Chitosan Complexes with Gallic Acid Obtained in the Solid State

In this paper, we describe mechanochemical approach as an environmentally friendly method for the functionalization of chitosan with gallic acid. Coupling with a polysaccharide is one way to stabilize antioxidants and improve their bioavailability. Since gallic acid is a solid compound with limited...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied biochemistry and microbiology Ročník 61; číslo 6; s. 1216 - 1226
Hlavní autoři: Akopova, T. A., Ivanov, P. L., Svidchenko, E. A., Kurkin, T. S., Popyrina, T. N., Svischeva, N. B., Zakharevich, A. A., Malyk, B. V., Khavpachev, M. A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Moscow Pleiades Publishing 01.10.2025
Springer Nature B.V
Témata:
ISSN:0003-6838, 1608-3024
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we describe mechanochemical approach as an environmentally friendly method for the functionalization of chitosan with gallic acid. Coupling with a polysaccharide is one way to stabilize antioxidants and improve their bioavailability. Since gallic acid is a solid compound with limited solubility and a high melting point (220–240°C), it was of interest to conduct its interaction with chitosan using solid-state synthesis technique under shear deformations. The experimental conditions were selected using a pilot twin-screw extruder designed for processing solid dispersions. DSC and WAXD data were used for study of response of the system to shear deformation. The insertion of gallate groups onto the polymeric backbones was confirmed by 1 H NMR, FTIR and UV–vis analyses. It was found that gallate groups are predominantly linked to chitosan via salt bonds. Depending on the synthesis conditions, the amount of bound gallic acid was more than 600 mg per 1 g of chitosan. In contrast to the physical mixing of components, the resulting products swelled well and partially dissolved in water, and tended to form aggregates with an average size of 206 ± 36 µm in aqueous media. It was shown that the obtained compositions have moderate antibacterial activity against Gram-positive bacteria ( Bacillus subtilis ). The proposed approach is promising for the creation of biologically active solid compositions capable of being processed into final products due to ultradispersion and gelation in water with the possibility of use in the form of hydrogels, sprays, and sponge materials.
AbstractList In this paper, we describe mechanochemical approach as an environmentally friendly method for the functionalization of chitosan with gallic acid. Coupling with a polysaccharide is one way to stabilize antioxidants and improve their bioavailability. Since gallic acid is a solid compound with limited solubility and a high melting point (220–240°C), it was of interest to conduct its interaction with chitosan using solid-state synthesis technique under shear deformations. The experimental conditions were selected using a pilot twin-screw extruder designed for processing solid dispersions. DSC and WAXD data were used for study of response of the system to shear deformation. The insertion of gallate groups onto the polymeric backbones was confirmed by 1 H NMR, FTIR and UV–vis analyses. It was found that gallate groups are predominantly linked to chitosan via salt bonds. Depending on the synthesis conditions, the amount of bound gallic acid was more than 600 mg per 1 g of chitosan. In contrast to the physical mixing of components, the resulting products swelled well and partially dissolved in water, and tended to form aggregates with an average size of 206 ± 36 µm in aqueous media. It was shown that the obtained compositions have moderate antibacterial activity against Gram-positive bacteria ( Bacillus subtilis ). The proposed approach is promising for the creation of biologically active solid compositions capable of being processed into final products due to ultradispersion and gelation in water with the possibility of use in the form of hydrogels, sprays, and sponge materials.
In this paper, we describe mechanochemical approach as an environmentally friendly method for the functionalization of chitosan with gallic acid. Coupling with a polysaccharide is one way to stabilize antioxidants and improve their bioavailability. Since gallic acid is a solid compound with limited solubility and a high melting point (220–240°C), it was of interest to conduct its interaction with chitosan using solid-state synthesis technique under shear deformations. The experimental conditions were selected using a pilot twin-screw extruder designed for processing solid dispersions. DSC and WAXD data were used for study of response of the system to shear deformation. The insertion of gallate groups onto the polymeric backbones was confirmed by 1H NMR, FTIR and UV–vis analyses. It was found that gallate groups are predominantly linked to chitosan via salt bonds. Depending on the synthesis conditions, the amount of bound gallic acid was more than 600 mg per 1 g of chitosan. In contrast to the physical mixing of components, the resulting products swelled well and partially dissolved in water, and tended to form aggregates with an average size of 206 ± 36 µm in aqueous media. It was shown that the obtained compositions have moderate antibacterial activity against Gram-positive bacteria (Bacillus subtilis). The proposed approach is promising for the creation of biologically active solid compositions capable of being processed into final products due to ultradispersion and gelation in water with the possibility of use in the form of hydrogels, sprays, and sponge materials.
