On approximate solutions for robust semi-infinite multi-objective convex symmetric cone optimization
We present approximate solutions for the robust semi-infinite multi-objective convex symmetric cone programming problem. By using the robust optimization approach, we establish an approximate optimality theorem and approximate duality theorems for approximate solutions in convex symmetric cone optim...
Uloženo v:
| Vydáno v: | Positivity : an international journal devoted to the theory and applications of positivity in analysis Ročník 26; číslo 5 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.11.2022
Springer Nature B.V |
| Témata: | |
| ISSN: | 1385-1292, 1572-9281 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We present approximate solutions for the robust semi-infinite multi-objective convex symmetric cone programming problem. By using the robust optimization approach, we establish an approximate optimality theorem and approximate duality theorems for approximate solutions in convex symmetric cone optimization problem involving infinitely many constraints to be satisfied and multiple objectives to be optimized simultaneously under the robust characteristic cone constraint qualification. We also give an example to illustrate the obtained results in an important special case, namely the robust semi-infinite multi-objective convex second-order cone program. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1385-1292 1572-9281 |
| DOI: | 10.1007/s11117-022-00952-8 |