Object Tracking with Channel Group Regularization and Smooth Constraints Using Improved Dynamic Convolution Kernels in ITS

Aiming at the problem that the correlation between multi-channel feature representation and filter structure is not considered in the objective function modeling, a object tracking algorithm with channel group regularization and time series smooth constraint using improved dynamic convolution kernel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications Jg. 84; H. 29; S. 35191 - 35215
Hauptverfasser: Sun, Jinping, Li, Dan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.09.2025
Springer Nature B.V
Schlagworte:
ISSN:1573-7721, 1380-7501, 1573-7721
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Aiming at the problem that the correlation between multi-channel feature representation and filter structure is not considered in the objective function modeling, a object tracking algorithm with channel group regularization and time series smooth constraint using improved dynamic convolution kernels is proposed. Firstly, the elements in the filter are grouped using spatial and channel properties, the time-domain correlation of the object model is constrained by the low-rank kernel norm. A group regularization term is constructed to describe the correlation between channels with a mixed-norm structured sparsity constraint to learn lower-dimensional filters. Then, after extracting some channels in the feature map, part of the spatial information of each channel is retained to generate an efficient dynamic convolution kernel through the channel information de-redundant attention mechanism to obtain an optimized lightweight convolutional neural network. Finally, combining the advantages of hand-crafted features and deep convolutional features, the complementary localization of the object from coarse to fine is realized with the help of the constructed efficient feature model and the learned filter. The experimental results on public datasets show that the proposed algorithm can adapt to the tracking tasks of various complex traffic scenes, and enhance the tracking performance of the existing models. The proposed algorithm improves the discriminative property of the object model and the self-adaptability of the spatio-temporal information of the dynamic convolution kernel, and can be applied to neuromorphic vision system of intelligent transportation systems.
AbstractList Aiming at the problem that the correlation between multi-channel feature representation and filter structure is not considered in the objective function modeling, a object tracking algorithm with channel group regularization and time series smooth constraint using improved dynamic convolution kernels is proposed. Firstly, the elements in the filter are grouped using spatial and channel properties, the time-domain correlation of the object model is constrained by the low-rank kernel norm. A group regularization term is constructed to describe the correlation between channels with a mixed-norm structured sparsity constraint to learn lower-dimensional filters. Then, after extracting some channels in the feature map, part of the spatial information of each channel is retained to generate an efficient dynamic convolution kernel through the channel information de-redundant attention mechanism to obtain an optimized lightweight convolutional neural network. Finally, combining the advantages of hand-crafted features and deep convolutional features, the complementary localization of the object from coarse to fine is realized with the help of the constructed efficient feature model and the learned filter. The experimental results on public datasets show that the proposed algorithm can adapt to the tracking tasks of various complex traffic scenes, and enhance the tracking performance of the existing models. The proposed algorithm improves the discriminative property of the object model and the self-adaptability of the spatio-temporal information of the dynamic convolution kernel, and can be applied to neuromorphic vision system of intelligent transportation systems.
