On approximate solutions for robust semi-infinite multi-objective convex symmetric cone optimization

We present approximate solutions for the robust semi-infinite multi-objective convex symmetric cone programming problem. By using the robust optimization approach, we establish an approximate optimality theorem and approximate duality theorems for approximate solutions in convex symmetric cone optim...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Positivity : an international journal devoted to the theory and applications of positivity in analysis Ročník 26; číslo 5
Hlavní autori: Alzalg, Baha, Oulha, Amira Achouak
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.11.2022
Springer Nature B.V
Predmet:
ISSN:1385-1292, 1572-9281
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We present approximate solutions for the robust semi-infinite multi-objective convex symmetric cone programming problem. By using the robust optimization approach, we establish an approximate optimality theorem and approximate duality theorems for approximate solutions in convex symmetric cone optimization problem involving infinitely many constraints to be satisfied and multiple objectives to be optimized simultaneously under the robust characteristic cone constraint qualification. We also give an example to illustrate the obtained results in an important special case, namely the robust semi-infinite multi-objective convex second-order cone program.
AbstractList We present approximate solutions for the robust semi-infinite multi-objective convex symmetric cone programming problem. By using the robust optimization approach, we establish an approximate optimality theorem and approximate duality theorems for approximate solutions in convex symmetric cone optimization problem involving infinitely many constraints to be satisfied and multiple objectives to be optimized simultaneously under the robust characteristic cone constraint qualification. We also give an example to illustrate the obtained results in an important special case, namely the robust semi-infinite multi-objective convex second-order cone program.
ArticleNumber 86
Author Alzalg, Baha
Oulha, Amira Achouak
Author_xml – sequence: 1
  givenname: Baha
  orcidid: 0000-0002-1839-8083
  surname: Alzalg
  fullname: Alzalg, Baha
  email: b.alzalg@ju.edu.jo
  organization: Department of Mathematics, The University of Jordan, Department of Computer Science and Engineering, The Ohio State University
– sequence: 2
  givenname: Amira Achouak
  surname: Oulha
  fullname: Oulha, Amira Achouak
  organization: Department of Mathematics, The University of Jordan, Department of Mathematics, University of Bachir El Ibrahimi
BookMark eNp9kE1LAzEQhoMo2Fb_gKcFz9F8dDfZoxS_oNCLnkOSTSSlm6xJtrT-elNX8OZcZhje9x3mmYNzH7wB4AajO4wQu0-4FIOIEIhQWxPIz8AM14zAlnB8XmbKa4hJSy7BPKUtQsW2RDPQbXwlhyGGg-tlNlUKuzG74FNlQ6xiUGPKVTK9g85b512R9OMuOxjU1ujs9qbSwe_NoUrHvjc5On1amCoM2fXuS57CrsCFlbtkrn_7Arw_Pb6tXuB68_y6elhDTRjKUDdSmU5TjUiHlKWaWW0U72omqVbMdA0lhPOOaExb1CjZKVo31mKkGKFW0gW4nXLLP5-jSVlswxh9OSkIIy3DfMnroiKTSseQUjRWDLE8H48CI3GiKSaaotAUPzQFLyY6mVIR-w8T_6L_cX0DmkZ9Dw
Cites_doi 10.1006/jmaa.1996.0371
10.1007/s10479-016-2363-5
10.1007/BF00940466
10.1134/S0005117909060149
10.1080/02331930108844524
10.1007/s11117-017-0549-y
10.1007/s11117-018-0630-1
10.1017/S0962492901000071
10.1016/j.orl.2003.12.007
10.1090/S0025-5718-2010-02449-4
10.1016/j.apm.2011.12.053
10.1080/02331934.2012.690760
10.1137/060676982
10.1515/9781400831050
10.1007/s10898-004-5904-4
10.1007/s10107-003-0425-3
10.1137/1038003
10.1007/s11590-016-1067-8
10.1007/BF02594782
10.1007/s10589-018-0045-8
10.1007/s10107-002-0339-5
10.1080/10556789208805510
10.1016/S0377-2217(03)00206-6
10.1287/moor.26.3.543.10582
10.1016/j.ejor.2005.05.007
10.1007/s11117-012-0186-4
10.1007/s10107-003-0380-z
10.1186/1029-242X-2014-501
10.1007/s10107-013-0668-6
10.1007/3-540-31246-3
10.1007/s11590-019-01404-1
10.1137/S1052623402417699
10.1155/2010/363012
10.1006/jmaa.1996.0080
10.1007/s10957-018-1445-8
10.1016/j.jmaa.2013.07.075
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7WY
7WZ
7XB
87Z
88I
8AO
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
M0C
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s11117-022-00952-8
