On the relationship between energy complexity and other boolean function measures

We focus on energy complexity , a Boolean function measure related closely to Boolean circuit design. Given a circuit C over the standard basis { ∨ 2 , ∧ 2 , ¬ } , the energy complexity of C , denoted by EC ( C ) , is the maximum number of its activated inner gates over all inputs. The energy comple...

Full description

Saved in:
Bibliographic Details
Published in:Journal of combinatorial optimization Vol. 43; no. 5; pp. 1470 - 1492
Main Authors: Sun, Xiaoming, Sun, Yuan, Wu, Kewen, Xia, Zhiyu
Format: Journal Article
Language:English
Published: New York Springer US 01.07.2022
Springer Nature B.V
Subjects:
ISSN:1382-6905, 1573-2886
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We focus on energy complexity , a Boolean function measure related closely to Boolean circuit design. Given a circuit C over the standard basis { ∨ 2 , ∧ 2 , ¬ } , the energy complexity of C , denoted by EC ( C ) , is the maximum number of its activated inner gates over all inputs. The energy complexity of a Boolean function f , denoted by EC ( f ) , is the minimum of EC ( C ) over all circuits C computing f . Recently, K. Dinesh et al. (International computing and combinatorics conference, Springer, Berlin, 738–750, 2018) gave EC ( f ) an upper bound by the decision tree complexity, EC ( f ) = O ( D ( f ) 3 ) . On the input size n , They also showed that EC ( f ) is at most 3 n - 1 . For the lower bound side, they showed that EC ( f ) ≥ 1 3 psens ( f ) , where psens ( f ) is called positive sensitivity . A remained open problem is whether the energy complexity of a Boolean function has a polynomial relationship with its decision tree complexity. Our results for energy complexity can be listed below. For the lower bound, we prove the equation that EC ( f ) = Ω ( D ( f ) ) , which answers the above open problem. For upper bounds, EC ( f ) ≤ min { 1 2 D ( f ) 2 + O ( D ( f ) ) , n + 2 D ( f ) - 2 } holds. For non-degenerated functions, we also provide another lower bound EC ( f ) = Ω ( log n ) where n is the input size. We also discuss the energy complexity of two specific function classes, OR functions and ADDRESS functions, which implies the tightness of our two lower bounds respectively. In addition, the former one answers another open question in  Dinesh et al. (International computing and combinatorics conference, Springer, Berlin, 738–750, 2018) asking for non-trivial lower bound for energy complexity of OR functions.
AbstractList We focus on energy complexity, a Boolean function measure related closely to Boolean circuit design. Given a circuit C over the standard basis {∨2,∧2,¬}, the energy complexity of C, denoted by EC(C), is the maximum number of its activated inner gates over all inputs. The energy complexity of a Boolean function f, denoted by EC(f), is the minimum of EC(C) over all circuits C computing f. Recently, K. Dinesh et al. (International computing and combinatorics conference, Springer, Berlin, 738–750, 2018) gave EC(f) an upper bound by the decision tree complexity, EC(f)=O(D(f)3). On the input size n, They also showed that EC(f) is at most 3n-1. For the lower bound side, they showed that EC(f)≥13psens(f), where psens(f) is called positive sensitivity. A remained open problem is whether the energy complexity of a Boolean function has a polynomial relationship with its decision tree complexity.Our results for energy complexity can be listed below.For the lower bound, we prove the equation that EC(f)=Ω(D(f)), which answers the above open problem.For upper bounds, EC(f)≤min{12D(f)2+O(D(f)),n+2D(f)-2} holds.For non-degenerated functions, we also provide another lower bound EC(f)=Ω(logn) where n is the input size.We also discuss the energy complexity of two specific function classes, OR functions and ADDRESS functions, which implies the tightness of our two lower bounds respectively. In addition, the former one answers another open question in Dinesh et al. (International computing and combinatorics conference, Springer, Berlin, 738–750, 2018) asking for non-trivial lower bound for energy complexity of OR functions.
