Multi-Modal Domain Adaptation Variational Autoencoder for EEG-Based Emotion Recognition
Traditional electroencephalograph (EEG)-based emotion recognition requires a large number of calibration samples to build a model for a specific subject, which restricts the application of the affective brain computer interface (BCI) in practice. We attempt to use the multi-modal data from the past...
Uložené v:
| Vydané v: | IEEE/CAA journal of automatica sinica Ročník 9; číslo 9; s. 1612 - 1626 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
Chinese Association of Automation (CAA)
01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2329-9266, 2329-9274 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Traditional electroencephalograph (EEG)-based emotion recognition requires a large number of calibration samples to build a model for a specific subject, which restricts the application of the affective brain computer interface (BCI) in practice. We attempt to use the multi-modal data from the past session to realize emotion recognition in the case of a small amount of calibration samples. To solve this problem, we propose a multi-modal domain adaptive variational autoencoder (MMDA-VAE) method, which learns shared cross-domain latent representations of the multi-modal data. Our method builds a multi-modal variational autoencoder (MVAE) to project the data of multiple modalities into a common space. Through adversarial learning and cycle-consistency regularization, our method can reduce the distribution difference of each domain on the shared latent representation layer and realize the transfer of knowledge. Extensive experiments are conducted on two public datasets, SEED and SEED-IV, and the results show the superiority of our proposed method. Our work can effectively improve the performance of emotion recognition with a small amount of labelled multi-modal data. |
|---|---|
| AbstractList | Traditional electroencephalograph (EEG)-based emotion recognition requires a large number of calibration samples to build a model for a specific subject, which restricts the application of the affective brain computer interface (BCI) in practice. We attempt to use the multi-modal data from the past session to realize emotion recognition in the case of a small amount of calibration samples. To solve this problem, we propose a multi-modal domain adaptive variational autoencoder (MMDA-VAE) method, which learns shared cross-domain latent representations of the multi-modal data. Our method builds a multi-modal variational autoencoder (MVAE) to project the data of multiple modalities into a common space. Through adversarial learning and cycle-consistency regularization, our method can reduce the distribution difference of each domain on the shared latent representation layer and realize the transfer of knowledge. Extensive experiments are conducted on two public datasets, SEED and SEED-IV, and the results show the superiority of our proposed method. Our work can effectively improve the performance of emotion recognition with a small amount of labelled multi-modal data. |
| Author | Li, Dan He, Huiguang Qiu, Shuang Wang, Yixin Lu, Bao-Liang Du, Changde |