Author Akopova, T. A.
Malyk, B. V.
Kurkin, T. S.
Khavpachev, M. A.
Popyrina, T. N.
Ivanov, P. L.
Svischeva, N. B.
Svidchenko, E. A.
Zakharevich, A. A.
Author_xml – sequence: 1
  givenname: T. A.
  surname: Akopova
  fullname: Akopova, T. A.
  email: akopova@ispm.ru
  organization: Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences
– sequence: 2
  givenname: P. L.
  surname: Ivanov
  fullname: Ivanov, P. L.
  organization: Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences
– sequence: 3
  givenname: E. A.
  surname: Svidchenko
  fullname: Svidchenko, E. A.
  organization: Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences
– sequence: 4
  givenname: T. S.
  surname: Kurkin
  fullname: Kurkin, T. S.
  organization: Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences
– sequence: 5
  givenname: T. N.
  surname: Popyrina
  fullname: Popyrina, T. N.
  organization: Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences
– sequence: 6
  givenname: N. B.
  surname: Svischeva
  fullname: Svischeva, N. B.
  organization: Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences
– sequence: 7
  givenname: A. A.
  surname: Zakharevich
  fullname: Zakharevich, A. A.
  organization: National Research Center Kurchatov Institute
– sequence: 8
  givenname: B. V.
  surname: Malyk
  fullname: Malyk, B. V.
  organization: Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences
– sequence: 9
  givenname: M. A.
  surname: Khavpachev
  fullname: Khavpachev, M. A.
  organization: Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences
BookMark eNp1kE9LAzEQxYNUsK1-AG8Bz6v5381JyqJVKPRQPS_Z3Vmbsk1qkqJ-e1MqeBBPw8z7vTfwJmjkvAOErim5pZSLuzUhhKuSl0wqwkqpz9CYKlIWnDAxQuOjXBz1CzSJcZtXrUo9RvfVxiYfjcOV3-0H-ISIP2za4IUZBtvieWs7vGqSsQ46bB1OG8BrP-TrOpkEl-i8N0OEq585Ra-PDy_VU7FcLZ6r-bJo2YykoqU9GACtZMOIYWCkESC40oJLw3nXdllsaK8aIxquGt6pjhogWrKezDI1RTen3H3w7weIqd76Q3D5Zc3ZTGpJqFCZoieqDT7GAH29D3ZnwldNSX3sqf7TU_awkydm1r1B-E3-3_QNPSZqcg
Cites_doi 10.1016/j.carbpol.2015.12.015
10.1016/S0141-8130(02)00039-9
10.1016/j.carbpol.2010.10.019
10.1016/j.ijbiomac.2013.09.032
10.1002/(SICI)1097-4628(19981031)70:5<927::AID-APP13>3.0.CO;2-Q
10.1016/j.ijbiomac.2020.09.042
10.1134/S0018143920040141
10.1016/j.carbpol.2018.12.082
10.1021/acs.jafc.6b02255
10.1016/j.ijbiomac.2020.11.153
10.1134/S0003683818050125
10.1002/actp.1985.010360805
10.1016/j.colsurfb.2020.110974
10.2174/1389557518666180330114010
10.3390/molecules28031186
10.1016/j.carbpol.2017.05.072
10.1016/j.carbpol.2014.04.098
10.1016/j.carbpol.2007.08.002
10.1016/j.lwt.2013.11.037
10.1021/jf503207s
10.3390/molecules22111976
10.1134/S1560090421050109
10.3390/polysaccharides3040049
10.1023/A:1011316227193
10.1039/D0GC00901F
10.1016/j.ijbiomac.2017.09.002
10.1134/S0006297920140084
10.1002/jbm.b.33603
10.1016/j.fpsl.2019.100401
10.1016/j.eurpolymj.2020.109984
10.3390/gels8020124
10.1016/j.foodhyd.2019.105486
10.1039/C6GC03413F
10.1016/S0032-3861(00)00713-8
10.1016/j.foodchem.2020.127605
10.1016/j.msec.2016.05.072
ContentType Journal Article
Copyright Pleiades Publishing, Inc. 2025 ISSN 0003-6838, Applied Biochemistry and Microbiology, 2025, Vol. 61, No. 6, pp. 1216–1226. © Pleiades Publishing, Inc., 2025.ISSN 0003-6838, Applied Biochemistry and Microbiology, 2025. © Pleiades Publishing, Inc., 2025.
