On the relationship between energy complexity and other boolean function measures
We focus on energy complexity , a Boolean function measure related closely to Boolean circuit design. Given a circuit C over the standard basis { ∨ 2 , ∧ 2 , ¬ } , the energy complexity of C , denoted by EC ( C ) , is the maximum number of its activated inner gates over all inputs. The energy comple...
Saved in:
| Published in: | Journal of combinatorial optimization Vol. 43; no. 5; pp. 1470 - 1492 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.07.2022
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1382-6905, 1573-2886 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We focus on
energy complexity
, a Boolean function measure related closely to Boolean circuit design. Given a circuit
C
over the standard basis
{
∨
2
,
∧
2
,
¬
}
, the energy complexity of
C
, denoted by
EC
(
C
)
, is the maximum number of its activated inner gates over all inputs. The energy complexity of a Boolean function
f
, denoted by
EC
(
f
)
, is the minimum of
EC
(
C
)
over all circuits
C
computing
f
. Recently, K. Dinesh et al. (International computing and combinatorics conference, Springer, Berlin, 738–750, 2018) gave
EC
(
f
)
an upper bound by the decision tree complexity,
EC
(
f
)
=
O
(
D
(
f
)
3
)
. On the input size
n
, They also showed that
EC
(
f
)
is at most
3
n
-
1
. For the lower bound side, they showed that
EC
(
f
)
≥
1
3
psens
(
f
)
, where
psens
(
f
)
is called
positive sensitivity
. A remained open problem is whether the energy complexity of a Boolean function has a polynomial relationship with its decision tree complexity.
Our results for energy complexity can be listed below.
For the lower bound, we prove the equation that
EC
(
f
)
=
Ω
(
D
(
f
)
)
, which answers the above open problem.
For upper bounds,
EC
(
f
)
≤
min
{
1
2
D
(
f
)
2
+
O
(
D
(
f
)
)
,
n
+
2
D
(
f
)
-
2
}
holds.
For non-degenerated functions, we also provide another lower bound
EC
(
f
)
=
Ω
(
log
n
)
where
n
is the input size.
We also discuss the energy complexity of two specific function classes,
OR
functions and
ADDRESS
functions, which implies the tightness of our two lower bounds respectively. In addition, the former one answers another open question in Dinesh et al. (International computing and combinatorics conference, Springer, Berlin, 738–750, 2018) asking for non-trivial lower bound for energy complexity of
OR
functions. |
|---|---|
| AbstractList | We focus on energy complexity, a Boolean function measure related closely to Boolean circuit design. Given a circuit C over the standard basis {∨2,∧2,¬}, the energy complexity of C, denoted by EC(C), is the maximum number of its activated inner gates over all inputs. The energy complexity of a Boolean function f, denoted by EC(f), is the minimum of EC(C) over all circuits C computing f. Recently, K. Dinesh et al. (International computing and combinatorics conference, Springer, Berlin, 738–750, 2018) gave EC(f) an upper bound by the decision tree complexity, EC(f)=O(D(f)3). On the input size n, They also showed that EC(f) is at most 3n-1. For the lower bound side, they showed that EC(f)≥13psens(f), where psens(f) is called positive sensitivity. A remained open problem is whether the energy complexity of a Boolean function has a polynomial