We focus on energy complexity , a Boolean function measure related closely to Boolean circuit design. Given a circuit C over the standard basis { ∨ 2 , ∧ 2 , ¬ } , the energy complexity of C , denoted by EC ( C ) , is the maximum number of its activated inner gates over all inputs. The energy complexity of a Boolean function f , denoted by EC ( f ) , is the minimum of EC ( C ) over all circuits C computing f . Recently, K. Dinesh et al. (International computing and combinatorics conference, Springer, Berlin, 738–750, 2018) gave EC ( f ) an upper bound by the decision tree complexity, EC ( f ) = O ( D ( f ) 3 ) . On the input size n , They also showed that EC ( f ) is at most 3 n - 1 . For the lower bound side, they showed that EC ( f ) ≥ 1 3 psens ( f ) , where psens ( f ) is called positive sensitivity . A remained open problem is whether the energy complexity of a Boolean function has a polynomial relationship with its decision tree complexity. Our results for energy complexity can be listed below. For the lower bound, we prove the equation that EC ( f ) = Ω ( D ( f ) ) , which answers the above open problem. For upper bounds, EC ( f ) ≤ min { 1 2 D ( f ) 2 + O ( D ( f ) ) , n + 2 D ( f ) - 2 } holds. For non-degenerated functions, we also provide another lower bound EC ( f ) = Ω ( log n ) where n is the input size. We also discuss the energy complexity of two specific function classes, OR functions and ADDRESS functions, which implies the tightness of our two lower bounds respectively. In addition, the former one answers another open question in  Dinesh et al. (International computing and combinatorics conference, Springer, Berlin, 738–750, 2018) asking for non-trivial lower bound for energy complexity of OR functions.
Author Sun, Yuan
Sun, Xiaoming
Wu, Kewen
Xia, Zhiyu
Author_xml – sequence: 1
  givenname: Xiaoming
  surname: Sun
  fullname: Sun, Xiaoming
  organization: CAS Key Lab of Network Data Science and Technology, Institute of Computing Technology, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 2
  givenname: Yuan
  orcidid: 0000-0002-2012-2019
  surname: Sun
  fullname: Sun, Yuan
  email: sunyuan2016@ict.ac.cn
  organization: CAS Key Lab of Network Data Science and Technology, Institute of Computing Technology, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 3
  givenname: Kewen
  surname: Wu
  fullname: Wu, Kewen
  organization: School of Electronics Engineering and Computer Science, Peking University
– sequence: 4
  givenname: Zhiyu
  surname: Xia
  fullname: Xia, Zhiyu
  organization: CAS Key Lab of Network Data Science and Technology, Institute of Computing Technology, Chinese Academy of Sciences, University of Chinese Academy of Sciences
BookMark eNp9kMtqwzAQRUVJoUnaH-hK0LXbkfyQvCyhLwiEQvZClseJgyO5kk2bv69SF7rrau7injtwFmRmnUVCbhncMwDxEBhIIRPgkAAUskzkBZmzXKQJl7KYxZxKnhQl5FdkEcIBAGLO5uR9Y-mwR-qx00PrbNi3Pa1w-ES0FC363Ykad-w7_GqHE9W2pi72Pa2c61Bb2ozWnEF6RB1Gj-GaXDa6C3jze5dk-_y0Xb0m683L2-pxnRguYEjqhlWVaGqhq0yXYDDNMp6ZuhZVpVlqjEBANJnJswJTZKVsBIMG6lKW8aZLcjfN9t59jBgGdXCjt_Gj4lEAywte8NjiU8t4F4LHRvW-PWp_UgzU2ZyazKloTv2YUzJC6QSFWLY79H_T_1Dfrgd00g
Cites_doi 10.4007/annals.2019.190.3.6