| Author_xml | – sequence: 1 givenname: Yixin surname: Wang fullname: Wang, Yixin email: wangyxai@hotmail.com organization: Research Center for Brain-inspired Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Science,Beijing,100190 – sequence: 2 givenname: Shuang surname: Qiu fullname: Qiu, Shuang email: shuang.qiu@ia.ac.cn organization: Research Center for Brain-inspired Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Science,Beijing,100190 – sequence: 3 givenname: Dan surname: Li fullname: Li, Dan email: danliai@hotmail.com organization: Research Center for Brain-inspired Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Science,Beijing,100190 – sequence: 4 givenname: Changde surname: Du fullname: Du, Changde email: duchangde@gmail.com organization: Research Center for Brain-inspired Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Science,Beijing,100190 – sequence: 5 givenname: Bao-Liang surname: Lu fullname: Lu, Bao-Liang email: bllu@sjtu.edu.cn organization: Shanghai Jiao Tong University,Department of Computer Science and Engineering,Shanghai,China,200240 – sequence: 6 givenname: Huiguang surname: He fullname: He, Huiguang email: huiguang.he@ia.ac.cn organization: Research Center for Brain-inspired Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Science,Beijing,100190 |
| BookMark | eNp9UT1PwzAQtVCRKKUzA0sk5rT-djKWEgqoFRKfo-XaDnKVxsVOBv49aYM6MDDdk-69d3fvzsGg9rUF4BLBCUIwnz7OXiYYYjxBkDHETsAQE5ynORZ0cMScn4FxjBsIIcJM8JwOwceqrRqXrrxRVXLrt8rVycyoXaMa5-vkXQV3QF131jbe1tobG5LSh6QoFumNitYkxdYf2M9W-8_a7fEFOC1VFe34t47A213xOr9Pl0-Lh_lsmWosYJNawhQihlGdYVQSxXJuDCUkF4hkpRVCYUHKtcko4ogyoakWPCPcrImwSkMyAte97y74r9bGRm58G7p1o-wGsIxh3jmMAOtZOvgYgy2ldv2FTVCukgjKfYyyi1HuY5R9jJ1u-ke3C26rwvc_iqte4ay1R3YuGO1-QH4AlBJ9dA |
| CODEN | IJASJC |
| CitedBy_id | crossref_primary_10_1007_s11042_023_17588_9 crossref_primary_10_1109_TIM_2024_3369130 crossref_primary_10_1016_j_inffus_2023_102156 crossref_primary_10_1016_j_inffus_2024_102753 crossref_primary_10_3390_s23146434 crossref_primary_10_1109_JIOT_2025_3574456 crossref_primary_10_1007_s11571_024_10123_y crossref_primary_10_1016_j_jneumeth_2024_110276 crossref_primary_10_1016_j_knosys_2025_113018 crossref_primary_10_1016_j_neunet_2024_106617 crossref_primary_10_1016_j_neucom_2024_128940 crossref_primary_10_1109_TNNLS_2023_3319315 crossref_primary_10_1145_3712259 crossref_primary_10_1109_TAI_2024_3524976 crossref_primary_10_1016_j_eswa_2025_127456 crossref_primary_10_1109_JAS_2024_125016 crossref_primary_10_1109_TAI_2024_3523250 crossref_primary_10_1109_JAS_2024_124344 crossref_primary_10_2174_0123520965303142240430101645 crossref_primary_10_1016_j_bspc_2022_104314 crossref_primary_10_1109_JPROC_2023_3309299 crossref_primary_10_1016_j_asoc_2025_113478 crossref_primary_10_1016_j_asoc_2025_112868 crossref_primary_10_1007_s11517_025_03384_0 crossref_primary_10_1109_TCE_2024_3524401 crossref_primary_10_3389_fnins_2023_1213099 crossref_primary_10_1109_TIM_2023_3277985 crossref_primary_10_3390_electronics12112359 crossref_primary_10_1016_j_neunet_2025_107457 crossref_primary_10_1109_TSMC_2023_3315541 crossref_primary_10_1109_TMM_2022_3222965 crossref_primary_10_1016_j_bspc_2024_106953 crossref_primary_10_1007_s00521_024_10821_y crossref_primary_10_1109_TSMC_2022_3228314 crossref_primary_10_1007_s11571_024_10187_w crossref_primary_10_1016_j_bspc_2025_108016 crossref_primary_10_1109_TAFFC_2024_3357656 crossref_primary_10_1049_cit2_12174 crossref_primary_10_1016_j_brainresbull_2024_110901 crossref_primary_10_1016_j_knosys_2025_113238 crossref_primary_10_1109_JAS_2025_125393 crossref_primary_10_1109_JAS_2023_123318 crossref_primary_10_1016_j_jvcir_2025_104581 crossref_primary_10_7717_peerj_cs_2065 crossref_primary_10_1016_j_eswa_2024_124001 crossref_primary_10_1016_j_eswa_2024_124236 crossref_primary_10_1016_j_inffus_2024_102862 crossref_primary_10_1016_j_bspc_2025_107912 crossref_primary_10_1145_3654664 crossref_primary_10_1007_s00530_025_01894_3 crossref_primary_10_3390_electronics13244905 crossref_primary_10_1016_j_rcim_2023_102610 crossref_primary_10_3390_s25103178 crossref_primary_10_1007_s42154_023_00270_z crossref_primary_10_1039_D5TA00253B crossref_primary_10_1109_JAS_2023_123447 crossref_primary_10_3390_brainsci13091326 crossref_primary_10_1016_j_eswa_2024_125089 |
