Chitosan Complexes with Gallic Acid Obtained in the Solid State
In this paper, we describe mechanochemical approach as an environmentally friendly method for the functionalization of chitosan with gallic acid. Coupling with a polysaccharide is one way to stabilize antioxidants and improve their bioavailability. Since gallic acid is a solid compound with limited...
Uloženo v:
| Vydáno v: | Applied biochemistry and microbiology Ročník 61; číslo 6; s. 1216 - 1226 |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Moscow
Pleiades Publishing
01.10.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 0003-6838, 1608-3024 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper, we describe mechanochemical approach as an environmentally friendly method for the functionalization of chitosan with gallic acid. Coupling with a polysaccharide is one way to stabilize antioxidants and improve their bioavailability. Since gallic acid is a solid compound with limited solubility and a high melting point (220–240°C), it was of interest to conduct its interaction with chitosan using solid-state synthesis technique under shear deformations. The experimental conditions were selected using a pilot twin-screw extruder designed for processing solid dispersions. DSC and WAXD data were used for study of response of the system to shear deformation. The insertion of gallate groups onto the polymeric backbones was confirmed by
1
H NMR, FTIR and UV–vis analyses. It was found that gallate groups are predominantly linked to chitosan via salt bonds. Depending on the synthesis conditions, the amount of bound gallic acid was more than 600 mg per 1 g of chitosan. In contrast to the physical mixing of components, the resulting products swelled well and partially dissolved in water, and tended to form aggregates with an average size of 206 ± 36 µm in aqueous media. It was shown that the obtained compositions have moderate antibacterial activity against Gram-positive bacteria (
Bacillus subtilis
). The proposed approach is promising for the creation of biologically active solid compositions capable of being processed into final products due to ultradispersion and gelation in water with the possibility of use in the form of hydrogels, sprays, and sponge materials. |
|---|---|
| AbstractList | In this paper, we describe mechanochemical approach as an environmentally friendly method for the functionalization of chitosan with gallic acid. Coupling with a polysaccharide is one way to stabilize antioxidants and improve their bioavailability. Since gallic acid is a solid compound with limited solubility and a high melting point (220–240°C), it was of interest to conduct its interaction with chitosan using solid-state synthesis technique under shear deformations. The experimental conditions were selected using a pilot twin-screw extruder designed for processing solid dispersions. DSC and WAXD data were used for study of response of the system to shear deformation. The insertion of gallate groups onto the polymeric backbones was confirmed by
1
H NMR, FTIR and UV–vis analyses. It was found that gallate groups are predominantly linked to chitosan via salt bonds. Depending on the synthesis conditions, the amount of bound gallic acid was more than 600 mg per 1 g of chitosan. In contrast to the physical mixing of components, the resulting products swelled well and partially dissolved in water, and tended to form aggregates with an average size of 206 ± 36 µm in aqueous media. It was shown that the obtained compositions have moderate antibacterial activity against Gram-positive bacteria (
Bacillus subtilis