relationship with its decision tree complexity.Our results for energy complexity can be listed below.For the lower bound, we prove the equation that EC(f)=Ω(D(f)), which answers the above open problem.For upper bounds, EC(f)≤min{12D(f)2+O(D(f)),n+2D(f)-2} holds.For non-degenerated functions, we also provide another lower bound EC(f)=Ω(logn) where n is the input size.We also discuss the energy complexity of two specific function classes, OR functions and ADDRESS functions, which implies the tightness of our two lower bounds respectively. In addition, the former one answers another open question in Dinesh et al. (International computing and combinatorics conference, Springer, Berlin, 738–750, 2018) asking for non-trivial lower bound for energy complexity of OR functions. We focus on energy complexity , a Boolean function measure related closely to Boolean circuit design. Given a circuit C over the standard basis { ∨ 2 , ∧ 2 , ¬ } , the energy complexity of C , denoted by EC ( C ) , is the maximum number of its activated inner gates over all inputs. The energy complexity of a Boolean function f , denoted by EC ( f ) , is the minimum of EC ( C ) over all circuits C computing f . Recently, K. Dinesh et al. (International computing and combinatorics conference, Springer, Berlin, 738–750, 2018) gave EC ( f ) an upper bound by the decision tree complexity, EC ( f ) = O ( D ( f ) 3 ) . On the input size n , They also showed that EC ( f ) is at most 3 n - 1 . For the lower bound side, they showed that EC ( f ) ≥ 1 3 psens ( f ) , where psens ( f ) is called positive sensitivity . A remained open problem is whether the energy complexity of a Boolean function has a polynomial relationship with its decision tree complexity. Our results for energy complexity can be listed below. For the lower bound, we prove the equation that EC ( f ) = Ω ( D ( f ) ) , which answers the above open problem. For upper bounds, EC ( f ) ≤ min { 1 2 D ( f ) 2 + O ( D ( f ) ) , n + 2 D ( f ) - 2 } holds. For non-degenerated functions, we also provide another lower bound EC ( f ) = Ω ( log n ) where n is the input size. We also discuss the energy complexity of two specific function classes, OR functions and ADDRESS functions, which implies the tightness of our two lower bounds respectively. In addition, the former one answers another open question in Dinesh et al. (International computing and combinatorics conference, Springer, Berlin, 738–750, 2018) asking for non-trivial lower bound for energy complexity of OR functions. |
| Author | Sun, Yuan Sun, Xiaoming Wu, Kewen Xia, Zhiyu |
| Author_xml | – sequence: 1 givenname: Xiaoming surname: Sun fullname: Sun, Xiaoming organization: CAS Key Lab of Network Data Science and Technology, Institute of Computing Technology, Chinese Academy of Sciences, University of Chinese Academy of Sciences – sequence: 2 givenname: Yuan orcidid: 0000-0002-2012-2019 surname: Sun fullname: Sun, Yuan email: sunyuan2016@ict.ac.cn organization: CAS Key Lab of Network Data Science and Technology, Institute of Computing Technology, Chinese Academy of Sciences, University of Chinese Academy of Sciences – sequence: 3 givenname: Kewen surname: Wu fullname: Wu, Kewen organization: School of Electronics Engineering and Computer Science, Peking University – sequence: 4 givenname: Zhiyu surname: Xia fullname: Xia, Zhiyu organization: CAS Key Lab of Network Data Science and Technology, Institute of Computing Technology, Chinese Academy of Sciences, University of Chinese Academy of Sciences |