DatabaseName CrossRef
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Global
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1572-9281
ExternalDocumentID 10_1007_s11117_022_00952_8
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
203
29O
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5VS
67Z
6NX
7WY
88I
8AO
8FE
8FG
8FL
8FW
8G5
8TC
8V8
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EBU
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
L6V
LAK
LLZTM
M0C
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOS
R89
R9I
RNI
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TH9
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7XB
8FK
JQ2
L.-
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c270t-c6abedc3c02d0bf3c7fceb8d57a3cb7ed632288d2c13906badb356ff10b723fa3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000876312800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1385-1292
IngestDate Fri Nov 07 23:26:35 EST 2025
Sat Nov 29 03:21:14 EST 2025
Fri Feb 21 02:44:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords 90C20
Semi-infinite programming
Robust symmetric cone optimization
90C46
90C25
90C34
Approximate duality theorems
90C29
Multi-objective programming
Approximate optimality conditions
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-c6abedc3c02d0bf3c7fceb8d57a3cb7ed632288d2c13906badb356ff10b723fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1839-8083
PQID 2729718485
PQPubID 26063
ParticipantIDs proquest_journals_2729718485
crossref_primary_10_1007_s11117_022_00952_8
springer_journals_10_1007_s11117_022_00952_8
PublicationCentury 2000
PublicationDate 20221100
2022-11-00
20221101
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 20221100
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationSubtitle An International Mathematics Journal devoted to Theory and Applications of Positivity
PublicationTitle Positivity : an international journal devoted to the theory and applications of positivity in analysis
PublicationTitleAbbrev Positivity
PublicationYear 2022
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References GoldfarbDIyengarGRobust convex quadratically constrained programsMath. Program.200397495515200812010.1007/s10107-003-0425-31106.90365
SchmietaSAlizadehFExtension of primal-dual interior point algorithms to symmetric conesMath. Program. Ser. A200396409438199345710.1007/s10107-003-0380-z1023.90083
GovilMGMehraAϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-Optimality for multi-objective programming on a Banach spaceEur. J. Oper. Res.200415710611210.1016/S0377-2217(03)00206-61106.90065
Ben-TalAGhaouiLENemirovskiARobust Optimzation2009PrincetonPrinceton University Press10.1515/97814008310501221.90001
LiuJCϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-Pareto optimality for nondifferentiable multi-objective programming via penalty functionJ. Math. Anal. Appl.1996198248261137353910.1006/jmaa.1996.00800848.90107
GutiérrezCJiménezBNovoVMultiplier rules and saddle-point theorems for Helbig’s approximate solutions in convex Pareto problemsJ. Glob. Optim.200532367383217762410.1007/s10898-004-5904-41149.90398
AlzalgBAriyawansaKALogarithmic barrier decomposition-based interior point methods for stochastic symmetric programmingJ. Math. Anal. Appl.2014409973995310321310.1016/j.jmaa.2013.07.0751306.90103
LeeJHLeeGMϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-Duality theorems for convex semidefinite optimization problems with conic constraintsJ. Inequal. Appl.20102010259285510.1155/2010/3630121184.49036
Ben-TalAGhaouiLENemirovskiARobustness, in Handbook on Semidefinite Programming2000New YorkKluwer0957.90525
MordukhovichBSVariational Analysis and Generalized Differentiation, I: Basic Theory, II. Applications2006BerlinSpringer10.1007/3-540-31246-3
LiuJCϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-Duality theorem of nondifferentiable nonconvex multi-objective programmingJ. Optim. Theory Appl.199169153167110459210.1007/BF00940466
LeeJHLeeGMOn ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-solutions for convex optimization problems with uncertainty dataPositivity201216509526297431210.1007/s11117-012-0186-41334.90126