). The proposed approach is promising for the creation of biologically active solid compositions capable of being processed into final products due to ultradispersion and gelation in water with the possibility of use in the form of hydrogels, sprays, and sponge materials. In this paper, we describe mechanochemical approach as an environmentally friendly method for the functionalization of chitosan with gallic acid. Coupling with a polysaccharide is one way to stabilize antioxidants and improve their bioavailability. Since gallic acid is a solid compound with limited solubility and a high melting point (220–240°C), it was of interest to conduct its interaction with chitosan using solid-state synthesis technique under shear deformations. The experimental conditions were selected using a pilot twin-screw extruder designed for processing solid dispersions. DSC and WAXD data were used for study of response of the system to shear deformation. The insertion of gallate groups onto the polymeric backbones was confirmed by 1H NMR, FTIR and UV–vis analyses. It was found that gallate groups are predominantly linked to chitosan via salt bonds. Depending on the synthesis conditions, the amount of bound gallic acid was more than 600 mg per 1 g of chitosan. In contrast to the physical mixing of components, the resulting products swelled well and partially dissolved in water, and tended to form aggregates with an average size of 206 ± 36 µm in aqueous media. It was shown that the obtained compositions have moderate antibacterial activity against Gram-positive bacteria (Bacillus subtilis). The proposed approach is promising for the creation of biologically active solid compositions capable of being processed into final products due to ultradispersion and gelation in water with the possibility of use in the form of hydrogels, sprays, and sponge materials. |
| Author | Akopova, T. A. Malyk, B. V. Kurkin, T. S. Khavpachev, M. A. Popyrina, T. N. Ivanov, P. L. Svischeva, N. B. Svidchenko, E. A. Zakharevich, A. A. |
| Author_xml | – sequence: 1 givenname: T. A. surname: Akopova fullname: Akopova, T. A. email: akopova@ispm.ru organization: Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences – sequence: 2 givenname: P. L. surname: Ivanov fullname: Ivanov, P. L. organization: Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences – sequence: 3 givenname: E. A. surname: Svidchenko fullname: Svidchenko, E. A. organization: Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences – sequence: 4 givenname: T. S. surname: Kurkin fullname: Kurkin, T. S. organization: Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences – sequence: 5 givenname: T. N. surname: Popyrina fullname: Popyrina, T. N. organization: Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences – sequence: 6 givenname: N. B. surname: Svischeva fullname: Svischeva, N. B. organization: Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences – sequence: 7 givenname: A. A. surname: Zakharevich fullname: Zakharevich, A. A. organization: National Research Center Kurchatov Institute – sequence: 8 givenname: B. V. surname: Malyk fullname: Malyk, B. V. organization: Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences – sequence: 9 givenname: M. A. surname: Khavpachev fullname: Khavpachev, M. A. organization: Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences |
| BookMark | eNp1kE9LAzEQxYNUsK1-AG8Bz6v5381JyqJVKPRQPS_Z3Vmbsk1qkqJ-e1MqeBBPw8z7vTfwJmjkvAOErim5pZSLuzUhhKuSl0wqwkqpz9CYKlIWnDAxQuOjXBz1CzSJcZtXrUo9RvfVxiYfjcOV3-0H-ISIP2za4IUZBtvieWs7vGqSsQ46bB1OG8BrP-TrOpkEl-i8N0OEq585Ra-PDy_VU7FcLZ6r-bJo2YykoqU9GACtZMOIYWCkESC40oJLw3nXdllsaK8aIxquGt6pjhogWrKezDI1RTen3H3w7weIqd76Q3D5Zc3ZTGpJqFCZoieqDT7GAH29D3ZnwldNSX3sqf7TU_awkydm1r1B-E3-3_QNPSZqcg |
