A Feasible Trust-Region Sequential Quadratic Programming Algorithm
An algorithm for smooth nonlinear constrained optimization problems is described, in which a sequence of feasible iterates is generated by solving a trust-region sequential quadratic programming (SQP) subproblem at each iteration and by perturbing the resulting step to retain feasibility of each ite...
Uloženo v:
| Vydáno v: | SIAM journal on optimization Ročník 14; číslo 4; s. 1074 - 1105 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Philadelphia
Society for Industrial and Applied Mathematics
01.01.2004
|
| Témata: | |
| ISSN: | 1052-6234, 1095-7189 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | An algorithm for smooth nonlinear constrained optimization problems is described, in which a sequence of feasible iterates is generated by solving a trust-region sequential quadratic programming (SQP) subproblem at each iteration and by perturbing the resulting step to retain feasibility of each iterate. By retaining feasibility, the algorithm avoids several complications of other trust-region SQP approaches: the objective function can be used as a merit function, and the SQP subproblems are feasible for all choices of the trust-region radius. Global convergence properties are analyzed under various assumptions on the approximate Hessian. Under additional assumptions, superlinear convergence to points satisfying second-order sufficient conditions is proved. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
| ISSN: | 1052-6234 1095-7189 |
| DOI: | 10.1137/S1052623402413227 |