft Comput.
  doi: 10.1007/s00500-023-09610-x
– ident: 3955_CR33
  doi: 10.1016/j.cose.2020.102158
– volume: 70
  start-page: 255
  year: 2017
  ident: 3955_CR36
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2017.06.005
– ident: 3955_CR15
  doi: 10.1016/j.eswa.2020.113249
– ident: 3955_CR10
  doi: 10.1016/j.eij.2024.100476
– volume: 41
  start-page: 6371
  year: 2014
  ident: 3955_CR47
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.04.019
– volume: 8
  start-page: 142
  year: 2021
  ident: 3955_CR17
  publication-title: J. Big Data
  doi: 10.1186/s40537-021-00531-w
– volume: 5
  start-page: 1
  year: 2022
  ident: 3955_CR11
  publication-title: Cybersecurity
  doi: 10.1186/s42400-021-00103-8
– volume: 9
  start-page: 178
  year: 2020
  ident: 3955_CR16
  publication-title: Int. J. Intell. Unmanned Syst.
  doi: 10.1108/IJIUS-06-2019-0029
– ident: 3955_CR6
  doi: 10.1016/j.csa.2024.100063
– ident: 3955_CR31
  doi: 10.1002/cpe.5927
– volume: 7
  start-page: 105
  year: 2020
  ident: 3955_CR24
  publication-title: J. Big Data
  doi: 10.1186/s40537-020-00379-6
– ident: 3955_CR22
  doi: 10.1002/cpe.7110
– volume: 81
  start-page: 148
  year: 2019
  ident: 3955_CR3
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2018.11.005
– volume: 13
  start-page: 4297
  year: 2021
  ident: 3955_CR5
  publication-title: Cancers
  doi: 10.3390/cancers13174297
– ident: 3955_CR20
  doi: 10.1155/2021/5557577
– ident: 3955_CR29
  doi: 10.14569/IJACSA.2017.080651
– volume: 25
  start-page: 18
  year: 2016
  ident: 3955_CR30
  publication-title: Inf. Secur. J.
  doi: 10.1080/19393555.2015.1125974
– volume: 20
  start-page: 1296
  year: 2022
  ident: 3955_CR4
  publication-title: NeuroQuantology
– volume: 5
  start-page: 481
  year: 2019
  ident: 3955_CR34
  publication-title: IEEE Trans. Big Data
  doi: 10.1109/TBDATA.2017.2715166
– volume: 45
  start-page: 5
  year: 2001
  ident: 3955_CR41
  publication-title: Mach. Learn.
  doi: 10.1023/a:1010933404324
– ident: 3955_CR9
  doi: 10.1016/j.cose.2024.103730
– ident: 3955_CR39
  doi: 10.1109/BADGERS.2015.014
– volume: 8
  start-page: 478
  year: 2019
  ident: 3955_CR26
  publication-title: International Journal of Computing and Digital Systems
– volume: 23
  start-page: 1397
  year: 2020
  ident: 3955_CR38
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-019-03008-x
– ident: 3955_CR19
  doi: 10.3390/electronics9020219
– ident: 3955_CR35
  doi: 10.4225/75/57a84d4fbefbb
SSID ssj0010044
Score 2.3376045
Snippet In the modern era of highly interconnectedness, data and information are constantly transmitted over networks. Ensuring the security of confidential...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 359
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Classification
Computer Science
Cybersecurity
Datasets
Feature selection
Intrusion detection systems
Machine learning
Methods
Missing data
Neural networks
Operating Systems
Optimization
Optimization algorithms
Optimization techniques
Software Engineering
Software Engineering/Programming and Operating Systems