| Cites_doi | 10.1016/j.carbpol.2015.12.015 10.1016/S0141-8130(02)00039-9 10.1016/j.carbpol.2010.10.019 10.1016/j.ijbiomac.2013.09.032 10.1002/(SICI)1097-4628(19981031)70:5<927::AID-APP13>3.0.CO;2-Q 10.1016/j.ijbiomac.2020.09.042 10.1134/S0018143920040141 10.1016/j.carbpol.2018.12.082 10.1021/acs.jafc.6b02255 10.1016/j.ijbiomac.2020.11.153 10.1134/S0003683818050125 10.1002/actp.1985.010360805 10.1016/j.colsurfb.2020.110974 10.2174/1389557518666180330114010 10.3390/molecules28031186 10.1016/j.carbpol.2017.05.072 10.1016/j.carbpol.2014.04.098 10.1016/j.carbpol.2007.08.002 10.1016/j.lwt.2013.11.037 10.1021/jf503207s 10.3390/molecules22111976 10.1134/S1560090421050109 10.3390/polysaccharides3040049 10.1023/A:1011316227193 10.1039/D0GC00901F 10.1016/j.ijbiomac.2017.09.002 10.1134/S0006297920140084 10.1002/jbm.b.33603 10.1016/j.fpsl.2019.100401 10.1016/j.eurpolymj.2020.109984 10.3390/gels8020124 10.1016/j.foodhyd.2019.105486 10.1039/C6GC03413F 10.1016/S0032-3861(00)00713-8 10.1016/j.foodchem.2020.127605 10.1016/j.msec.2016.05.072 |
| ContentType | Journal Article |
| Copyright | Pleiades Publishing, Inc. 2025 ISSN 0003-6838, Applied Biochemistry and Microbiology, 2025, Vol. 61, No. 6, pp. 1216–1226. © Pleiades Publishing, Inc., 2025.ISSN 0003-6838, Applied Biochemistry and Microbiology, 2025. © Pleiades Publishing, Inc., 2025. Pleiades Publishing, Inc. 2025. |
| Copyright_xml | – notice: Pleiades Publishing, Inc. 2025 ISSN 0003-6838, Applied Biochemistry and Microbiology, 2025, Vol. 61, No. 6, pp. 1216–1226. © Pleiades Publishing, Inc., 2025.ISSN 0003-6838, Applied Biochemistry and Microbiology, 2025. © Pleiades Publishing, Inc., 2025. – notice: Pleiades Publishing, Inc. 2025. |
| DBID | AAYXX CITATION 7QL 7T7 8FD C1K FR3 K9. M7N P64 |
| DOI | 10.1134/S0003683825602859 |
| DatabaseName | CrossRef Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts |
| DatabaseTitle | CrossRef Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Biology |
| EISSN | 1608-3024 |
| EndPage | 1226 |
| ExternalDocumentID | 10_1134_S0003683825602859 |
| GeographicLocations | Germany Russia |
| GeographicLocations_xml | – name: Russia – name: Germany |
| GroupedDBID | -Y2 .86 .GJ .VR 06C 06D 0R~ 0VY 23M 29~ 2J2 2JN 2JY 2KM 2LR 2P1 2VQ 2~H 30V 4.4 408 409 40D 40E 53G 5GY 5VS 67N 67Z 6NX 78A 7X2 7X7 88I 8AO 8CJ 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABAKF ABBBX ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTV ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACSTC ACUHS ACZOJ ADBBV ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AETLH AEUYN AEVLU AEXYK AEZWR AFBBN AFDZB AFFHD AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHPBZ AHSBF AHWEU AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS ATHPR AVWKF AXYYD AZFZN AZQEC B-. B0M BA0 BBNVY BDATZ BENPR BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DWQXO EAD EAP EBD EBLON EBS EIOEI EJD EMK EN4 EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ KDC KOV KPH LAK LK8 LLZTM M0K M2P M4Y M7P MA- MM. N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM OVD P2P PF0 PHGZM PHGZT PQGLB PQQKQ PROAC PT4 Q2X QF4 QM4 QN7 QO4 QOR QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE S16 S1Z S27 S3A S3B SAP SBL SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC TUS TWZ U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WIP WJK WK8 YLTOR ZGI ZOVNA ~8M ~A9 AAYXX CITATION 7QL 7T7 8FD C1K FR3 K9. M7N P64 |
| ID | FETCH-LOGICAL-c270t-c1feaee965b20a2ea5a4e4369435a33dcdee9b1f6ba4b36b3d6d1ae0952f07943 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001585024100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0003-6838 |