10.1016/j.tcs.2011.02.042
10.1007/11549345_11
10.1007/BF02579140
10.1007/978-3-662-48054-0_8
10.1016/j.tcs.2020.09.003
10.1016/j.tcs.2010.08.006
10.1016/S0304-3975(01)00144-X
10.1134/S1995080215040277
10.1016/0022-0000(93)90001-D
10.1016/j.tcs.2012.11.006
10.1016/0020-0190(93)90041-7
10.1016/j.tcs.2012.11.039
10.1016/j.tcs.2008.07.028
10.1007/BF01263419
10.1145/2554797.2554826
10.1137/0217031
10.1007/978-3-319-94776-1_61
10.1016/0020-0190(84)90019-X
10.1162/neco.2006.18.12.2994
10.1016/j.tcs.2010.11.022
10.1016/0304-3975(76)90053-0
10.1145/3406325.3451047
10.1007/BF01272517
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
DBID AAYXX
CITATION
DOI 10.1007/s10878-020-00689-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1573-2886
EndPage 1492
ExternalDocumentID 10_1007_s10878_020_00689_8
GrantInformation_xml – fundername: National Basic Research Program of China (973 Program)
  grantid: 2016YFB1000201
  funderid: http://dx.doi.org/10.13039/501100012166
– fundername: National Natural Science Foundation of China
  grantid: 61433014, 61832003, 61761136014, 61872334, 61502449, 61602440
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: K. C. Wong Education Foundation
  funderid: http://dx.doi.org/10.13039/501100012692
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29K
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P9R
PF0
PT4
PT5
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c270t-df1bb7fd7ab4a90ce34424cdd7bba13cc7e0eec4c546e3e198f710f0d98910f3
IEDL.DBID RSV
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000605896800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1382-6905
IngestDate Wed Sep 17 23:55:43 EDT 2025
Sat Nov 29 04:54:35 EST 2025
Fri Feb 21 02:45:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Energy complexity
Boolean function
Decision tree
Circuit complexity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-df1bb7fd7ab4a90ce34424cdd7bba13cc7e0eec4c546e3e198f710f0d98910f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2012-2019
PQID 2689156262
PQPubID 2043856
PageCount 23
ParticipantIDs proquest_journals_2689156262
crossref_primary_10_1007_s10878_020_00689_8
springer_journals_10_1007_s10878_020_00689_8
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Journal of combinatorial optimization
PublicationTitleAbbrev J Comb Optim
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Dinesh K, Otiv S, Sarma J (2018) New bounds for energy complexity of boolean functions. In: International computing and combinatorics conference, Springer, Berlin, 738–750
Lovasz L, Young N (2002) Lecture notes on evasiveness of graph properties. arXiv preprint arXiv:cs/0205031
HajnalAMaassWPudlákPSzegedyMTuránGThreshold circuits of bounded depthJ Comput Syst Sci1993462129154121715310.1016/0022-0000(93)90001-D
Nikolaevich VM (1961) On the power of networks of functional elements. In: Proceedings of the USSR academy of sciences. Volume 139., Russian Academy of Sciences 320–323
SuzukiAUchizawaKZhouXEnergy and fan-in of logic circuits computing symmetric boolean functionsTheoret Comput Sci20135057480310756210.1016/j.tcs.2012.11.039