| BookMark | eNp9kMtqwzAQRUVJoUnaH-hK0LXbkfyQvCyhLwiEQvZClseJgyO5kk2bv69SF7rrau7injtwFmRmnUVCbhncMwDxEBhIIRPgkAAUskzkBZmzXKQJl7KYxZxKnhQl5FdkEcIBAGLO5uR9Y-mwR-qx00PrbNi3Pa1w-ES0FC363Ykad-w7_GqHE9W2pi72Pa2c61Bb2ozWnEF6RB1Gj-GaXDa6C3jze5dk-_y0Xb0m683L2-pxnRguYEjqhlWVaGqhq0yXYDDNMp6ZuhZVpVlqjEBANJnJswJTZKVsBIMG6lKW8aZLcjfN9t59jBgGdXCjt_Gj4lEAywte8NjiU8t4F4LHRvW-PWp_UgzU2ZyazKloTv2YUzJC6QSFWLY79H_T_1Dfrgd00g |
| Cites_doi | 10.4007/annals.2019.190.3.6 10.1016/j.tcs.2011.02.042 10.1007/11549345_11 10.1007/BF02579140 10.1007/978-3-662-48054-0_8 10.1016/j.tcs.2020.09.003 10.1016/j.tcs.2010.08.006 10.1016/S0304-3975(01)00144-X 10.1134/S1995080215040277 10.1016/0022-0000(93)90001-D 10.1016/j.tcs.2012.11.006 10.1016/0020-0190(93)90041-7 10.1016/j.tcs.2012.11.039 10.1016/j.tcs.2008.07.028 10.1007/BF01263419 10.1145/2554797.2554826 10.1137/0217031 10.1007/978-3-319-94776-1_61 10.1016/0020-0190(84)90019-X 10.1162/neco.2006.18.12.2994 10.1016/j.tcs.2010.11.022 10.1016/0304-3975(76)90053-0 10.1145/3406325.3451047 10.1007/BF01272517 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s10878-020-00689-8 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1573-2886 |
| EndPage | 1492 |
| ExternalDocumentID | 10_1007_s10878_020_00689_8 |
| GrantInformation_xml | – fundername: National Basic Research Program of China (973 Program) grantid: 2016YFB1000201 funderid: http://dx.doi.org/10.13039/501100012166 – fundername: National Natural Science Foundation of China grantid: 61433014, 61832003, 61761136014, 61872334, 61502449, 61602440 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: K. C. Wong Education Foundation funderid: http://dx.doi.org/10.13039/501100012692 |
| GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29K 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BGNMA BSONS CAG COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P9R PF0 PT4 PT5 QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7X Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA AZQEC BENPR BGLVJ CCPQU CITATION DWQXO GNUQQ HCIFZ M2P M7S PHGZM PHGZT PQGLB PTHSS |
| ID | FETCH-LOGICAL-c270t-df1bb7fd7ab4a90ce34424cdd7bba13cc7e0eec4c546e3e198f710f0d98910f3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000605896800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1382-6905 |
| IngestDate | Wed Sep 17 23:55:43 EDT 2025 Sat Nov 29 04:54:35 EST 2025 Fri Feb 21 02:45:37 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Energy complexity Boolean function Decision tree Circuit complexity |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c270t-df1bb7fd7ab4a90ce34424cdd7bba13cc7e0eec4c546e3e198f710f0d98910f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2012-2019 |
| PQID | 2689156262 |
| PQPubID | 2043856 |
| PageCount | 23 |
| ParticipantIDs | proquest_journals_2689156262 crossref_primary_10_1007_s10878_020_00689_8 springer_journals_10_1007_s10878_020_00689_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-07-01 |
| PublicationDateYYYYMMDD | 2022-07-01 |
| PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationTitle | Journal of combinatorial optimization |