| IngestDate | Fri Nov 28 03:12:15 EST 2025 Sat Nov 29 07:22:17 EST 2025 Thu Nov 27 01:16:27 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | chitosan solvent-free reactive extrusion gallic acid structure and properties, antibacterial activity |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c270t-c1feaee965b20a2ea5a4e4369435a33dcdee9b1f6ba4b36b3d6d1ae0952f07943 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3275950146 |
| PQPubID | 54030 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_3275950146 crossref_primary_10_1134_S0003683825602859 springer_journals_10_1134_S0003683825602859 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-01 |
| PublicationDateYYYYMMDD | 2025-10-01 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Moscow |
| PublicationPlace_xml | – name: Moscow – name: Dordrecht |
| PublicationTitle | Applied biochemistry and microbiology |
| PublicationTitleAbbrev | Appl Biochem Microbiol |
| PublicationYear | 2025 |
| Publisher | Pleiades Publishing Springer Nature B.V |
| Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
| References | J. Lamarra (8994_CR17) 2016; 67 S.F. Mason (8994_CR42) 1967 J. Li (8994_CR4) 2020; 138 P. Thangavel (8994_CR15) 2016; 104 M.E.I. Badawy (8994_CR6) 2014; 111 W. Pasanphan (8994_CR8) 2008; 72 M.L. Duarte (8994_CR38) 2002; 31 S.Z. Rogovina (8994_CR34) 1998; 70 D. Wianowska (8994_CR1) 2023; 28 W. Wang (8994_CR5) 2020; 164 A. Perona (8994_CR30) 2020; 22 T. Thanyacharoen (8994_CR10) 2018; 107 Q. Hu (8994_CR25) 2016; 64 G. Kaupp (8994_CR33) 2016 L. Rui (8994_CR20) 2017; 173 P. Guo (8994_CR21) 2016; 140 X. Sun (8994_CR12) 2014; 57 T.A. Akopova (8994_CR35) 2011 P. Butyagin (8994_CR26) 2000; 8 E. Mitsou (8994_CR16) 2020; 190 T.N. Popyrina (8994_CR40) 2021; 63 V.A. Zhorin (8994_CR27) 2020; 54 V.P. Varlamov (8994_CR7) 2020; 85 J. Liu (8994_CR23) 2013; 62 B. Imre (8994_CR29) 2019; 209 M. Marzano (8994_CR11) 2022; 8 Y.-S. Cho (8994_CR24) 2011; 83 J. Brugnerotto (8994_CR37) 2001; 42 A.I. Gamzazade (8994_CR36) 1985; 36 S. Choubey (8994_CR2) 2018; 18 X. Sun (8994_CR18) 2021; 167 S. Uspenskii (8994_CR41) 2022; 3 A.P. Lunkov (8994_CR3) 2018; 54 D.E. Crawford (8994_CR31) 2017; 6 B. Kang (8994_CR9) 2017; 22 I. Zarandona (8994_CR13) 2020; 101 A.A. Zharov (8994_CR32) 2004; 46 S. Yadav (8994_CR14) 2021; 334 M. Xie (8994_CR19) 2014; 62 P.Y. Butyagin (8994_CR28) 1999; 61 L.J. Bellamy (8994_CR39) 1964 Y. Wang (8994_CR22) 2019; 22 |
| References_xml | – volume: 140 start-page: 171 year: 2016 ident: 8994_CR21 publication-title: Carbohydr. Polym doi: 10.1016/j.carbpol.2015.12.015 – volume: 31 start-page: 1 year: 2002 ident: 8994_CR38 publication-title: Int. J. Biol. Macromol doi: 10.1016/S0141-8130(02)00039-9 – volume: 83 start-page: 1617 year: 2011 ident: 8994_CR24 publication-title: Carbohydr. Polym doi: 10.1016/j.carbpol.2010.10.019 – volume: 62 start-page: 321 year: 2013 ident: 8994_CR23 publication-title: Int. J. Biol. Macromol doi: 10.1016/j.ijbiomac.2013.09.032 – volume-title: Physical Methods in Heterocyclic Chemistry year: 1967 ident: 8994_CR42 – volume-title: Focus on Chitosan Research year: 2011 ident: 8994_CR35 – volume: 46 start-page: 268 year: 2004 ident: 8994_CR32 publication-title: Polym. Sci. Ser. B – volume: 70 start-page: 927 year: 1998 ident: 8994_CR34 publication-title: J. Appl. Polym. Sci doi: 10.1002/(SICI)1097-4628(19981031)70:5<927::AID-APP13>3.0.CO;2-Q – volume: 164 start-page: 4532 year: 2020 ident: 8994_CR5 publication-title: Int. J. Biol. Macromol doi: 10.1016/j.ijbiomac.2020.09.042 – volume: 54 start-page: 263 year: 2020 ident: 8994_CR27 publication-title: High Energy Chem doi: 10.1134/S0018143920040141 – volume: 209 start-page: 20 year: 2019 ident: 8994_CR29 publication-title: Carbohydr. Polym doi: 