| Cites_doi | 10.1109/TNN.2010.2091281 10.1109/TPAMI.2018.2798607 10.1109/FG.2011.5771357 10.1007/978-3-319-46672-9_58 10.1109/TCDS.2019.2949306 10.1109/JSEN.2021.3119074 10.1088/1741-2560/4/2/R01 10.1109/WACV.2016.7477679 10.1145/2647868.2654916 10.1023/B:JONB.0000023655.25550.be 10.1109/TAFFC.2015.2436926 10.1145/1500879.1500888 10.1136/bmj.310.6988.1213 10.1145/25065.950626 10.1109/TPAMI.2008.52 10.1109/T-AFFC.2011.37 10.1080/2326263X.2014.912881 10.1109/ICDM.2019.00088 10.1109/JAS.2019.1911393 10.1109/TSMC.2018.2875452 10.1186/s40537-016-0043-6 10.1109/ICCV.2017.301 10.1109/TMM.2015.2482228 10.1016/j.inffus.2020.01.011 10.1109/JBHI.2017.2688239 10.1162/089976602760128018 10.1109/TSMC.2021.3096065 10.1109/ICCV.2015.463 10.1109/ICSCSE.2016.0051 10.1109/T-AFFC.2010.1 10.1109/TBDATA.2021.3090905 10.1109/TCYB.2018.2797176 10.1177/0956797616687364 10.1162/089976698300017467 10.1109/JAS.2017.7510421 10.1109/JAS.2018.7511189 10.1109/JSTSP.2017.2764438 10.3390/s17051014 10.1109/TAFFC.2017.2712143 10.1109/TAFFC.2018.2885474 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| DOI | 10.1109/JAS.2022.105515 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2329-9274 |
| EndPage | 1626 |
| ExternalDocumentID | 10_1109_JAS_2022_105515 9754329 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61976209,62020106015,U21A20388 funderid: 10.13039/501100001809 |
| GroupedDBID | -0I -0Y -SI -S~ 0R~ 4.4 5VR 6IK 92M 97E 9D9 9DI AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AFUIB AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CAJEI EBS EJD IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ Q-- RIA RIE RT9 T8Y TCJ TGT U1F U1G U5I U5S AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c270t-e35a13d54c821f3a596dd43397138fe77a273fbd84161457c4c76836db37eac03 |
| IEDL.DBID | RIE |
| ISSN | 2329-9266 |
| IngestDate | Sun Nov 09 07:32:45 EST 2025 Sat Nov 29 03:31:06 EST 2025 Tue Nov 18 22:41:18 EST 2025 Wed Aug 27 02:28:35 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c270t-e35a13d54c821f3a596dd43397138fe77a273fbd84161457c4c76836db37eac03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2705852627 |
| PQPubID | 2040495 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2705852627 crossref_primary_10_1109_JAS_2022_105515 crossref_citationtrail_10_1109_JAS_2022_105515 ieee_primary_9754329 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-01 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE/CAA journal of automatica sinica |
| PublicationTitleAbbrev | JAS |
| PublicationYear | 2022 |
| Publisher | Chinese Association of Automation (CAA) The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: Chinese Association of Automation (CAA) – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref53 ref52 ref10 ref17 ref16 ref19 ref18 Liu (ref20) 2016 Ganin (ref45) 2016; 17 ref51 ref50 ref47 ref42 ref41 ref43 Lu (ref11) 2015 ref8 ref7 ref9 ref4 ref6 Kingma (ref32) 2013 ref5 ref40 Long (ref48) 2018 Shen (ref33) 2017 ref35 ref37 ref36 ref31 ref30 ref2 ref1 ref39 Long (ref44) 2015 Zheng (ref24) 2016 Wu (ref38) 2018 ref23 Liu (ref49) 2016 ref26 ref25 ref22 ref21 Collobert (ref27) 2006; 7 Long (ref46) 2017 ref28 ref29 Ekman (ref3) 1984; 3 Liu (ref34) 2017 |