| PublicationTitleAbbrev | J Comb Optim |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Dinesh K, Otiv S, Sarma J (2018) New bounds for energy complexity of boolean functions. In: International computing and combinatorics conference, Springer, Berlin, 738–750 Lovasz L, Young N (2002) Lecture notes on evasiveness of graph properties. arXiv preprint arXiv:cs/0205031 HajnalAMaassWPudlákPSzegedyMTuránGThreshold circuits of bounded depthJ Comput Syst Sci1993462129154121715310.1016/0022-0000(93)90001-D Nikolaevich VM (1961) On the power of networks of functional elements. In: Proceedings of the USSR academy of sciences. Volume 139., Russian Academy of Sciences 320–323 SuzukiAUchizawaKZhouXEnergy and fan-in of logic circuits computing symmetric boolean functionsTheoret Comput Sci20135057480310756210.1016/j.tcs.2012.11.039 GaoYMaoJSunXZuoSOn the sensitivity complexity of bipartite graph propertiesTheoret Comput Sci20134688391300377010.1016/j.tcs.2012.11.006 Karpas I (2016) Lower bounds for sensitivity of graph properties. arXiv preprint arXiv:1609.05320 BuhrmanHDe WolfRComplexity measures and decision tree complexity: a surveyTheoret Comput Sci200228812143193488810.1016/S0304-3975(01)00144-X DuDZKoKITheory of computational complexity2001New YorkWiley1433.68001 DineshKOtivSSarmaJNew bounds for energy complexity of boolean functionsTheoret Comput Sci20208455975416565610.1016/j.tcs.2020.09.003 YaoACCMonotone bipartite graph properties are evasiveSIAM J Comput198817351752094194210.1137/0217031 RivestRLVuilleminJOn recognizing graph properties from adjacency matricesTheoret Comput ence19763337138452107510.1016/0304-3975(76)90053-0 UchizawaKTakimotoEExponential lower bounds on the size of constant-depth threshold circuits with small energy complexityTheoret Comput Sci20084071–3474487246302910.1016/j.tcs.2008.07.028 Amano K, Maruoka A (2005) On the complexity of depth-2 circuits with threshold gates. In: international symposium on mathematical foundations of computer science, Springer, Berlin, 107–118 LozhkinSShupletsovMSwitching activity of boolean circuits and synthesis of boolean circuits with asymptotically optimal complexity and linear switching activityLobachevskii J Math2015364450460343120810.1134/S1995080215040277 NisanNSzegedyMOn the degree of boolean functions as real polynomialsComput Complex199444301313131353110.1007/BF01263419 SunXAn improved lower bound on the sensitivity complexity of graph propertiesTheoret Comput Sci20114122935243529283969510.1016/j.tcs.2011.02.042 UchizawaKDouglasRMaassWOn the computational power of threshold circuits with sparse activityNeural Comput2006181229943008226520910.1162/neco.2006.18.12.2994 Aaronson S, Ben-David S, Kothari R, Rao S, Tal A (2020) Degree vs. approximate degree and quantum implications of huang’s sensitivity theorem Antoniadis A, Barcelo N, Nugent M, Pruhs K, Scquizzato M (2014) Energy-efficient circuit design. In: Proceedings of the 5th conference on Innovations in theoretical computer science, ACM 303–312 Huang H (2019) Induced subgraphs of hypercubes and a proof of the sensitivity conjecture TuránGThe critical complexity of graph propertiesInf Process Lett198418315115376036710.1016/0020-0190(84)90019-X UchizawaKTakimotoENishizekiTSize-energy tradeoffs for unate circuits computing