AlizadehFGoldfarbDSecond-order cone programmingMath. Program. Ser. B200395351197138110.1007/s10107-002-0339-51153.90522
LeeJHLeeGMOn ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-solutions for robust semi-infinite optimization problemsPositivity201923651669397758910.1007/s11117-018-0630-11421.90150
AlzalgBA primal-dual interior-point method based on various selections of displacement step for symmetric optimizationComput. Optim. Appl.201972363390391973010.1007/s10589-018-0045-81414.90322
HamelAAn ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-Lagrange multiplier rule for a mathematical programming problem on Banach spacesOptimization200149137149181616110.1080/023319301088445240966.90081
BertsimasDPachamanovaDSimMRobust linear optimization under general normsOper. Res. Lett.200432510516207745110.1016/j.orl.2003.12.0071054.90046
SchmietaSHAlizadehFAssociative and Jordan algebras, and polynomial time interior point algorithms for symmetric conesMath. Oper. Res.2001263543564184988410.1287/moor.26.3.543.105821073.90572
AlzalgBBadarnehKAbabnehAInfeasible interior-point algorithm for stochastic second-order cone optimizationJ. Optim. Theory Appl.2019181324346392140910.1007/s10957-018-1445-81414.90261
JeyakumarVLiGYStrong duality in robust semi-definite linear programming under data uncertaintyOptimization201463713733319600410.1080/02331934.2012.6907601291.90164
JeyakumarVLeeGMDinhNCharacterization of solution sets of convex vector minimization problemsEur. J. Oper. Res.200617413801395225431610.1016/j.ejor.2005.05.0071103.90090
VandenbergheLBoydSSemidefinite programmingSIAM Rev.1996384995137904110.1137/10380030845.65023
AriyawansaKZhuYA class of polynomial volumetric barrier decomposition algorithms for stochastic semidefinite programmingMath. Comput.20198016391661278547210.1090/S0025-5718-2010-02449-41244.90172
JeyakumarVLeeGMDinhNNew sequential Lagrange multiplier conditions characterizing optimality without constraint qualification for convex programsSIAM J. Optim.200314534547204815610.1137/S10526234024176991046.90059
YokoyamaKEpsilon approximate solutions for multi-objective programming problemsJ. Math. Anal. Appl.1996203142149141248510.1006/jmaa.1996.03710858.90114
AlzalgBA logarithmic barrier interior-point method based on majorant functions for second-order cone programmingOptim. Lett.202014729746407544610.1007/s11590-019-01404-11442.90177
LeeJHLeeGMOn approximate solutions for robust convex semidefinite optimization problemsPositivity201822419438381712410.1007/s11117-017-0549-y1394.90459
ArutyunovAPolyakBTMordukhovichBSVariational analysis and generalized differentiation I. Basic theory, II. ApplicationsAutom. Remote Control2009701086108710.1134/S0005117909060149
NesterovYuENemirovskiiASConic formulation of a convex programming problem and dualityOptim. Methods Softw.199219511510.1080/10556789208805510
LiCNgKFPongTKConstraint qualifications for convex inequality systems with applications in constrainted optimizationSIAM. J. Optim.200819163187240302610.1137/0606769821170.90009
LeeJHLeeGMOn ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-solutions for robust fractional optimization problemsJ. Inequal. Appl.20142014501336054710.1186/1029-242X-2014-5011333.90094
LeeJHLeeGMOn optimality conditions and duality theorems for robust semi-infinite multi-objective optimization problemsAnn. Oper. Res.2018269419438384848810.1007/s10479-016-2363-51446.90143
ToddMJSemidefinite optimizationActa Numer.200110515560200969810.1017/S09624929010000711105.65334
LeeJHJiaoLGOn quasi ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-solution for robust convex optimization problemsOptim. Lett.20171116091622372223810.1007/s11590-016-1067-81410.90155
AlzalgBCombinatorial and Algorithmic Mathematics: From Foundation to Optimization20221Seattle, WAKindle Direct Publishing
StrodiotJJNguyenVHHeukemesNϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-Optimal solutions in nondifferentiable convex programming and some related questionMath. Program.19832530732868966010.1007/BF025947820495.90067
Hiriart-UrrutyJBLemarechalCConvex Analysis and Minimization Algorithms1993BerlinSpringer0795.49001
GobernaMAJeyakumarVLiGLópezMARobust linear semi-infinite programming duality under uncertaintyMath. Program.20131391–2185203307010010.1007/s10107-013-0668-61282.90204
