Decision problem for a class of univariate Pfaffian functions

We address the decision problem for sentences involving univariate functions constructed from a fixed Pfaffian function of order 1. We present a new symbolic procedure solving this problem with a computable complexity based on the computation of suitable Sturm sequences. For a general Pfaffian funct...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applicable algebra in engineering, communication and computing Ročník 35; číslo 2; s. 207 - 232
Hlavní autoři: Barbagallo, María Laura, Jeronimo, Gabriela, Sabia, Juan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2024
Springer Nature B.V
Témata:
ISSN:0938-1279, 1432-0622
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We address the decision problem for sentences involving univariate functions constructed from a fixed Pfaffian function of order 1. We present a new symbolic procedure solving this problem with a computable complexity based on the computation of suitable Sturm sequences. For a general Pfaffian function, we assume the existence of an oracle to determine the sign that a function of the class takes at a real algebraic number. As a by-product, we obtain a new oracle-free effective algorithm solving the same problem for univariate E-polynomials based on techniques that are simpler than the previous ones, and we apply it to solve a similar decision problem in the multivariate setting. Finally, we introduce a notion of Thom encoding for zeros of an E-polynomial and describe an algorithm for their computation.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0938-1279
1432-0622
DOI:10.1007/s00200-022-00545-8