Pleiades Publishing, Inc. 2025.
Copyright_xml – notice: Pleiades Publishing, Inc. 2025 ISSN 0003-6838, Applied Biochemistry and Microbiology, 2025, Vol. 61, No. 6, pp. 1216–1226. © Pleiades Publishing, Inc., 2025.ISSN 0003-6838, Applied Biochemistry and Microbiology, 2025. © Pleiades Publishing, Inc., 2025.
– notice: Pleiades Publishing, Inc. 2025.
DBID AAYXX
CITATION
7QL
7T7
8FD
C1K
FR3
K9.
M7N
P64
DOI 10.1134/S0003683825602859
DatabaseName CrossRef
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1608-3024
EndPage 1226
ExternalDocumentID 10_1134_S0003683825602859
GeographicLocations Germany
Russia
GeographicLocations_xml – name: Russia
– name: Germany
GroupedDBID -Y2
.86
.GJ
.VR
06C
06D
0R~
0VY
23M
29~
2J2
2JN
2JY
2KM
2LR
2P1
2VQ
2~H
30V
4.4
408
409
40D
40E
53G
5GY
5VS
67N
67Z
6NX
78A
7X2
7X7
88I
8AO
8CJ
8FE
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABBBX
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACSTC
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEUYN
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFFHD
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHPBZ
AHSBF
AHWEU
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
ATHPR
AVWKF
AXYYD
AZFZN
AZQEC
B-.
B0M
BA0
BBNVY
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EBD
EBLON
EBS
EIOEI
EJD
EMK
EN4
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LAK
LK8
LLZTM
M0K
M2P
M4Y
M7P
MA-
MM.
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
OVD
P2P
PF0
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PT4
Q2X
QF4
QM4
QN7
QO4
QOR
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S27
S3A
S3B
SAP
SBL
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
TWZ
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WIP
WJK
WK8
YLTOR
ZGI
ZOVNA
~8M
~A9
AAYXX
CITATION
7QL
7T7
8FD
C1K
FR3
K9.
M7N
P64
ID FETCH-LOGICAL-c270t-c1feaee965b20a2ea5a4e4369435a33dcdee9b1f6ba4b36b3d6d1ae0952f07943
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001585024100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0003-6838
IngestDate Fri Nov 28 03:12:15 EST 2025
Sat Nov 29 07:22:17 EST 2025
Thu Nov 27 01:16:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords chitosan
solvent-free reactive extrusion
gallic acid
structure and properties, antibacterial activity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-c1feaee965b20a2ea5a4e4369435a33dcdee9b1f6ba4b36b3d6d1ae0952f07943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3275950146
PQPubID 54030
PageCount 11
ParticipantIDs proquest_journals_3275950146
crossref_primary_10_1134_S0003683825602859
springer_journals_10_1134_S0003683825602859
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: Dordrecht
PublicationTitle Applied biochemistry and microbiology
PublicationTitleAbbrev Appl Biochem Microbiol
PublicationYear 2025
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References J. Lamarra (8994_CR17) 2016; 67
S.F. Mason (8994_CR42) 1967
J. Li (8994_CR4) 2020; 138
P. Thangavel (8994_CR15) 2016; 104
M.E.I. Badawy (8994_CR6) 2014; 111
W. Pasanphan (8994_CR8) 2008; 72