GaoYMaoJSunXZuoSOn the sensitivity complexity of bipartite graph propertiesTheoret Comput Sci20134688391300377010.1016/j.tcs.2012.11.006
Karpas I (2016) Lower bounds for sensitivity of graph properties. arXiv preprint arXiv:1609.05320
BuhrmanHDe WolfRComplexity measures and decision tree complexity: a surveyTheoret Comput Sci200228812143193488810.1016/S0304-3975(01)00144-X
DuDZKoKITheory of computational complexity2001New YorkWiley1433.68001
DineshKOtivSSarmaJNew bounds for energy complexity of boolean functionsTheoret Comput Sci20208455975416565610.1016/j.tcs.2020.09.003
YaoACCMonotone bipartite graph properties are evasiveSIAM J Comput198817351752094194210.1137/0217031
RivestRLVuilleminJOn recognizing graph properties from adjacency matricesTheoret Comput ence19763337138452107510.1016/0304-3975(76)90053-0
UchizawaKTakimotoEExponential lower bounds on the size of constant-depth threshold circuits with small energy complexityTheoret Comput Sci20084071–3474487246302910.1016/j.tcs.2008.07.028
Amano K, Maruoka A (2005) On the complexity of depth-2 circuits with threshold gates. In: international symposium on mathematical foundations of computer science, Springer, Berlin, 107–118
LozhkinSShupletsovMSwitching activity of boolean circuits and synthesis of boolean circuits with asymptotically optimal complexity and linear switching activityLobachevskii J Math2015364450460343120810.1134/S1995080215040277
NisanNSzegedyMOn the degree of boolean functions as real polynomialsComput Complex199444301313131353110.1007/BF01263419
SunXAn improved lower bound on the sensitivity complexity of graph propertiesTheoret Comput Sci20114122935243529283969510.1016/j.tcs.2011.02.042
UchizawaKDouglasRMaassWOn the computational power of threshold circuits with sparse activityNeural Comput2006181229943008226520910.1162/neco.2006.18.12.2994
Aaronson S, Ben-David S, Kothari R, Rao S, Tal A (2020) Degree vs. approximate degree and quantum implications of huang’s sensitivity theorem
Antoniadis A, Barcelo N, Nugent M, Pruhs K, Scquizzato M (2014) Energy-efficient circuit design. In: Proceedings of the 5th conference on Innovations in theoretical computer science, ACM 303–312
Huang H (2019) Induced subgraphs of hypercubes and a proof of the sensitivity conjecture
TuránGThe critical complexity of graph propertiesInf Process Lett198418315115376036710.1016/0020-0190(84)90019-X
UchizawaKTakimotoENishizekiTSize-energy tradeoffs for unate circuits computing symmetric boolean functionsTheoret Comput Sci20114128–10773782279692410.1016/j.tcs.2010.11.022
RazborovAWigdersonAnΩ(logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{\Omega (\log n)}$$\end{document} lower bounds on the size of depth-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3$$\end{document} threshold cicuits with AND gates at the bottomInf Process Lett199345630330710.1016/0020-0190(93)90041-7
HåstadJGoldmannMOn the power of small-depth threshold circuitsComput Complex199112113129113494510.1007/BF01272517
Kasim-ZadeOMOn a measure of active circuits of functional elementsMath Probl Cybernet1992421822812175020809.94030
UchizawaKNishizekiTTakimotoEEnergy and depth of threshold circuitsTheoret Comput Sci201041144–4639383946276878010.1016/j.tcs.2010.08.006