AlzalgBStochastic second-order cone programming: application modelsAppl. Math. Model.20123651225134293040710.1016/j.apm.2011.12.0531252.90055
L Vandenberghe (952_CR32) 1996; 38
B Alzalg (952_CR29) 2019; 181
JB Hiriart-Urruty (952_CR36) 1993
A Ben-Tal (952_CR1) 2000
B Alzalg (952_CR28) 2012; 36
V Jeyakumar (952_CR37) 2003; 14
C Gutiérrez (952_CR6) 2005; 32
D Goldfarb (952_CR4) 2003; 97
A Arutyunov (952_CR18) 2009; 70
MG Govil (952_CR5) 2004; 157
B Alzalg (952_CR24) 2019; 72
F Alizadeh (952_CR27) 2003; 95
YuE Nesterov (952_CR34) 1992; 1
A Hamel (952_CR7) 2001; 49
MJ Todd (952_CR31) 2001; 10
B Alzalg (952_CR25) 2014; 409
V Jeyakumar (952_CR8) 2014; 63
BS Mordukhovich (952_CR19) 2006
JH Lee (952_CR9) 2017; 11
SH Schmieta (952_CR23) 2001; 26
JH Lee (952_CR11) 2012; 16
JJ Strodiot (952_CR20) 1983; 25
JC Liu (952_CR16) 1991; 69
JC Liu (952_CR17) 1996; 198
K Ariyawansa (952_CR33) 2019; 80
B Alzalg (952_CR26) 2022
JH Lee (952_CR10) 2010; 2010
K Yokoyama (952_CR21) 1996; 203
A Ben-Tal (952_CR2) 2009
V Jeyakumar (952_CR35) 2006; 174
JH Lee (952_CR13) 2018; 269
B Alzalg (952_CR30) 2020; 14
MA Goberna (952_CR39) 2013; 139
D Bertsimas (952_CR3) 2004; 32
S Schmieta (952_CR22) 2003; 96
JH Lee (952_CR12) 2014; 2014
JH Lee (952_CR14) 2018; 22
JH Lee (952_CR15) 2019; 23
C Li (952_CR38) 2008; 19
References_xml – reference: JeyakumarVLiGYStrong duality in robust semi-definite linear programming under data uncertaintyOptimization201463713733319600410.1080/02331934.2012.6907601291.90164
– reference: GobernaMAJeyakumarVLiGLópezMARobust linear semi-infinite programming duality under uncertaintyMath. Program.20131391–2185203307010010.1007/s10107-013-0668-61282.90204
– reference: AlzalgBStochastic second-order cone programming: application modelsAppl. Math. Model.20123651225134293040710.1016/j.apm.2011.12.0531252.90055
– reference: YokoyamaKEpsilon approximate solutions for multi-objective programming problemsJ. Math. Anal. Appl.1996203142149141248510.1006/jmaa.1996.03710858.90114
– reference: LeeJHLeeGMOn ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-solutions for robust semi-infinite optimization problemsPositivity201923651669397758910.1007/s11117-018-0630-11421.90150
– reference: LeeJHJiaoLGOn quasi ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-solution for robust convex optimization problemsOptim. Lett.20171116091622372223810.1007/s11590-016-1067-81410.90155
– reference: MordukhovichBSVariational Analysis and Generalized Differentiation, I: Basic Theory, II. Applications2006BerlinSpringer10.1007/3-540-31246-3
– reference: LiuJCϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-Duality theorem of nondifferentiable nonconvex multi-objective programmingJ. Optim. Theory Appl.199169153167110459210.1007/BF00940466
– reference: BertsimasDPachamanovaDSimMRobust linear optimization under general normsOper. Res. Lett.200432510516207745110.1016/j.orl.2003.12.0071054.90046
– reference: GutiérrezCJiménezBNovoVMultiplier rules and saddle-point theorems for Helbig’s approximate solutions in convex Pareto problemsJ. Glob. Optim.200532367383217762410.1007/s10898-004-5904-41149.90398
– reference: LeeJHLeeGMϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-Duality theorems for convex semidefinite optimization problems with conic constraintsJ. Inequal. Appl.20102010259285510.1155/2010/3630121184.49036
– reference: VandenbergheLBoydSSemidefinite programmingSIAM Rev.1996384995137904110.1137/10380030845.65023
– reference: Hiriart-UrrutyJBLemarechalCConvex Analysis and Minimization Algorithms1993BerlinSpringer0795.49001
– reference: GovilMGMehraAϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-Optimality for multi-objective programming on a Banach spaceEur. J. Oper. Res.200415710611210.1016/S0377-2217(03)00206-61106.90065
– reference: AlzalgBA logarithmic barrier interior-point method based on majorant functions for second-order cone programmingOptim. Lett.202014729746407544610.1007/s11590-019-01404-11442.90177
– reference: LeeJHLeeGMOn approximate solutions for robust convex semidefinite optimization problemsPositivity201822419438381712410.1007/s11117-017-0549-y1394.90459
– reference: AlizadehFGoldfarbDSecond-order cone programmingMath. Program. Ser. B200395351197138110.1007/s10107-002-0339-51153.90522