M.L. Duarte (8994_CR38) 2002; 31
S.Z. Rogovina (8994_CR34) 1998; 70
D. Wianowska (8994_CR1) 2023; 28
W. Wang (8994_CR5) 2020; 164
A. Perona (8994_CR30) 2020; 22
T. Thanyacharoen (8994_CR10) 2018; 107
Q. Hu (8994_CR25) 2016; 64
G. Kaupp (8994_CR33) 2016
L. Rui (8994_CR20) 2017; 173
P. Guo (8994_CR21) 2016; 140
X. Sun (8994_CR12) 2014; 57
T.A. Akopova (8994_CR35) 2011
P. Butyagin (8994_CR26) 2000; 8
E. Mitsou (8994_CR16) 2020; 190
T.N. Popyrina (8994_CR40) 2021; 63
V.A. Zhorin (8994_CR27) 2020; 54
V.P. Varlamov (8994_CR7) 2020; 85
J. Liu (8994_CR23) 2013; 62
B. Imre (8994_CR29) 2019; 209
M. Marzano (8994_CR11) 2022; 8
Y.-S. Cho (8994_CR24) 2011; 83
J. Brugnerotto (8994_CR37) 2001; 42
A.I. Gamzazade (8994_CR36) 1985; 36
S. Choubey (8994_CR2) 2018; 18
X. Sun (8994_CR18) 2021; 167
S. Uspenskii (8994_CR41) 2022; 3
A.P. Lunkov (8994_CR3) 2018; 54
D.E. Crawford (8994_CR31) 2017; 6
B. Kang (8994_CR9) 2017; 22
I. Zarandona (8994_CR13) 2020; 101
A.A. Zharov (8994_CR32) 2004; 46
S. Yadav (8994_CR14) 2021; 334
M. Xie (8994_CR19) 2014; 62
P.Y. Butyagin (8994_CR28) 1999; 61
L.J. Bellamy (8994_CR39) 1964
Y. Wang (8994_CR22) 2019; 22
References_xml – volume: 140
  start-page: 171
  year: 2016
  ident: 8994_CR21
  publication-title: Carbohydr. Polym
  doi: 10.1016/j.carbpol.2015.12.015
– volume: 31
  start-page: 1
  year: 2002
  ident: 8994_CR38
  publication-title: Int. J. Biol. Macromol
  doi: 10.1016/S0141-8130(02)00039-9
– volume: 83
  start-page: 1617
  year: 2011
  ident: 8994_CR24
  publication-title: Carbohydr. Polym
  doi: 10.1016/j.carbpol.2010.10.019
– volume: 62
  start-page: 321
  year: 2013
  ident: 8994_CR23
  publication-title: Int. J. Biol. Macromol
  doi: 10.1016/j.ijbiomac.2013.09.032
– volume-title: Physical Methods in Heterocyclic Chemistry
  year: 1967
  ident: 8994_CR42
– volume-title: Focus on Chitosan Research
  year: 2011
  ident: 8994_CR35
– volume: 46
  start-page: 268
  year: 2004
  ident: 8994_CR32
  publication-title: Polym. Sci. Ser. B
– volume: 70
  start-page: 927
  year: 1998
  ident: 8994_CR34
  publication-title: J. Appl. Polym. Sci
  doi: 10.1002/(SICI)1097-4628(19981031)70:5<927::AID-APP13>3.0.CO;2-Q
– volume: 164
  start-page: 4532
  year: 2020
  ident: 8994_CR5
  publication-title: Int. J. Biol. Macromol
  doi: 10.1016/j.ijbiomac.2020.09.042
– volume: 54
  start-page: 263
  year: 2020
  ident: 8994_CR27
  publication-title: High Energy Chem
  doi: 10.1134/S0018143920040141
– volume: 209
  start-page: 20
  year: 2019
  ident: 8994_CR29
  publication-title: Carbohydr. Polym
  doi: 10.1016/j.carbpol.2018.12.082
– volume: 64
  start-page: 5893
  year: 2016
  ident: 8994_CR25
  publication-title: J. Agri. Food Chem
  doi: 10.1021/acs.jafc.6b02255
– volume: 167
  start-page: 10
  year: 2021
  ident: 8994_CR18
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2020.11.153
– volume: 54
  start-page: 449
  year: 2018
  ident: 8994_CR3
  publication-title: Appl. Biochem. Microbiol
  doi: 10.1134/S0003683818050125
– volume: 36
  start-page: 420
  year: 1985
  ident: 8994_CR36
  publication-title: Acta Polym.
