Scheduling with step learning and job rejection Scheduling with step learning and job rejection
This paper focuses on job scheduling with step learning and job rejection. The step learning model aims to reduce the processing time for jobs starting after a specific learning date. Our objective is to minimize the sum of the maximum completion time of accepted jobs and the total rejection penalty...
Uloženo v:
| Vydáno v: | Operational research Ročník 25; číslo 1; s. 6 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 1109-2858, 1866-1505 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper focuses on job scheduling with step learning and job rejection. The step learning model aims to reduce the processing time for jobs starting after a specific learning date. Our objective is to minimize the sum of the maximum completion time of accepted jobs and the total rejection penalty of rejected jobs. We examine special cases of processing times for both single-machine and parallel-machine scenarios. For the former, we design a pseudo-polynomial time algorithm, a 2-approximation algorithm and a fully polynomial-time approximation scheme (FPTAS) based on data rounding. For the latter, we present a fully polynomial-time approximation scheme achieved by trimming the state space. Additionally, for the general case of the single-machine problem, we propose a pseudo-polynomial time algorithm. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1109-2858 1866-1505 |
| DOI: | 10.1007/s12351-024-00887-w |