– reference: ToddMJSemidefinite optimizationActa Numer.200110515560200969810.1017/S09624929010000711105.65334
– reference: ArutyunovAPolyakBTMordukhovichBSVariational analysis and generalized differentiation I. Basic theory, II. ApplicationsAutom. Remote Control2009701086108710.1134/S0005117909060149
– reference: GoldfarbDIyengarGRobust convex quadratically constrained programsMath. Program.200397495515200812010.1007/s10107-003-0425-31106.90365
– reference: LeeJHLeeGMOn optimality conditions and duality theorems for robust semi-infinite multi-objective optimization problemsAnn. Oper. Res.2018269419438384848810.1007/s10479-016-2363-51446.90143
– reference: AriyawansaKZhuYA class of polynomial volumetric barrier decomposition algorithms for stochastic semidefinite programmingMath. Comput.20198016391661278547210.1090/S0025-5718-2010-02449-41244.90172
– reference: JeyakumarVLeeGMDinhNCharacterization of solution sets of convex vector minimization problemsEur. J. Oper. Res.200617413801395225431610.1016/j.ejor.2005.05.0071103.90090
– reference: LeeJHLeeGMOn ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-solutions for robust fractional optimization problemsJ. Inequal. Appl.20142014501336054710.1186/1029-242X-2014-5011333.90094
– reference: LiCNgKFPongTKConstraint qualifications for convex inequality systems with applications in constrainted optimizationSIAM. J. Optim.200819163187240302610.1137/0606769821170.90009
– reference: SchmietaSHAlizadehFAssociative and Jordan algebras, and polynomial time interior point algorithms for symmetric conesMath. Oper. Res.2001263543564184988410.1287/moor.26.3.543.105821073.90572
– reference: JeyakumarVLeeGMDinhNNew sequential Lagrange multiplier conditions characterizing optimality without constraint qualification for convex programsSIAM J. Optim.200314534547204815610.1137/S10526234024176991046.90059
– reference: LiuJCϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-Pareto optimality for nondifferentiable multi-objective programming via penalty functionJ. Math. Anal. Appl.1996198248261137353910.1006/jmaa.1996.00800848.90107
– reference: SchmietaSAlizadehFExtension of primal-dual interior point algorithms to symmetric conesMath. Program. Ser. A200396409438199345710.1007/s10107-003-0380-z1023.90083
– reference: AlzalgBA primal-dual interior-point method based on various selections of displacement step for symmetric optimizationComput. Optim. Appl.201972363390391973010.1007/s10589-018-0045-81414.90322
– reference: NesterovYuENemirovskiiASConic formulation of a convex programming problem and dualityOptim. Methods Softw.199219511510.1080/10556789208805510
– reference: Ben-TalAGhaouiLENemirovskiARobustness, in Handbook on Semidefinite Programming2000New YorkKluwer0957.90525
– reference: AlzalgBBadarnehKAbabnehAInfeasible interior-point algorithm for stochastic second-order cone optimizationJ. Optim. Theory Appl.2019181324346392140910.1007/s10957-018-1445-81414.90261
– reference: HamelAAn ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-Lagrange multiplier rule for a mathematical programming problem on Banach spacesOptimization200149137149181616110.1080/023319301088445240966.90081
– reference: LeeJHLeeGMOn ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-solutions for convex optimization problems with uncertainty dataPositivity201216509526297431210.1007/s11117-012-0186-41334.90126
– reference: Ben-TalAGhaouiLENemirovskiARobust Optimzation2009PrincetonPrinceton University Press10.1515/97814008310501221.90001
– reference: AlzalgBAriyawansaKALogarithmic barrier decomposition-based interior point methods for stochastic symmetric programmingJ. Math. Anal. Appl.2014409973995310321310.1016/j.jmaa.2013.07.0751306.90103
– reference: StrodiotJJNguyenVHHeukemesNϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-Optimal solutions in nondifferentiable convex programming and some related questionMath. Program.19832530732868966010.1007/BF025947820495.90067
– reference: AlzalgBCombinatorial and Algorithmic Mathematics: From Foundation to Optimization20221Seattle, WAKindle Direct Publishing
– volume: 203
  start-page: 142
  year: 1996
  ident: 952_CR21
  publication-title: J. Math. Anal. Appl.