KahnJSaksMSturtevantDA topological approach to evasivenessCombinatorica19844429730677989010.1007/BF02579140
Barcelo N, Nugent M, Pruhs K, Scquizzato M (2015) Almost all functions require exponential energy. In: international symposium on mathematical foundations of computer science, Springer 90–101
Hatami P, Kulkarni R, Pankratov D (2010) Variations on the sensitivity conjecture. arXiv preprint arXiv:1011.0354
Y Gao (689_CR9) 2013; 468
S Lozhkin (689_CR18) 2015; 36
J Kahn (689_CR14) 1984; 4
A Razborov (689_CR21) 1993; 45
K Dinesh (689_CR6) 2020; 845
OM Kasim-Zade (689_CR16) 1992; 4
689_CR7
N Nisan (689_CR20) 1994; 4
X Sun (689_CR23) 2011; 412
RL Rivest (689_CR22) 1976; 3
689_CR15
ACC Yao (689_CR30) 1988; 17
K Uchizawa (689_CR29) 2011; 412
689_CR13
689_CR12
689_CR19
689_CR17
J Håstad (689_CR11) 1991; 1
G Turán (689_CR25) 1984; 18
K Uchizawa (689_CR27) 2006; 18
689_CR4
689_CR3
689_CR2
689_CR1
DZ Du (689_CR8) 2001
H Buhrman (689_CR5) 2002; 288
A Suzuki (689_CR24) 2013; 505
K Uchizawa (689_CR26) 2008; 407
K Uchizawa (689_CR28) 2010; 411
A Hajnal (689_CR10) 1993; 46
References_xml – reference: YaoACCMonotone bipartite graph properties are evasiveSIAM J Comput198817351752094194210.1137/0217031
– reference: Hatami P, Kulkarni R, Pankratov D (2010) Variations on the sensitivity conjecture. arXiv preprint arXiv:1011.0354
– reference: DineshKOtivSSarmaJNew bounds for energy complexity of boolean functionsTheoret Comput Sci20208455975416565610.1016/j.tcs.2020.09.003
– reference: Dinesh K, Otiv S, Sarma J (2018) New bounds for energy complexity of boolean functions. In: International computing and combinatorics conference, Springer, Berlin, 738–750
– reference: BuhrmanHDe WolfRComplexity measures and decision tree complexity: a surveyTheoret Comput Sci200228812143193488810.1016/S0304-3975(01)00144-X
– reference: HajnalAMaassWPudlákPSzegedyMTuránGThreshold circuits of bounded depthJ Comput Syst Sci1993462129154121715310.1016/0022-0000(93)90001-D
– reference: KahnJSaksMSturtevantDA topological approach to evasivenessCombinatorica19844429730677989010.1007/BF02579140
– reference: DuDZKoKITheory of computational complexity2001New YorkWiley1433.68001
– reference: HåstadJGoldmannMOn the power of small-depth threshold circuitsComput Complex199112113129113494510.1007/BF01272517
– reference: RazborovAWigdersonAnΩ(logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{\Omega (\log n)}$$\end{document} lower bounds on the size of depth-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3$$\end{document} threshold cicuits with AND gates at the bottomInf Process Lett199345630330710.1016/0020-0190(93)90041-7
– reference: SunXAn improved lower bound on the sensitivity complexity of graph propertiesTheoret Comput Sci20114122935243529283969510.1016/j.tcs.2011.02.042
– reference: UchizawaKTakimotoEExponential lower bounds on the size of constant-depth threshold circuits with small energy complexityTheoret Comput Sci20084071–3474487246302910.1016/j.tcs.2008.07.028