10.1016/j.carbpol.2018.12.082 – volume: 64 start-page: 5893 year: 2016 ident: 8994_CR25 publication-title: J. Agri. Food Chem doi: 10.1021/acs.jafc.6b02255 – volume: 167 start-page: 10 year: 2021 ident: 8994_CR18 publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2020.11.153 – volume: 54 start-page: 449 year: 2018 ident: 8994_CR3 publication-title: Appl. Biochem. Microbiol doi: 10.1134/S0003683818050125 – volume: 36 start-page: 420 year: 1985 ident: 8994_CR36 publication-title: Acta Polym. doi: 10.1002/actp.1985.010360805 – volume: 190 start-page: 110974 year: 2020 ident: 8994_CR16 publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2020.110974 – volume: 18 start-page: 1283 year: 2018 ident: 8994_CR2 publication-title: Mini Rev. Med. Chem doi: 10.2174/1389557518666180330114010 – volume: 28 start-page: 1186 year: 2023 ident: 8994_CR1 publication-title: Molecules doi: 10.3390/molecules28031186 – volume: 173 start-page: 473 year: 2017 ident: 8994_CR20 publication-title: Carbohydr. Polym doi: 10.1016/j.carbpol.2017.05.072 – volume: 111 start-page: 670 year: 2014 ident: 8994_CR6 publication-title: Carbohydr. Polym doi: 10.1016/j.carbpol.2014.04.098 – volume: 72 start-page: 169 year: 2008 ident: 8994_CR8 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2007.08.002 – volume: 57 start-page: 83 year: 2014 ident: 8994_CR12 publication-title: LWT—Food Sci. Technol doi: 10.1016/j.lwt.2013.11.037 – volume: 62 start-page: 9128 year: 2014 ident: 8994_CR19 publication-title: J. Agri. Food Chem doi: 10.1021/jf503207s – volume: 22 start-page: 1976 year: 2017 ident: 8994_CR9 publication-title: Molecules doi: 10.3390/molecules22111976 – volume: 63 start-page: 536 year: 2021 ident: 8994_CR40 publication-title: Polym. Sci. B doi: 10.1134/S1560090421050109 – volume: 3 start-page: 831 year: 2022 ident: 8994_CR41 publication-title: Polysaccharides doi: 10.3390/polysaccharides3040049 – volume: 8 start-page: 205 year: 2000 ident: 8994_CR26 publication-title: J. Mater. Synth. Process. doi: 10.1023/A:1011316227193 – volume: 22 start-page: 5559 year: 2020 ident: 8994_CR30 publication-title: Green Chem doi: 10.1039/D0GC00901F – volume: 107 start-page: 363 year: 2018 ident: 8994_CR10 publication-title: Int. J. Biol. Macromol doi: 10.1016/j.ijbiomac.2017.09.002 – volume: 85 start-page: S154 year: 2020 ident: 8994_CR7 publication-title: Biochem. doi: 10.1134/S0006297920140084 – volume-title: Encyclopedia of Physical Organic Chemistry year: 2016 ident: 8994_CR33 – volume: 104 start-page: 750 year: 2016 ident: 8994_CR15 publication-title: J. Biomed. Mater. Res. B: Applied Biomaterials doi: 10.1002/jbm.b.33603 – volume-title: The Infra-Red Spectra of Complex Molecules year: 1964 ident: 8994_CR39 – volume: 61 start-page: 537 year: 1999 ident: 8994_CR28 publication-title: Colloid J. – volume: 22 start-page: 100401 year: 2019 ident: 8994_CR22 publication-title: Food Packag. Shelf Life doi: 10.1016/j.fpsl.2019.100401 – volume: 138 start-page: 109984 year: 2020 ident: 8994_CR4 publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2020.109984 – volume: 8 start-page: 124 year: 2022 ident: 8994_CR11 publication-title: Gels doi: 10.3390/gels8020124 – volume: 101 start-page: 105486 year: 2020 ident: 8994_CR13 publication-title: Food Hydrocoll doi: 10.1016/j.foodhyd.2019.105486 – volume: 6 start-page: 1507 year: 2017 ident: 8994_CR31 publication-title: Green Chem. doi: 10.1039/C6GC03413F – volume: 42 start-page: 3569 year: 2001 ident: 8994_CR37 publication-title: Polymer doi: 10.1016/S0032-3861(00)00713-8 – volume: 334 start-page: 127605 year: 2021 ident: 8994_CR14 publication-title: Food Chem doi: 10.1016/j.foodchem.2020.127605 – volume: 67 start-page: 717 year: 2016 ident: 8994_CR17 publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2016.05.072 |