symmetric boolean functionsTheoret Comput Sci20114128–10773782279692410.1016/j.tcs.2010.11.022 RazborovAWigdersonAnΩ(logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{\Omega (\log n)}$$\end{document} lower bounds on the size of depth-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3$$\end{document} threshold cicuits with AND gates at the bottomInf Process Lett199345630330710.1016/0020-0190(93)90041-7 HåstadJGoldmannMOn the power of small-depth threshold circuitsComput Complex199112113129113494510.1007/BF01272517 Kasim-ZadeOMOn a measure of active circuits of functional elementsMath Probl Cybernet1992421822812175020809.94030 UchizawaKNishizekiTTakimotoEEnergy and depth of threshold circuitsTheoret Comput Sci201041144–4639383946276878010.1016/j.tcs.2010.08.006 KahnJSaksMSturtevantDA topological approach to evasivenessCombinatorica19844429730677989010.1007/BF02579140 Barcelo N, Nugent M, Pruhs K, Scquizzato M (2015) Almost all functions require exponential energy. In: international symposium on mathematical foundations of computer science, Springer 90–101 Hatami P, Kulkarni R, Pankratov D (2010) Variations on the sensitivity conjecture. arXiv preprint arXiv:1011.0354 Y Gao (689_CR9) 2013; 468 S Lozhkin (689_CR18) 2015; 36 J Kahn (689_CR14) 1984; 4 A Razborov (689_CR21) 1993; 45 K Dinesh (689_CR6) 2020; 845 OM Kasim-Zade (689_CR16) 1992; 4 689_CR7 N Nisan (689_CR20) 1994; 4 X Sun (689_CR23) 2011; 412 RL Rivest (689_CR22) 1976; 3 689_CR15 ACC Yao (689_CR30) 1988; 17 K Uchizawa (689_CR29) 2011; 412 689_CR13 689_CR12 689_CR19 689_CR17 J Håstad (689_CR11) 1991; 1 G Turán (689_CR25) 1984; 18 K Uchizawa (689_CR27) 2006; 18 689_CR4 689_CR3 689_CR2 689_CR1 DZ Du (689_CR8) 2001 H Buhrman (689_CR5) 2002; 288 A Suzuki (689_CR24) 2013; 505 K Uchizawa (689_CR26) 2008; 407 K Uchizawa (689_CR28) 2010; 411 A Hajnal (689_CR10) 1993; 46 |
| References_xml | – reference: YaoACCMonotone bipartite graph properties are evasiveSIAM J Comput198817351752094194210.1137/0217031 – reference: Hatami P, Kulkarni R, Pankratov D (2010) Variations on the sensitivity conjecture. arXiv preprint arXiv:1011.0354 – reference: DineshKOtivSSarmaJNew bounds for energy complexity of boolean functionsTheoret Comput Sci20208455975416565610.1016/j.tcs.2020.09.003 – reference: Dinesh K, Otiv S, Sarma J (2018) New bounds for energy complexity of boolean functions. In: International computing and combinatorics conference, Springer, Berlin, 738–750 – reference: BuhrmanHDe WolfRComplexity measures and decision tree complexity: a surveyTheoret Comput Sci200228812143193488810.1016/S0304-3975(01)00144-X – reference: HajnalAMaassWPudlákPSzegedyMTuránGThreshold circuits of bounded depthJ Comput Syst Sci1993462129154121715310.1016/0022-0000(93)90001-D – reference: KahnJSaksMSturtevantDA topological approach to evasivenessCombinatorica19844429730677989010.1007/BF02579140 – reference: DuDZKoKITheory of computational complexity2001New YorkWiley1433.68001 – reference: HåstadJGoldmannMOn the power of small-depth threshold circuitsComput Complex199112113129113494510.1007/BF01272517 – reference: RazborovAWigdersonAnΩ(logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{\Omega (\log n)}$$\end{document} lower bounds on the size of depth-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3$$\end{document} threshold