– reference: Antoniadis A, Barcelo N, Nugent M, Pruhs K, Scquizzato M (2014) Energy-efficient circuit design. In: Proceedings of the 5th conference on Innovations in theoretical computer science, ACM 303–312
– reference: Huang H (2019) Induced subgraphs of hypercubes and a proof of the sensitivity conjecture
– reference: UchizawaKNishizekiTTakimotoEEnergy and depth of threshold circuitsTheoret Comput Sci201041144–4639383946276878010.1016/j.tcs.2010.08.006
– reference: Lovasz L, Young N (2002) Lecture notes on evasiveness of graph properties. arXiv preprint arXiv:cs/0205031
– reference: NisanNSzegedyMOn the degree of boolean functions as real polynomialsComput Complex199444301313131353110.1007/BF01263419
– reference: TuránGThe critical complexity of graph propertiesInf Process Lett198418315115376036710.1016/0020-0190(84)90019-X
– reference: Barcelo N, Nugent M, Pruhs K, Scquizzato M (2015) Almost all functions require exponential energy. In: international symposium on mathematical foundations of computer science, Springer 90–101
– reference: Kasim-ZadeOMOn a measure of active circuits of functional elementsMath Probl Cybernet1992421822812175020809.94030
– reference: RivestRLVuilleminJOn recognizing graph properties from adjacency matricesTheoret Comput ence19763337138452107510.1016/0304-3975(76)90053-0
– reference: Aaronson S, Ben-David S, Kothari R, Rao S, Tal A (2020) Degree vs. approximate degree and quantum implications of huang’s sensitivity theorem
– reference: Nikolaevich VM (1961) On the power of networks of functional elements. In: Proceedings of the USSR academy of sciences. Volume 139., Russian Academy of Sciences 320–323
– reference: Amano K, Maruoka A (2005) On the complexity of depth-2 circuits with threshold gates. In: international symposium on mathematical foundations of computer science, Springer, Berlin, 107–118
– reference: SuzukiAUchizawaKZhouXEnergy and fan-in of logic circuits computing symmetric boolean functionsTheoret Comput Sci20135057480310756210.1016/j.tcs.2012.11.039
– reference: UchizawaKDouglasRMaassWOn the computational power of threshold circuits with sparse activityNeural Comput2006181229943008226520910.1162/neco.2006.18.12.2994
– reference: Karpas I (2016) Lower bounds for sensitivity of graph properties. arXiv preprint arXiv:1609.05320
– reference: UchizawaKTakimotoENishizekiTSize-energy tradeoffs for unate circuits computing symmetric boolean functionsTheoret Comput Sci20114128–10773782279692410.1016/j.tcs.2010.11.022
– reference: LozhkinSShupletsovMSwitching activity of boolean circuits and synthesis of boolean circuits with asymptotically optimal complexity and linear switching activityLobachevskii J Math2015364450460343120810.1134/S1995080215040277
– reference: GaoYMaoJSunXZuoSOn the sensitivity complexity of bipartite graph propertiesTheoret Comput Sci20134688391300377010.1016/j.tcs.2012.11.006
– ident: 689_CR13
  doi: 10.4007/annals.2019.190.3.6
– volume: 412
  start-page: 3524
  issue: 29
  year: 2011
  ident: 689_CR23
  publication-title: Theoret Comput Sci
  doi: 10.1016/j.tcs.2011.02.042
– ident: 689_CR2
  doi: 10.1007/11549345_11
– ident: 689_CR12
– volume: 4
  start-page: 297
  issue: 4
  year: 1984
  ident: 689_CR14
  publication-title: Combinatorica