  doi: 10.1006/jmaa.1996.0371
– volume: 269
  start-page: 419
  year: 2018
  ident: 952_CR13
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-016-2363-5
– volume: 69
  start-page: 153
  year: 1991
  ident: 952_CR16
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00940466
– volume: 70
  start-page: 1086
  year: 2009
  ident: 952_CR18
  publication-title: Autom. Remote Control
  doi: 10.1134/S0005117909060149
– volume: 49
  start-page: 137
  year: 2001
  ident: 952_CR7
  publication-title: Optimization
  doi: 10.1080/02331930108844524
– volume: 22
  start-page: 419
  year: 2018
  ident: 952_CR14
  publication-title: Positivity
  doi: 10.1007/s11117-017-0549-y
– volume: 23
  start-page: 651
  year: 2019
  ident: 952_CR15
  publication-title: Positivity
  doi: 10.1007/s11117-018-0630-1
– volume: 10
  start-page: 515
  year: 2001
  ident: 952_CR31
  publication-title: Acta Numer.
  doi: 10.1017/S0962492901000071
– volume: 32
  start-page: 510
  year: 2004
  ident: 952_CR3
  publication-title: Oper. Res. Lett.
  doi: 10.1016/j.orl.2003.12.007
– volume: 80
  start-page: 1639
  year: 2019
  ident: 952_CR33
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-2010-02449-4
– volume: 36
  start-page: 5122
  year: 2012
  ident: 952_CR28
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2011.12.053
– volume: 63
  start-page: 713
  year: 2014
  ident: 952_CR8
  publication-title: Optimization
  doi: 10.1080/02331934.2012.690760
– volume: 19
  start-page: 163
  year: 2008
  ident: 952_CR38
  publication-title: SIAM. J. Optim.
  doi: 10.1137/060676982
– volume-title: Robust Optimzation
  year: 2009
  ident: 952_CR2
  doi: 10.1515/9781400831050
– volume: 32
  start-page: 367
  year: 2005
  ident: 952_CR6
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-004-5904-4
– volume: 97
  start-page: 495
  year: 2003
  ident: 952_CR4
  publication-title: Math. Program.
  doi: 10.1007/s10107-003-0425-3
– volume: 38
  start-page: 49
  year: 1996
  ident: 952_CR32
  publication-title: SIAM Rev.
  doi: 10.1137/1038003
– volume-title: Combinatorial and Algorithmic Mathematics: From Foundation to Optimization
  year: 2022
  ident: 952_CR26
– volume: 11
  start-page: 1609
  year: 2017
  ident: 952_CR9
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-016-1067-8
– volume: 25
  start-page: 307
  year: 1983
  ident: 952_CR20
  publication-title: Math. Program.
  doi: 10.1007/BF02594782
– volume: 72
  start-page: 363
  year: 2019
  ident: 952_CR24
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-018-0045-8
– volume-title: Convex Analysis and Minimization Algorithms
  year: 1993
  ident: 952_CR36
– volume: 95
  start-page: 3
  year: 2003
  ident: 952_CR27
  publication-title: Math. Program. Ser. B
  doi: 10.1007/s10107-002-0339-5
– volume-title: Robustness, in Handbook on Semidefinite Programming
  year: 2000
  ident: 952_CR1
– volume: 1
  start-page: 95
  year: 1992
  ident: 952_CR34
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556789208805510
– volume: 157
  start-page: 106
  year: 2004
  ident: 952_CR5
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/S0377-2217(03)00206-6
– volume: 26
  start-page: 543
  issue: 3
  year: 2001
  ident: 952_CR23
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.26.3.543.10582
– volume: 174
  start-page: 1380
  year: 2006
  ident: 952_CR35
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2005.05.007
– volume: 16
  start-page: 509
  year: 2012
  ident: 952_CR11
  publication-title: Positivity
  doi: 10.1007/s11117-012-0186-4
– volume: 96
  start-page: 409
  year: 2003
  ident: 952_CR22
  publication-title: Math. Program. Ser. A
  doi: 10.1007/s10107-003-0380-z
– volume: 2014
  start-page: 501
  year: 2014
  ident: 952_CR12
  publication-title: J. Inequal. Appl.