cicuits with AND gates at the bottomInf Process Lett199345630330710.1016/0020-0190(93)90041-7 – reference: SunXAn improved lower bound on the sensitivity complexity of graph propertiesTheoret Comput Sci20114122935243529283969510.1016/j.tcs.2011.02.042 – reference: UchizawaKTakimotoEExponential lower bounds on the size of constant-depth threshold circuits with small energy complexityTheoret Comput Sci20084071–3474487246302910.1016/j.tcs.2008.07.028 – reference: Antoniadis A, Barcelo N, Nugent M, Pruhs K, Scquizzato M (2014) Energy-efficient circuit design. In: Proceedings of the 5th conference on Innovations in theoretical computer science, ACM 303–312 – reference: Huang H (2019) Induced subgraphs of hypercubes and a proof of the sensitivity conjecture – reference: UchizawaKNishizekiTTakimotoEEnergy and depth of threshold circuitsTheoret Comput Sci201041144–4639383946276878010.1016/j.tcs.2010.08.006 – reference: Lovasz L, Young N (2002) Lecture notes on evasiveness of graph properties. arXiv preprint arXiv:cs/0205031 – reference: NisanNSzegedyMOn the degree of boolean functions as real polynomialsComput Complex199444301313131353110.1007/BF01263419 – reference: TuránGThe critical complexity of graph propertiesInf Process Lett198418315115376036710.1016/0020-0190(84)90019-X – reference: Barcelo N, Nugent M, Pruhs K, Scquizzato M (2015) Almost all functions require exponential energy. In: international symposium on mathematical foundations of computer science, Springer 90–101 – reference: Kasim-ZadeOMOn a measure of active circuits of functional elementsMath Probl Cybernet1992421822812175020809.94030 – reference: RivestRLVuilleminJOn recognizing graph properties from adjacency matricesTheoret Comput ence19763337138452107510.1016/0304-3975(76)90053-0 – reference: Aaronson S, Ben-David S, Kothari R, Rao S, Tal A (2020) Degree vs. approximate degree and quantum implications of huang’s sensitivity theorem – reference: Nikolaevich VM (1961) On the power of networks of functional elements. In: Proceedings of the USSR academy of sciences. Volume 139., Russian Academy of Sciences 320–323 – reference: Amano K, Maruoka A (2005) On the complexity of depth-2 circuits with threshold gates. In: international symposium on mathematical foundations of computer science, Springer, Berlin, 107–118 – reference: SuzukiAUchizawaKZhouXEnergy and fan-in of logic circuits computing symmetric boolean functionsTheoret Comput Sci20135057480310756210.1016/j.tcs.2012.11.039 – reference: UchizawaKDouglasRMaassWOn the computational power of threshold circuits with sparse activityNeural Comput2006181229943008226520910.1162/neco.2006.18.12.2994 – reference: Karpas I (2016) Lower bounds for sensitivity of graph properties. arXiv preprint arXiv:1609.05320 – reference: UchizawaKTakimotoENishizekiTSize-energy tradeoffs for unate circuits computing symmetric boolean functionsTheoret Comput Sci20114128–10773782279692410.1016/j.tcs.2010.11.022 – reference: LozhkinSShupletsovMSwitching activity of boolean circuits and synthesis of boolean circuits with asymptotically optimal complexity and linear switching activityLobachevskii J Math2015364450460343120810.1134/S1995080215040277 – reference: GaoYMaoJSunXZuoSOn the sensitivity complexity of bipartite graph propertiesTheoret Comput