  doi: 10.1007/BF02579140
– ident: 689_CR4
  doi: 10.1007/978-3-662-48054-0_8
– ident: 689_CR19
– volume: 845
  start-page: 59
  year: 2020
  ident: 689_CR6
  publication-title: Theoret Comput Sci
  doi: 10.1016/j.tcs.2020.09.003
– ident: 689_CR17
– volume: 411
  start-page: 3938
  issue: 44–46
  year: 2010
  ident: 689_CR28
  publication-title: Theoret Comput Sci
  doi: 10.1016/j.tcs.2010.08.006
– volume: 288
  start-page: 21
  issue: 1
  year: 2002
  ident: 689_CR5
  publication-title: Theoret Comput Sci
  doi: 10.1016/S0304-3975(01)00144-X
– volume: 36
  start-page: 450
  issue: 4
  year: 2015
  ident: 689_CR18
  publication-title: Lobachevskii J Math
  doi: 10.1134/S1995080215040277
– volume: 46
  start-page: 129
  issue: 2
  year: 1993
  ident: 689_CR10
  publication-title: J Comput Syst Sci
  doi: 10.1016/0022-0000(93)90001-D
– volume: 468
  start-page: 83
  year: 2013
  ident: 689_CR9
  publication-title: Theoret Comput Sci
  doi: 10.1016/j.tcs.2012.11.006
– volume: 45
  start-page: 303
  issue: 6
  year: 1993
  ident: 689_CR21
  publication-title: Inf Process Lett
  doi: 10.1016/0020-0190(93)90041-7
– volume: 505
  start-page: 74
  year: 2013
  ident: 689_CR24
  publication-title: Theoret Comput Sci
  doi: 10.1016/j.tcs.2012.11.039
– volume: 407
  start-page: 474
  issue: 1–3
  year: 2008
  ident: 689_CR26
  publication-title: Theoret Comput Sci
  doi: 10.1016/j.tcs.2008.07.028
– volume-title: Theory of computational complexity
  year: 2001
  ident: 689_CR8
– volume: 4
  start-page: 301
  issue: 4
  year: 1994
  ident: 689_CR20
  publication-title: Comput Complex
  doi: 10.1007/BF01263419
– ident: 689_CR3
  doi: 10.1145/2554797.2554826
– ident: 689_CR15
– volume: 17
  start-page: 517
  issue: 3
  year: 1988
  ident: 689_CR30
  publication-title: SIAM J Comput
  doi: 10.1137/0217031
– ident: 689_CR7
  doi: 10.1007/978-3-319-94776-1_61
– volume: 18
  start-page: 151
  issue: 3
  year: 1984
  ident: 689_CR25
  publication-title: Inf Process Lett
  doi: 10.1016/0020-0190(84)90019-X
– volume: 18
  start-page: 2994
  issue: 12
  year: 2006
  ident: 689_CR27
  publication-title: Neural Comput
  doi: 10.1162/neco.2006.18.12.2994
– volume: 412
  start-page: 773
  issue: 8–10
  year: 2011
  ident: 689_CR29
  publication-title: Theoret Comput Sci
  doi: 10.1016/j.tcs.2010.11.022
– volume: 3
  start-page: 371
  issue: 3
  year: 1976
  ident: 689_CR22
  publication-title: Theoret Comput ence
  doi: 10.1016/0304-3975(76)90053-0
– volume: 4
  start-page: 218
  year: 1992
  ident: 689_CR16
  publication-title: Math Probl Cybernet
– ident: 689_CR1
  doi: 10.1145/3406325.3451047
– volume: 1
  start-page: 113
  issue: 2
  year: 1991
  ident: 689_CR11
  publication-title: Comput Complex
  doi: 10.1007/BF01272517
SSID ssj0009054
Score 2.3155413
Snippet We focus on energy complexity , a Boolean function measure related closely to Boolean circuit design. Given a circuit C over the standard basis { ∨ 2 , ∧ 2 , ¬...
We focus on energy complexity, a Boolean function measure related closely to Boolean circuit design. Given a circuit C over the standard basis {∨2,∧2,¬}, the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 1470