| References_xml | – start-page: 1640 year: 2018 ident: ref48 article-title: Conditional adversarial domain adaptation publication-title: Advances in Neural Information Processing Systems – ident: ref25 doi: 10.1109/TNN.2010.2091281 – start-page: 2208 volume-title: Proc. 34th Int. Conf. Machine Learning-Volume 70 year: 2017 ident: ref46 article-title: Deep transfer learning with joint adaptation networks – ident: ref17 doi: 10.1109/TPAMI.2018.2798607 – ident: ref6 doi: 10.1109/FG.2011.5771357 – start-page: 521 volume-title: Proc. Int. Conf. Neural Information Processing year: 2016 ident: ref20 article-title: Emotion recognition using multi-modal deep learning doi: 10.1007/978-3-319-46672-9_58 – ident: ref31 doi: 10.1109/TCDS.2019.2949306 – start-page: 5575 year: 2018 ident: ref38 article-title: Multi-modal generative models for scalable weakly-supervised learning publication-title: Advances in Neural Information Processing Systems – ident: ref42 doi: 10.1109/JSEN.2021.3119074 – ident: ref8 doi: 10.1088/1741-2560/4/2/R01 – ident: ref12 doi: 10.1109/WACV.2016.7477679 – ident: ref28 doi: 10.1145/2647868.2654916 – start-page: 97 volume-title: Proc. Int. Conf. Machine Learning year: 2015 ident: ref44 article-title: Learning transferable features with deep adaptation networks – ident: ref5 doi: 10.1023/B:JONB.0000023655.25550.be – ident: ref10 doi: 10.1109/TAFFC.2015.2436926 – ident: ref51 doi: 10.1145/1500879.1500888 – start-page: 700 year: 2017 ident: ref34 article-title: Unsupervised image-to-image translation networks publication-title: Advances in Neural Information Processing Systems – ident: ref1 doi: 10.1136/bmj.310.6988.1213 – ident: ref2 doi: 10.1145/25065.950626 – ident: ref4 doi: 10.1109/TPAMI.2008.52 – ident: ref15 doi: 10.1109/T-AFFC.2011.37 – ident: ref13 doi: 10.1080/2326263X.2014.912881 – ident: ref50 doi: 10.1109/ICDM.2019.00088 – ident: ref18 doi: 10.1109/JAS.2019.1911393 – ident: ref36 doi: 10.1109/TSMC.2018.2875452 – volume: 17 start-page: 2096 issue: 1 year: 2016 ident: ref45 article-title: Domain-adversarial training of neural networks publication-title: The Journal of Machine Learning Research – ident: ref16 doi: 10.1186/s40537-016-0043-6 – ident: ref47 doi: 10.1109/ICCV.2017.301 – ident: ref19 doi: 10.1109/TMM.2015.2482228 – start-page: 6830 year: 2017 ident: ref33 article-title: Style transfer from nonparallel text by cross-alignment publication-title: Advances in Neural Information Processing Systems – volume-title: Proc. 24th Int. Joint Conf. Artificial Intelligence year: 2015 ident: ref11 article-title: Combining eye movements and EEG to enhance emotion recognition – ident: ref9 doi: 10.1016/j.inffus.2020.01.011 – ident: ref52 doi: 10.1109/JBHI.2017.2688239 – ident: ref39 doi: 10.1162/089976602760128018 – ident: ref37 doi: 10.1109/TSMC.2021.3096065 – ident: ref43 doi: 10.1109/ICCV.2015.463 – ident: ref53 doi: 10.1109/ICSCSE.2016.0051 – ident: ref7 doi: 10.1109/T-AFFC.2010.1 – ident: ref23 doi: 10.1109/TBDATA.2021.3090905 – year: 2013 ident: ref32 article-title: Auto-encoding variational bayes publication-title: arXiv preprint – ident: ref40 doi: 10.1109/TCYB.2018.2797176 – start-page: 469 year: 2016 ident: ref49 article-title: Coupled generative adversarial networks publication-title: Advances in Neural Information Processing Systems – ident: ref14 doi: 10.1177/0956797616687364 – start-page: 2732 volume-title: Proc. 25th Int. Joint Conf. Artificial Intelligence year: 2016 ident: ref24 article-title: Personalizing EEG-based affective models with transfer