Sci20134688391300377010.1016/j.tcs.2012.11.006 – ident: 689_CR13 doi: 10.4007/annals.2019.190.3.6 – volume: 412 start-page: 3524 issue: 29 year: 2011 ident: 689_CR23 publication-title: Theoret Comput Sci doi: 10.1016/j.tcs.2011.02.042 – ident: 689_CR2 doi: 10.1007/11549345_11 – ident: 689_CR12 – volume: 4 start-page: 297 issue: 4 year: 1984 ident: 689_CR14 publication-title: Combinatorica doi: 10.1007/BF02579140 – ident: 689_CR4 doi: 10.1007/978-3-662-48054-0_8 – ident: 689_CR19 – volume: 845 start-page: 59 year: 2020 ident: 689_CR6 publication-title: Theoret Comput Sci doi: 10.1016/j.tcs.2020.09.003 – ident: 689_CR17 – volume: 411 start-page: 3938 issue: 44–46 year: 2010 ident: 689_CR28 publication-title: Theoret Comput Sci doi: 10.1016/j.tcs.2010.08.006 – volume: 288 start-page: 21 issue: 1 year: 2002 ident: 689_CR5 publication-title: Theoret Comput Sci doi: 10.1016/S0304-3975(01)00144-X – volume: 36 start-page: 450 issue: 4 year: 2015 ident: 689_CR18 publication-title: Lobachevskii J Math doi: 10.1134/S1995080215040277 – volume: 46 start-page: 129 issue: 2 year: 1993 ident: 689_CR10 publication-title: J Comput Syst Sci doi: 10.1016/0022-0000(93)90001-D – volume: 468 start-page: 83 year: 2013 ident: 689_CR9 publication-title: Theoret Comput Sci doi: 10.1016/j.tcs.2012.11.006 – volume: 45 start-page: 303 issue: 6 year: 1993 ident: 689_CR21 publication-title: Inf Process Lett doi: 10.1016/0020-0190(93)90041-7 – volume: 505 start-page: 74 year: 2013 ident: 689_CR24 publication-title: Theoret Comput Sci doi: 10.1016/j.tcs.2012.11.039 – volume: 407 start-page: 474 issue: 1–3 year: 2008 ident: 689_CR26 publication-title: Theoret Comput Sci doi: 10.1016/j.tcs.2008.07.028 – volume-title: Theory of computational complexity year: 2001 ident: 689_CR8 – volume: 4 start-page: 301 issue: 4 year: 1994 ident: 689_CR20 publication-title: Comput Complex doi: 10.1007/BF01263419 – ident: 689_CR3 doi: 10.1145/2554797.2554826 – ident: 689_CR15 – volume: 17 start-page: 517 issue: 3 year: 1988 ident: 689_CR30 publication-title: SIAM J Comput doi: 10.1137/0217031 – ident: 689_CR7 doi: 10.1007/978-3-319-94776-1_61 – volume: 18 start-page: 151 issue: 3 year: 1984 ident: 689_CR25 publication-title: Inf Process Lett doi: 10.1016/0020-0190(84)90019-X – volume: 18 start-page: 2994 issue: 12 year: 2006 ident: 689_CR27 publication-title: Neural Comput doi: 10.1162/neco.2006.18.12.2994 – volume: 412 start-page: 773 issue: 8–10 year: 2011 ident: 689_CR29 publication-title: Theoret Comput Sci doi: 10.1016/j.tcs.2010.11.022 – volume: 3 start-page: 371 issue: 3 year: 1976 ident: 689_CR22 publication-title: Theoret Comput ence doi: 10.1016/0304-3975(76)90053-0 – volume: 4 start-page: 218 year: 1992 ident: 689_CR16 publication-title: Math Probl Cybernet – ident: 689_CR1 doi: 10.1145/3406325.3451047 – volume: 1 start-page: 113 issue: 2 year: 1991 ident: 689_CR11 publication-title: Comput Complex doi: 10.1007/BF01272517 |
| SSID | ssj0009054 |
| Score | 2.315447 |
| Snippet | We focus on
energy complexity
, a Boolean function measure related closely to Boolean circuit design. Given a circuit
C
over the standard basis
{
∨
2
,
∧
2
,
¬... We focus on energy complexity, a Boolean function measure related closely to Boolean circuit design. Given a circuit C over the standard basis {∨2,∧2,¬}, the... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1470 |