SubjectTerms Boolean
Boolean algebra
Boolean functions
Circuit design
Combinatorial analysis
Combinatorics
Complexity
Computation
Convex and Discrete Geometry
Decision trees
Energy
Gates (circuits)
Lower bounds
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Polynomials
Theory of Computation
Tightness
Upper bounds
Title On the relationship between energy complexity and other boolean function measures
URI https://link.springer.com/article/10.1007/s10878-020-00689-8
https://www.proquest.com/docview/2689156262
Volume 43
WOSCitedRecordID wos000605896800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-2886
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009054
  issn: 1382-6905
  databaseCode: RSV
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLWgMMDAG1EoyAMbWHIcJ3ZGhKhYKK8KdYv8FJUgVE1BfD62k5CCYIDRcmJF107OcXzPuQAcGxZLSahGicISUQcCyJezQparWFjqEIaJUGyCDQZ8NMpualFY2WS7N0eS4Us9J3bj3g2WeCV0yjPEF8GSgzvuCzbc3T-0Vrs4qUrZOu7o9n5JLZX5eYyvcNRyzG_HogFt-uv_e84NsFazS3hWLYdNsGCKLbA65znoWlefRq3lNri9LqBrwmmTE_c4nsA6dwuaoAuEIevcvDu6DkWhYZBsQUfOn4wooMdFfyN8rn42ljtg2L8Ynl-iusoCUoThGdI2kpJZzYSkIsPKxNRNmdKaSSmiWClmsDGKqoSmJjZRxq1jJRbrjDuqYeNd0CleCrMHIMU2VVKIJBOc2khwIojglusUC02x7oKTJtb5pPLSyFvXZB-13EUtD1HLeRf0munI6_eqzInrcjtOkpIuOG3C33b_Ptr-3y4_ACvE6xxCXm4PdGbTV3MIltXbbFxOj8J6-wBGatEm
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFL3oFNQHv8Xp1Dz4poU0Tdv0UcQxcZtfQ_ZW8okDrWOd4s83zVo3RR_0MaQN5SbtOWnuORfgWMeBEIQqL5RYeNSCgFeUs_IMkwE31CJMzF2xibjbZf1-clOKwvIq2706knRf6hmxGyvcYEmhhI5Y4rF5WKAWsQrH_Lv7h6nVLg4npWwtd7R7v7CUyvw8xlc4mnLMb8eiDm2aa_97znVYLdklOpsshw2Y09kmrMx4DtpW59OoNd-C2-sM2SYaVTlxj4MhKnO3kHa6QOSyzvW7peuIZwo5yRay5PxJ8wwVuFjciJ4nPxvzbeg1L3rnLa-ssuBJEuOxp4wvRGxUzAXlCZY6oHbKpFKxENwPpIw11lpSGdJIB9pPmLGsxGCVMEs1TLADtewl07uAKDaRFJyHCWfU-JwRTjgzTEWYK4pVHU6qWKfDiZdGOnVNLqKW2qilLmopq0Ojmo60fK_ylNguu-MkEanDaRX-affvo-397fIjWGr1Ou20fdm92odlUmgeXI5uA2rj0as-gEX5Nh7ko0O39j4AHfXUCg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFNEH7-K85sE3LWZp2qaPog5FnROH7K3kigOtY5vizzdJWzdFH8THkCaUc1LOd5rzfQfgQCehEISqIJJYBNQGgcC1swoMkyE31EaYhPtmE0mrxbrdtD3B4vfV7tWVZMFpcCpN-ei4r8zxBPGNOWVY4ljRMUsDNg0z1BXSu3z9_mEsu4ujoq2txZE2D4xK2szPe3wNTWO8-e2K1Eee5tL_33kZFkvUiU6KY7ICUzpfhYUJLUI7uvkUcB2uwd1tjuwQDapaucdeH5U1XUh7viDy1ej63cJ4xHOFPJULWdD-pHmOXLx0C9Fz8RNyuA6d5nnn9CIouy8EkiR4FCjTECIxKuGC8hRLHVLrSqlUIgRvhFImGmstqYxorEPdSJmxaMVglTILQUy4AbX8JdebgCg2sRScRyln1DQ4I5xwZpiKMVcUqzocVnbP-oXGRjZWU3ZWy6zVMm-1jNVhp3JNVn5vw4zYKZuJkpjU4ahyxXj69922_vb4Psy1z5rZ9WXrahvmiaNC-NLdHaiNBq96F2bl26g3HOz5Y_gBAaXc7g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+relationship+between+energy+complexity+and+other+boolean+function+measures&rft.jtitle=Journal+of+combinatorial+optimization&rft.au=Sun%2C+Xiaoming&rft.au=Sun%2C+Yuan&rft.au=Wu%2C+Kewen&rft.au=Xia+Zhiyu&rft.date=2022-07-01&rft.pub=Springer+Nature+B.V&rft.issn=1382-6905&rft.eissn=1573-2886&rft.volume=43&rft.issue=5&rft.spage=1470&rft.epage=1492&rft_id=info:doi/10.1007%2Fs10878-020-00689-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-6905&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-6905&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-6905&client=summon