  doi: 10.1186/1029-242X-2014-501
– volume: 139
  start-page: 185
  issue: 1–2
  year: 2013
  ident: 952_CR39
  publication-title: Math. Program.
  doi: 10.1007/s10107-013-0668-6
– volume-title: Variational Analysis and Generalized Differentiation, I: Basic Theory, II. Applications
  year: 2006
  ident: 952_CR19
  doi: 10.1007/3-540-31246-3
– volume: 14
  start-page: 729
  year: 2020
  ident: 952_CR30
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-019-01404-1
– volume: 14
  start-page: 534
  year: 2003
  ident: 952_CR37
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623402417699
– volume: 2010
  year: 2010
  ident: 952_CR10
  publication-title: J. Inequal. Appl.
  doi: 10.1155/2010/363012
– volume: 198
  start-page: 248
  year: 1996
  ident: 952_CR17
  publication-title: J. Math. Anal. Appl.
  doi: 10.1006/jmaa.1996.0080
– volume: 181
  start-page: 324
  year: 2019
  ident: 952_CR29
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-018-1445-8
– volume: 409
  start-page: 973
  year: 2014
  ident: 952_CR25
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2013.07.075
SSID ssj0010040
Score 2.2495208
Snippet We present approximate solutions for the robust semi-infinite multi-objective convex symmetric cone programming problem. By using the robust optimization...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Algebra
Calculus of Variations and Optimal Control; Optimization
Econometrics
Fourier Analysis
Linear programming
Mathematics
Mathematics and Statistics
Multiple objective analysis
Operator Theory
Optimization
Potential Theory
Robustness
Theorems
SummonAdditionalLinks – databaseName: ABI/INFORM Collection
  dbid: 7WY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT-MwFH5iyhzgwI4om3zgxlhknHrpCSEE4gCFA6OBU-RVKlIXmoLg3_Psuq1AGi6To6PYkb7n732J3wJwJBhrh8J6imLd0ZYUhqrgLJWB63abm5bWCelr2emoh4f2Xf7hVuewyiknJqJ2Axv_kZ8wVIHIoy3FT4fPNHaNiqeruYXGD1hER81jBwP593F2ihAtNH1wKU7Rr7GcNDNJncNL0hjLHlUGssJnxzRXm18OSJPfuVz93zdeg5WsOMnZxETWYcH3N2A1q0-S93a9Acs3swqu9Sa42z5J9cbfujjkycxECapcMhqYl3pMat_rUjTRbhSuJMUm0oF5mnAoSQHtb6R-7_Vi2y4bBzwZIEf1cvLnFvy5vLg_v6K5IwO1TBZjaoU23tnSFswVJpRWBuuNclzq0hrpnUB-UMoxi8KyEEY7U3IRwu_CSFYGXW5Do49r7QCx0siWlkLEUqScB4VPO1Z4LXCl0vImHE_hqIaTwhvVvMRyBK9C8KoEXqWasD_FoMqbsK7mADTh1xTF-e1_z7b7_Wx7sMSi4aSMxH1ojEcv_gB-2tdxtx4dJhP8AD1_5NI
  priority: 102
  providerName: ProQuest
Title On approximate solutions for robust semi-infinite multi-objective convex symmetric cone optimization
URI https://link.springer.com/article/10.1007/s11117-022-00952-8
https://www.proquest.com/docview/2729718485
Volume 26
WOSCitedRecordID wos000876312800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-9281
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010040
  issn: 1385-1292
  databaseCode: RSV