| SSID | ssj0009689 |
| Score | 2.3672771 |
| Snippet | In this paper, we describe mechanochemical approach as an environmentally friendly method for the functionalization of chitosan with gallic acid. Coupling with... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1216 |
| SubjectTerms | Acids Antibacterial activity Aqueous solutions Bacteria Bioavailability Biochemistry Biological activity Biomedical and Life Sciences Chitosan Composition Ethanol Free radicals Gallic acid Gram-positive bacteria Life Sciences Medical Microbiology Melting point Melting points Microbiology Microorganisms Molecular weight Nanoparticles NMR Nuclear magnetic resonance Polysaccharides Shear deformation Solid state Sprays Synthesis Twin screw extruders Viscosity |
| Title | Chitosan Complexes with Gallic Acid Obtained in the Solid State |
| URI | https://link.springer.com/article/10.1134/S0003683825602859 https://www.proquest.com/docview/3275950146 |
| Volume | 61 |
| WOSCitedRecordID | wos001585024100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Contemporary customDbUrl: eissn: 1608-3024 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009689 issn: 0003-6838 databaseCode: RSV dateStart: 20000101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50VfTiY1VcX-TgSSm0SZq0J1kWVw-yiquyt5JXsVC6sl1F_71Jt2XxddBrJoQwZGa-ZDLzAZxI5lOaSuyRWCqPKp9YP2gCj3EcCRueiBBVofA1Hwyi0Si-reu4y-a3e5OSrDz1jHeEuppe620jErkg7dquLcKSjXaRs8a74eO80y6L4oYmz02vU5k_LvE5GM0R5pekaBVr-hv_2uUmrNfQEnVnZ2ELFkzRhpUZ2eR7G1Z7DbfbNpz3nqwll6JAzh_k5s2UyL3IokuR55lCXZVpdCPds4HRKCuQhYloOM7taIVOd-Chf3Hfu_JqKgVPYe5PPRWkRhgTs1BiX2AjQkENJSy2aEkQopW2QhmkTAoqCZNEMx0IY_EXTn3XQ24XWsW4MHuAmLQCJkOqiKGCq8j4KSc8UDrQRvO0A6eNTpPnWceMpLppEJp8004HDhutJ7XxlAnBPIxdvpN14KzR8lz862L7f5p9AGvYcflWH_MOoTWdvJgjWFav06ycHFdn6gNnyMNm |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7oVOaLl6k4nZoHn5RC26Rp-yRjOCfOKW6KbyW34qB0sk7Rf2_SC8Pbg77mhBAOyTlfci4fwDGnNiExdy0ccmERYWNtB5VjUd8NmHZPmLG8ULjvDwbB42N4W9ZxZ1W2exWSzC11wTtCTE2vtrYBDoyTNm3XFmGJaIdl8vjuhg_zTrs0CCuaPDO9DGX-uMRnZzRHmF-Cormv6a7_a5cbsFZCS9QuzsImLKi0ASsF2eR7A-qditttC846T_omZyxFxh4k6k1lyPzIoguWJGOB2mIs0Q033wZKonGKNExEw0miR3N0ug333fNRp2eVVAqWcH17ZgknVkypkHrctZmrmMeIIpiGGi0xjKWQWsidmHJGOKYcSyodpjT-cmPb9JDbgVo6SdUuIMq1gHKPCKwI80Wg7NjHviOkI5X04yacVDqNnouOGVH-0sAk-qadJrQqrUfl5cki7PpeaOKdtAmnlZbn4l8X2_vT7COo90bX_ah_Objah1XX8PrmSXotqM2mL-oAlsXrbJxND_Pz9QGbEMZK |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60Pi8-qmK1ag6elMXdTZrdPUmpVsVSC1XxtuS1uLBsS7eK_nuTfVB8HcRrJoQwSWa-ZDLzARxzahMScdfCARcWETbWdlA5FvVcn2n3hBnLE4V7Xr_vPz0Fg5LnNKt-u1chySKnwVRpSqdnYxmVHCTE5Pdqy-tj3zhsU4JtHhaI4Qwy1_Xh46zqLvWDijLPdC_Dmj8O8dkxzdDmlwBp7ne66_-e8QaslZATtYs9sglzKq3DUkFC-V6HlU7F-bYF551nfcIzliJjJxL1pjJkXmrRFUuSWKC2iCW64-Y5QUkUp0jDRzQcJbo1R63b8NC9vO9cWyXFgiVcz55awokUUyqgLe7azFWsxYgimAYaRTGMpZBayJ2IckY4phxLKh2mNC5zI9vUltuBWjpK1S4gyrWA8hYRWBHmCV_ZkYc9R0hHKulFDTip9BuOi0oaYX4DwST8pp0GNKsVCMtDlYXY9VqBiYPSBpxWGp-Jfx1s70-9j2B5cNENezf9231YdQ3db_53rwm16eRFHcCieJ3G2eQw32ofg5LPLg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chitosan+Complexes+with+Gallic+Acid+Obtained+in+the+Solid+State&rft.jtitle=Applied+biochemistry+and+microbiology&rft.au=Akopova%2C+T.+A&rft.au=Ivanov%2C+P.+L&rft.au=Svidchenko%2C+E.+A&rft.au=Kurkin%2C+T.+S&rft.date=2025-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0003-6838&rft.eissn=1608-3024&rft.volume=61&rft.issue=6&rft.spage=1216&rft.epage=1226&rft_id=info:doi/10.1134%2FS0003683825602859&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6838&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6838&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6838&client=summon |