Support vector machines
Title Rabbit and Tortoise Optimization Algorithm with Mutual Information Based Adaptive Strategy for Network Intrusion Detection
URI https://link.springer.com/article/10.1134/S0361768825700239
https://www.proquest.com/docview/3268922270
Volume 51
WOSCitedRecordID wos001610337500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1608-3261
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010044
  issn: 0361-7688
  databaseCode: RSV
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMLBQnqJQkAcmUETiOI4zlkfFAAW1pWKL7NiGSDStmoAEvx47cah4DTBGOVnR2b4757vPHwCHChMVyogaaFA6WGBPx0FOnIQwziWSApW8tdFV2OvR-_vo1vK487rbvYYky0hd6Y7gk4GOtZ4ujqnRXTOUzEWwpLMdNXoN_cHoAzowEGUFUHqOMbdQ5o9DfE5G8wrzCyha5ppu819fuQZWbWkJO9VaWAcLMtsAzVq2AdpdvAne-tpBaQFZJuBQV9-TNJfwRoeOseVkws7Tw2SWFo9jaH7TwutnQzKBlrlUWpzq5CdgR7CpCZfQ3nH7CrUF7FWd5dreEDqM9bksyo6vbAvcdS-GZ5eOlWBwEhS6hSN9GSSCI8QCrCKlOCdeIgWP_EAqlyge-IwpTnXK86ggSUiZx_VzRDlGyuf-Nmhkk0zuAEgS4nFXSEZcHysm9LmGu75QiAtJkEItcFTPRTytbtqIyxOKj-NvXm2Bdj1bsd10eawrURoZbq_bAsf17Mxf_zrY7p-s98AKMhrAZUtLGzS0K-U-WE5eijSfHZRr8R2lN9tV
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4SXBhPMVgQA6cQBVtmqXtcTwmEGMgNiZuVdIkUAk6xAoS_HqSNmXidYBjVSuq7MR2-vmzAXYUoSqQUWigQekQQTztBzl1Eso4l1gKXPDWBp2g2w1vbqJLy-MeVdXuFSRZeOpy7gjZ72lf6-nkODRz1wwlcxKmiQ5YpmH-VW_wAR0YiLIEKD3HiFso88clPgejcYb5BRQtYk279q-vXIB5m1qiVrkXFmFCZktQq8Y2IHuKl-HtSisozRHLBOrr7HuYjiS60K7jwXIyUev-dviU5ncPyPymRefPhmSCLHOpkDjQwU-glmCPxl0i2-P2FWkJ1C0ry7W8IXQY6SOZFxVf2Qpct4_7hyeOHcHgJDhwc0f6spkIjjFrEhUpxTn1Eil45DelcqniTZ8xxUMd8rxQ0CQImcf1cxRygpXP_VWYyoaZXANEE-pxV0hGXZ8oJvS9hru-UJgLSbHCdditbBE_lp024uKG4pP4m1br0KisFdtDN4p1JhpGhtvr1mGvss749a-Lrf9JehtmT_rnnbhz2j3bgDls5gEX5S0NmNJqlZswk7zk6ehpq9iX7_Za3jk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xCXFhRxQK-MAJFDVxHDc5FkoFAgpiU2-RHdtQiaZVE5Dg67ETB8R2QByjjKxobM-SN28GYFcRqpoyCg00KB0iiKftIKdOQhnnEkuBC97a3Vmz2w17vejSzjnNqmr3CpIsOQ2mS1OaN0ZC2RkkpHGt7a6nA-XQzGAz9MxJmCamjt6k69d37zCCgStLsNJzjLiFNX9c4rNj-og2vwCkhd_pLPz7ixdh3oacqFWekSWYkOkyLFTjHJC93SvweqUV188RSwW60VH5sJ9JdKFNysByNVHr8X447ucPA2R-36LzJ0M-QZbRVEgcaKcoUEuwkTGjyPa-fUFaAnXLinMtb4geRrot86ISLF2F287RzeGxY0czOAluurkjfRkkgmPMAqIipTinXiIFj_xAKpcqHviMKR5qV-iFgibNkHlcP0chJ1j53F-DqXSYynVANKEed4Vk1PWJYkLnO9z1hcJcSIoVrsFetS_xqOzAEReZi0_ib1qtQb3audhexizWEWoYGc6vW4P9aqc-Xv-62MafpHdg9rLdic9OuqebMIfNmOCi6qUOU1qrcgtmkue8n423iyP6Btfh5x0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rabbit+and+Tortoise+Optimization+Algorithm+with+Mutual+Information+Based+Adaptive+Strategy+for+Network+Intrusion+Detection&rft.jtitle=Programming+and+computer+software&rft.au=Bhuvaneswari%2C+T.&rft.au=Soundar%2C+K.+Ruba&rft.au=Sekar%2C+R.+Chandra+Guru&rft.date=2025-12-01&rft.pub=Pleiades+Publishing&rft.issn=0361-7688&rft.eissn=1608-3261&rft.volume=51&rft.issue=6&rft.spage=359&rft.epage=372&rft_id=info:doi/10.1134%2FS0361768825700239&rft.externalDocID=10_1134_S0361768825700239
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-7688&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-7688&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-7688&client=summon