  doi: 10.1002/actp.1985.010360805
– volume: 190
  start-page: 110974
  year: 2020
  ident: 8994_CR16
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2020.110974
– volume: 18
  start-page: 1283
  year: 2018
  ident: 8994_CR2
  publication-title: Mini Rev. Med. Chem
  doi: 10.2174/1389557518666180330114010
– volume: 28
  start-page: 1186
  year: 2023
  ident: 8994_CR1
  publication-title: Molecules
  doi: 10.3390/molecules28031186
– volume: 173
  start-page: 473
  year: 2017
  ident: 8994_CR20
  publication-title: Carbohydr. Polym
  doi: 10.1016/j.carbpol.2017.05.072
– volume: 111
  start-page: 670
  year: 2014
  ident: 8994_CR6
  publication-title: Carbohydr. Polym
  doi: 10.1016/j.carbpol.2014.04.098
– volume: 72
  start-page: 169
  year: 2008
  ident: 8994_CR8
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2007.08.002
– volume: 57
  start-page: 83
  year: 2014
  ident: 8994_CR12
  publication-title: LWT—Food Sci. Technol
  doi: 10.1016/j.lwt.2013.11.037
– volume: 62
  start-page: 9128
  year: 2014
  ident: 8994_CR19
  publication-title: J. Agri. Food Chem
  doi: 10.1021/jf503207s
– volume: 22
  start-page: 1976
  year: 2017
  ident: 8994_CR9
  publication-title: Molecules
  doi: 10.3390/molecules22111976
– volume: 63
  start-page: 536
  year: 2021
  ident: 8994_CR40
  publication-title: Polym. Sci. B
  doi: 10.1134/S1560090421050109
– volume: 3
  start-page: 831
  year: 2022
  ident: 8994_CR41
  publication-title: Polysaccharides
  doi: 10.3390/polysaccharides3040049
– volume: 8
  start-page: 205
  year: 2000
  ident: 8994_CR26
  publication-title: J. Mater. Synth. Process.
  doi: 10.1023/A:1011316227193
– volume: 22
  start-page: 5559
  year: 2020
  ident: 8994_CR30
  publication-title: Green Chem
  doi: 10.1039/D0GC00901F
– volume: 107
  start-page: 363
  year: 2018
  ident: 8994_CR10
  publication-title: Int. J. Biol. Macromol
  doi: 10.1016/j.ijbiomac.2017.09.002
– volume: 85
  start-page: S154
  year: 2020
  ident: 8994_CR7
  publication-title: Biochem.
  doi: 10.1134/S0006297920140084
– volume-title: Encyclopedia of Physical Organic Chemistry
  year: 2016
  ident: 8994_CR33
– volume: 104
  start-page: 750
  year: 2016
  ident: 8994_CR15
  publication-title: J. Biomed. Mater. Res. B: Applied Biomaterials
  doi: 10.1002/jbm.b.33603
– volume-title: The Infra-Red Spectra of Complex Molecules
  year: 1964
  ident: 8994_CR39
– volume: 61
  start-page: 537
  year: 1999
  ident: 8994_CR28
  publication-title: Colloid J.
– volume: 22
  start-page: 100401
  year: 2019
  ident: 8994_CR22
  publication-title: Food Packag. Shelf Life
  doi: 10.1016/j.fpsl.2019.100401
– volume: 138
  start-page: 109984
  year: 2020
  ident: 8994_CR4
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2020.109984
– volume: 8
  start-page: 124
  year: 2022
  ident: 8994_CR11
  publication-title: Gels
  doi: 10.3390/gels8020124
– volume: 101
  start-page: 105486
  year: 2020
  ident: 8994_CR13
  publication-title: Food Hydrocoll
  doi: 10.1016/j.foodhyd.2019.105486
– volume: 6
  start-page: 1507
  year: 2017
  ident: 8994_CR31
  publication-title: Green Chem.
  doi: 10.1039/C6GC03413F
– volume: 42
  start-page: 3569
  year: 2001
  ident: 8994_CR37
  publication-title: Polymer
  doi: 10.1016/S0032-3861(00)00713-8
– volume: 334
  start-page: 127605
  year: 2021
  ident: 8994_CR14
  publication-title: Food Chem
  doi: 10.1016/j.foodchem.2020.127605
– volume: 67
  start-page: 717
  year: 2016
  ident: 8994_CR17
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2016.05.072