| SubjectTerms | Boolean Boolean algebra Boolean functions Circuit design Combinatorial analysis Combinatorics Complexity Computation Convex and Discrete Geometry Decision trees Energy Gates (circuits) Lower bounds Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimization Polynomials Theory of Computation Tightness Upper bounds |
| Title | On the relationship between energy complexity and other boolean function measures |
| URI | https://link.springer.com/article/10.1007/s10878-020-00689-8 https://www.proquest.com/docview/2689156262 |
| Volume | 43 |
| WOSCitedRecordID | wos000605896800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-2886 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009054 issn: 1382-6905 databaseCode: RSV dateStart: 19970301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8MgFCY6PejB38bpNBy8KUlHaYGjMS4edP5alt0aoK9xidZlncY_X6CtnUYPeiS0hDwo73vlfd9D6DjiXSPCGAinWhLGgBIFTJPYaYMYG1JIz_AeXvF-X4xG8rYihRV1tnt9JelP6jmym3BqsNQxoWMhiVhES9bdCVew4f5h2EjtBlFZytZiRxv7RRVV5ucxvrqjBmN-uxb13qa3_r95bqC1Cl3is3I7bKIFyLfQ6pzmoG1dfwq1Ftvo7ibHtomndU7c43iCq9wtDJ4XiH3WObxbuI5VnmJP2cIWnD-ByrHzi-5F_Fz-bCx20KB3MTi_JFWVBWIoD2Ykzbpa8yzlSjMlAwMhY5SZNOVaq25oDIcAwDATsRhC6EqRWVSSBakUFmpk4S5q5S857CGcQUBBM6HsAjMZKgvetRBhmmVAIdK6jU5qWyeTUksjaVSTndUSa7XEWy0RbdSplyOpvqsiobbLRpw0pm10Wpu_6f59tP2_PX6AVqjjOfi83A5qzaavcIiWzdtsXEyP_H77AOwA0J4 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dT4MwFL3RaaI--G2cTu2Db0oCpUB5NMZF4za_lmVvhJbbuERxGdP48y0FZBp90Mem0JDTwj2X3nMKcOwFjuSuj1ZARWgxhtSKkQnLz71BpE4pQqPwHnSCXo8Ph-FtKQrLqmr3akvSfKlnxG48d4OluRLa56HF52GB6YiVO-bfPwxqq13bK46y1dxR535eKZX5eYyv4ajmmN-2RU20aa_97znXYbVkl-SsWA4bMIfpJqzMeA7qVvfTqDXbgrublOgmmVQ1cY-jMSlrtwgaXSAxVef4ruk6idOEGMkW0eT8CeOU5HExv5E8Fz8bs23oty_655dWecqCJWlgT61EOUIEKgliweLQlugyRplMkkCI2HGlDNBGlEx6zEcXnZArzUqUnYRcUw3l7kAjfUlxF4hCm6JgPNYTzEI31uRdcO4mSiFFT4gmnFRYR-PCSyOqXZNz1CKNWmRQi3gTWtV0ROV7lUVUd-mMk_q0CacV_HX376Pt_e3yI1i67Hc7Ueeqd70PyzTXPJga3RY0ppNXPIBF-TYdZZNDs_Y-AL0r04I |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7oFNGDv8Xp1By8aVmXpm16FHUozjlxjN1Kk77gQOvYpvjnm6Stm6IH8RjShPJeSr7XfN8XgGM_bEjuBeiEVEQOY0idBJlwAuMNInVJEVmFd68Vttu83486Myp-y3YvjyRzTYNxacom9WGq6jPCN26cYalRRQc8cvg8LDBDpDf1-kNvarvr-vm1thpH6jrQL2QzP8_xdWua4s1vR6R252mu_f-d12G1QJ3kLF8mGzCH2SaszHgR6tbtp4HreAvu7zKim2RUcuUeB0NScLoIWr0gsWx0fNcwniRZSqyUi2jQ_oRJRsx-aQaS5_wn5Hgbus3L7vmVU9y-4EgauhMnVQ0hQpWGiWBJ5Er0GKNMpmkoRNLwpAzRRZRM-ixADxsRVxqtKDeNuIYgytuBSvaS4S4QhS5FwXiiE88iL9GgXnDupUohRV-IKpyUcY-HucdGPHVTNlGLddRiG7WYV6FWpiYuvrdxTHWXrkRpQKtwWqZi2v37bHt_e_wIljoXzbh13b7Zh2VqpBCWuluDymT0igewKN8mg_Ho0C7DD5az3GY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+relationship+between+energy+complexity+and+other+boolean+function+measures&rft.jtitle=Journal+of+combinatorial+optimization&rft.au=Sun%2C+Xiaoming&rft.au=Sun%2C+Yuan&rft.au=Wu%2C+Kewen&rft.au=Xia%2C+Zhiyu&rft.date=2022-07-01&rft.pub=Springer+US&rft.issn=1382-6905&rft.eissn=1573-2886&rft.volume=43&rft.issue=5&rft.spage=1470&rft.epage=1492&rft_id=info:doi/10.1007%2Fs10878-020-00689-8&rft.externalDocID=10_1007_s10878_020_00689_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-6905&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-6905&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-6905&client=summon |