learning – volume: 7 start-page: 1687 issue: 1 year: 2006 ident: ref27 article-title: Large scale transductive SVMs publication-title: Journal of Machine Learning Research – ident: ref26 doi: 10.1162/089976698300017467 – volume: 3 start-page: 19 year: 1984 ident: ref3 article-title: Expression and the nature of emotion publication-title: Approaches to emotion – ident: ref22 doi: 10.1109/JAS.2017.7510421 – ident: ref35 doi: 10.1109/JAS.2018.7511189 – ident: ref21 doi: 10.1109/JSTSP.2017.2764438 – ident: ref29 doi: 10.3390/s17051014 – ident: ref41 doi: 10.1109/TAFFC.2017.2712143 – ident: ref30 doi: 10.1109/TAFFC.2018.2885474 |
| SSID | ssj0001257694 |
| Score | 2.508594 |
| Snippet | Traditional electroencephalograph (EEG)-based emotion recognition requires a large number of calibration samples to build a model for a specific subject, which... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1612 |
| SubjectTerms | Adaptation models Brain modeling Calibration Cycle-consistency Data models domain adaptation Domains electroencephalograph (EEG) Electroencephalography Emotion recognition Emotions Human-computer interface Image reconstruction Knowledge management Modal data multi modality Regularization Representations variational autoencoder |
| Title | Multi-Modal Domain Adaptation Variational Autoencoder for EEG-Based Emotion Recognition |
| URI | https://ieeexplore.ieee.org/document/9754329 https://www.proquest.com/docview/2705852627 |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2329-9274 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001257694 issn: 2329-9266 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5RxAADb0R5yQMDA6ZJnMT2WKAFIUCIZ7cosR2pEiRVSfn9nJ20qgQMbBnsKPHZvu_zne8DONaI2nSsfSp0llFciTFNjWaUhZESnOcxc8njr7f8_l4MBvJhAU5nd2GMMS75zJzZRxfL16Wa2KOyjuRRyALZghbnvL6rNXeegsjZ6R4iRpBUouNpKvn4nuzcdJ-QCwaBlbWNrATunBNyqio_tmLnX_pr__uydVhtcCTp1obfgAVTbMLKXHXBLXhzl2vpXamx4WX5kQ4L0tXpqA6-k1dkyc1JIOlOqtJWtNRmTBDFkl7vip6jf9OkV8v8kMdpolFZbMNLv_d8cU0bHQWqAu5V1LAo9ZmOQiUCP2dpJGOtQ4ZIxGciN5yniGHyTNsIpB9GXIUKSQiLdcY47sse24HFoizMLhCRS6S0JjJKhwhlYuEZgYQScaSKWRaINpxNBzZRTZFxq3Xxnjiy4ckELZFYSyS1JdpwMuswqutr_N10yw78rFkz5m04mFouadbfZ4L_jTwoiAO-93uvfVi2r66zxQ5gsRpPzCEsqa9q-Dk-clPrG-EryYw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0BRaIc2vIlFmjxgQOHGhJ_xPZx2y6FsqxQSym3KLEdCakkaNnt72fsZFcrlR56y8FWEo_tec8zngdw5BC1ucylVLuypLgSM1p4xykX0mqlqozH5PHboRqN9N2duV6Cj_O7MN77mHzmT8JjjOW7xk7DUdmpUVJwZpbhlRSCpe1trYUTFcTOUfkQUYKhBl1PV8snTczpt_4PZIOMBWFbGURwF9xQ1FX5azOOHubs7f992zt40yFJ0m9NvwFLvt6E9YX6glvwK16vpVeNw4ZfmofiviZ9Vzy24Xdyizy5Owsk_emkCTUtnR8TxLFkMPhKP6GHc2TQCv2Q77NUo6behp9ng5vP57RTUqCWqWRCPZdFyp0UVrO04oU0mXOCIxZJua68UgWimKp0IQaZCqmssEhDeOZKrnBnTvgOrNRN7XeB6MogqfXSWycQzGQ68RopJSJJm_GS6R6czAY2t12Z8aB28TuPdCMxOVoiD5bIW0v04Hje4bGtsPHvplth4OfNujHvwcHMcnm3Ap9y_G9kQixjau_lXoewdn5zNcyHF6PLfXgdXtPmjh3AymQ89e9h1f6Z3D-NP8Rp9gyJW8zT |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Modal+Domain+Adaptation+Variational+Autoencoder+for+EEG-Based+Emotion+Recognition&rft.jtitle=IEEE%2FCAA+journal+of+automatica+sinica&rft.au=Wang%2C+Yixin&rft.au=Qiu%2C+Shuang&rft.au=Li%2C+Dan&rft.au=Du%2C+Changde&rft.date=2022-09-01&rft.pub=Chinese+Association+of+Automation+%28CAA%29&rft.issn=2329-9266&rft.volume=9&rft.issue=9&rft.spage=1612&rft.epage=1626&rft_id=info:doi/10.1109%2FJAS.2022.105515&rft.externalDocID=9754329 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2329-9266&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2329-9266&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2329-9266&client=summon |