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB7xOsCBN1oeW_mwN7AUnPrRIyDQSgulWt57ifyUulJb1BQE_56xm7QCsYclh5HiJOPIM575LM-MAX4Ixlohs54iWHe0KYWhKjhLZeC61eKmqXWS9Llst9X9fatTJYWVdbR7vSWZLPU02Q0vSWP0ecQFOI9nYZ7HajNxjX51O9k7iHqZllmKU_RmrEqV-ZzHe3c0xZgftkWTtzlb-dp_rsJyhS7J0Vgd1mDG99dhpUKapJrH5TosXUyqtZYb4C77JNUWf-likycTdSSIaMlwYJ7KESl9r0tRHbsRpJIUh0gH5u_YXpIUvP5CytdeLx7RZWODJwO0R70q0XMTbs5Or09-0ur0BWqZzEbUCm28s7nNmMtMyK0M1hvluNS5NdI7gbZAKccsgshMGO1MzkUIh5mRLA8634K5Pvb1DYiVRja1FCKWHeU8KPzascxrgT3llm_Dfi2E4nFcZKOYllOOw1ngcBZpOAu1DXu1nIpqwpUFw0UCutmmQmYHtVymj__Nbef_Xt-FRRZFm7IR92BuNHzy32HBPo-65bABs_LuoQHzx6ftzm-8-yUp0ovsJFJ2mWgnUnmFtMP_NJLqvgGI6OKf
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFolyaKGASB-wBzjBqmbtfeSAEKKtWiUNHIrUm9mnFKQkbZy-_lR_I7NrOxGV4NZDfVzLu7Lnm5lvvfMAeCcY64bMeopk3dFCCkNVcJbKwHW3y02hdZJ0Xw4G6vS0-2MJbttcmBhW2drEZKjdxMZ_5LsMWSDa0ULxL2fnNHaNiqerbQuNGhY9f3OFW7bq89Eeyvc9Ywf7J98OadNVgFomsxm1QhvvbG4z5jITciuD9UY5LnVujfROIMaVcswiOcqE0c7kXITwKTOS5UHnOO8jWClyJaJG9SSdn1pEjUgbPMUp-lHWJOnUqXp4SRpj5yOrQSv0tyNcsNs7B7LJzx2sP7Qv9AzWGkZNvtYq8ByW_HgD1ht2TRrbVW3A0-N5hdrqBbjvY5LqqV8PcciTuQoSZPFkOjEX1YxUfjSkqILDSMxJir2kE_O79hEkBexfk-pmNIptyWwc8GSCNnjUJLe-hJ_38uavYHmMa70GYqWRhZZCxFKrnAeFTzuWeS1wpdzyDnxoxV-e1YVFykUJ6QiWEsFSJrCUqgPbrczLxshU5ULgHfjYomZx-9-zbf5_trfw5PDkuF_2jwa9LVhlEbQp-3IblmfTC78Dj-3lbFhN3yT4E_h132j6A2BERUI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFCE4tFBAhBbwAU5gdfHGjxwqBLQRVUuIEEi9bf2UgpSkZFNo_xq_rmOvNxFIcOuBPXq1tnbnm5nP63kAPBeM9UNhPUWy7mhPCkNVcJbKwHW_z01P6yTpYzkcqpOT_mgNfrW5MDGssrWJyVC7mY3_yHcZskC0oz3Fd0MOixjtD96cfaexg1Q8aW3baTQQOfKXP3H7Vu8d7qOsXzA2OPjy_gPNHQaoZbJYUCu08c6WtmCuMKG0MlhvlONSl9ZI7wTiXSnHLBKlQhjtTMlFCK8LI1kZdInz3oB1WeKmpwPr7w6Go8_LM4yoH2m7pzhFr8pyyk6TuIeXpDGSPnIctEm_u8UV1_3jeDZ5vcHm__y97sJG5trkbaMc92DNT7dgM_Nukq1avQV3Pi5r19b3wX2aklRp_WKMQ54slZMgvyfzmTmvF6T2kzFF5RxHyk5SVCadmW-N9yAplP-C1JeTSWxYZuOAJzO0zpOc9voAvl7Lmz-EzhTXegTESiN7WgoRi7ByHhQ-7VjhtcCVSsu78LKFQnXWlBypVsWlI3AqBE6VgFOpLuy08q-y-amrlfC78KpF0Or232d7_O_ZnsEtBFF1fDg82obbLOI3pWXuQGcxP_dP4Kb9sRjX86dZFwicXjecrgCiC0-U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+approximate+solutions+for+robust+semi-infinite+multi-objective+convex+symmetric+cone+optimization&rft.jtitle=Positivity+%3A+an+international+journal+devoted+to+the+theory+and+applications+of+positivity+in+analysis&rft.au=Alzalg%2C+Baha&rft.au=Oulha%2C+Amira+Achouak&rft.date=2022-11-01&rft.issn=1385-1292&rft.eissn=1572-9281&rft.volume=26&rft.issue=5&rft_id=info:doi/10.1007%2Fs11117-022-00952-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11117_022_00952_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-1292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-1292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-1292&client=summon