SSID ssj0009689
Score 2.3672771
Snippet In this paper, we describe mechanochemical approach as an environmentally friendly method for the functionalization of chitosan with gallic acid. Coupling with...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 1216
SubjectTerms Acids
Antibacterial activity
Aqueous solutions
Bacteria
Bioavailability
Biochemistry
Biological activity
Biomedical and Life Sciences
Chitosan
Composition
Ethanol
Free radicals
Gallic acid
Gram-positive bacteria
Life Sciences
Medical Microbiology
Melting point
Melting points
Microbiology
Microorganisms
Molecular weight
Nanoparticles
NMR
Nuclear magnetic resonance
Polysaccharides
Shear deformation
Solid state
Sprays
Synthesis
Twin screw extruders
Viscosity
Title Chitosan Complexes with Gallic Acid Obtained in the Solid State
URI https://link.springer.com/article/10.1134/S0003683825602859
https://www.proquest.com/docview/3275950146
Volume 61
WOSCitedRecordID wos001585024100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 1608-3024
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009689
  issn: 0003-6838
  databaseCode: RSV
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50VfTiY1VcX-TgSSm0SZq0J1kWVw-yiquyt5JXsVC6sl1F_71Jt2XxddBrJoQwZGa-ZDLzAZxI5lOaSuyRWCqPKp9YP2gCj3EcCRueiBBVofA1Hwyi0Si-reu4y-a3e5OSrDz1jHeEuppe620jErkg7dquLcKSjXaRs8a74eO80y6L4oYmz02vU5k_LvE5GM0R5pekaBVr-hv_2uUmrNfQEnVnZ2ELFkzRhpUZ2eR7G1Z7DbfbNpz3nqwll6JAzh_k5s2UyL3IokuR55lCXZVpdCPds4HRKCuQhYloOM7taIVOd-Chf3Hfu_JqKgVPYe5PPRWkRhgTs1BiX2AjQkENJSy2aEkQopW2QhmkTAoqCZNEMx0IY_EXTn3XQ24XWsW4MHuAmLQCJkOqiKGCq8j4KSc8UDrQRvO0A6eNTpPnWceMpLppEJp8004HDhutJ7XxlAnBPIxdvpN14KzR8lz862L7f5p9AGvYcflWH_MOoTWdvJgjWFav06ycHFdn6gNnyMNm
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7oVOaLl6k4nZoHn5RC26Rp-yRjOCfOKW6KbyW34qB0sk7Rf2_SC8Pbg77mhBAOyTlfci4fwDGnNiExdy0ccmERYWNtB5VjUd8NmHZPmLG8ULjvDwbB42N4W9ZxZ1W2exWSzC11wTtCTE2vtrYBDoyTNm3XFmGJaIdl8vjuhg_zTrs0CCuaPDO9DGX-uMRnZzRHmF-Cormv6a7_a5cbsFZCS9QuzsImLKi0ASsF2eR7A-qditttC846T_omZyxFxh4k6k1lyPzIoguWJGOB2mIs0Q033wZKonGKNExEw0miR3N0ug333fNRp2eVVAqWcH17ZgknVkypkHrctZmrmMeIIpiGGi0xjKWQWsidmHJGOKYcSyodpjT-cmPb9JDbgVo6SdUuIMq1gHKPCKwI80Wg7NjHviOkI5X04yacVDqNnouOGVH-0sAk-qadJrQqrUfl5cki7PpeaOKdtAmnlZbn4l8X2_vT7COo90bX_ah_Objah1XX8PrmSXotqM2mL-oAlsXrbJxND_Pz9QGbEMZK
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60Pi8-qmK1ag6elMXdTZrdPUmpVsVSC1XxtuS1uLBsS7eK_nuTfVB8HcRrJoQwSWa-ZDLzARxzahMScdfCARcWETbWdlA5FvVcn2n3hBnLE4V7Xr_vPz0Fg5LnNKt-u1chySKnwVRpSqdnYxmVHCTE5Pdqy-tj3zhsU4JtHhaI4Qwy1_Xh46zqLvWDijLPdC_Dmj8O8dkxzdDmlwBp7ne66_-e8QaslZATtYs9sglzKq3DUkFC-V6HlU7F-bYF551nfcIzliJjJxL1pjJkXmrRFUuSWKC2iCW64-Y5QUkUp0jDRzQcJbo1R63b8NC9vO9cWyXFgiVcz55awokUUyqgLe7azFWsxYgimAYaRTGMpZBayJ2IckY4phxLKh2mNC5zI9vUltuBWjpK1S4gyrWA8hYRWBHmCV_ZkYc9R0hHKulFDTip9BuOi0oaYX4DwST8pp0GNKsVCMtDlYXY9VqBiYPSBpxWGp-Jfx1s70-9j2B5cNENezf9231YdQ3db_53rwm16eRFHcCieJ3G2eQw32ofg5LPLg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chitosan+Complexes+with+Gallic+Acid+Obtained+in+the+Solid+State&rft.jtitle=Applied+biochemistry+and+microbiology&rft.au=Akopova%2C+T.+A&rft.au=Ivanov%2C+P.+L&rft.au=Svidchenko%2C+E.+A&rft.au=Kurkin%2C+T.+S&rft.date=2025-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0003-6838&rft.eissn=1608-3024&rft.volume=61&rft.issue=6&rft.spage=1216&rft.epage=1226&rft_id=info:doi/10.1134%2FS0003683825602859&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6838&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6838&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6838&client=summon