Author Li, Dan
Sun, Jinping
Author_xml – sequence: 1
  givenname: Jinping
  surname: Sun
  fullname: Sun, Jinping
  email: sjp@xzit.edu.cn
  organization: School of Information Engineering (School of Big Data), Xuzhou University of Technology
– sequence: 2
  givenname: Dan
  surname: Li
  fullname: Li, Dan
  organization: School of Information Engineering (School of Big Data), Xuzhou University of Technology
BookMark eNp9kE1PwkAQhjcGEwH9A5428Vzdr3bL0aAi0YRE4LwZtgsUyy7uthD49bbURE-eZg7P887k7aGOddYgdEvJPSVEPgRKiWARYSyigg1EdLhAXRpLHknJaOfPfoV6IWwIoUnMRBedJouN0SWeedCfuV3hQ16u8XAN1poCj7yrdvjDrKoCfH6CMncWg83wdOtcwzkbSg-5LQOeh0Yfb3fe7U2Gn44WtrlukL0rqrP5ZnydGnBu8Xg2vUaXSyiCufmZfTR_eZ4NX6P3yWg8fHyPNJOkjBZADGMZTzMpwZCEGU1ZZigkMQeWLnQCWkoaixRACyE46HQQA6-BdEko5X101-bWn31VJpRq4ypv65OKM5FKTkjCa4q1lPYuBG-WaufzLfijokQ1Hau2Y1V3rM4dq0Mt8VYKNWxXxv9G_2N9A-TTgtg
Cites_doi 10.1007/978-3-642-33765-9_50
10.1109/CVPR.2017.515
10.1109/CVPR.2018.00474
10.1109/CVPR.2014.143
10.1007/978-3-030-01216-8_30
10.1155/2022/3887426
10.1561/0100000006
10.5244/C.28.65
10.1109/ACCESS.2020.3038792
10.1109/CVPR42600.2020.00661
10.1007/978-3-319-46454-1_29
10.1109/CVPR.2015.7299094
10.1007/s11276-021-02664-5
10.6036/9844
10.1109/CVPR.2013.312
10.1109/ICCV.2019.00140
10.1016/j.knosys.2020.105526
10.1109/ICCV.2013.343
10.1109/TPAMI.2014.2345390
10.1109/ICCV.2017.129
10.1109/ICCV.2015.490
10.1155/2021/6690237
10.1109/CVPR.2016.90
10.1109/CVPR.2016.156
10.1109/CVPR42600.2020.01104
10.1007/s11263-015-0816-y
10.1109/TPAMI.2014.2388226
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s11042-022-14294-w
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 35215
ExternalDocumentID 10_1007_s11042_022_14294_w
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PT4
PT5
PUEGO
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
AAYXX
AFFHD
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c270t-ba0e22d38d77ae062ec12de1a653a28bc6ac771548aac4443ac895a31a68f0113
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000900189300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1573-7721
1380-7501
IngestDate Thu Nov 06 12:22:04 EST 2025
Sat Nov 29 07:32:31 EST 2025
Thu Sep 11 01:10:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 29
Keywords Time series smoothing
Sparse representation
Correlation filter
Object tracking
Dynamic convolution kernel
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-ba0e22d38d77ae062ec12de1a653a28bc6ac771548aac4443ac895a31a68f0113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3248730063
PQPubID 54626
PageCount 25
ParticipantIDs proquest_journals_3248730063
crossref_primary_10_1007_s11042_022_14294_w
springer_journals_10_1007_s11042_022_14294_w
PublicationCentury 2000
PublicationDate 20250900
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 9
  year: 2025
  text: 20250900
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References 14294_CR27
Y Wu (14294_CR35) 2015; 37
14294_CR28
LD Qiu (14294_CR25) 2017; 29
JP Sun (14294_CR30) 2020; 8
D Tian (14294_CR32) 2019; 34
14294_CR23
K Jun (14294_CR19) 2018; 30
14294_CR22
JP Sun (14294_CR31) 2020; 95
JP Sun (14294_CR29) 2021; 2021
O Russakovsky (14294_CR26) 2015; 115
D Yuan (14294_CR37) 2020; 194
SJ Chen (14294_CR4) 2021; 47
L Meng (14294_CR24) 2019; 45
JF Henriques (14294_CR16) 2015; 37
14294_CR15
14294_CR18
D Li (14294_CR21) 2022; 3887426
14294_CR17
14294_CR7
14294_CR6
14294_CR5
14294_CR10
14294_CR34
14294_CR11
14294_CR33
14294_CR9
14294_CR14
14294_CR36
14294_CR8
14294_CR13
RM Gray (14294_CR12) 2006; 2
D Li (14294_CR20) 2021; 27
14294_CR3
14294_CR2
14294_CR1
References_xml – ident: 14294_CR14
  doi: 10.1007/978-3-642-33765-9_50
– ident: 14294_CR22
  doi: 10.1109/CVPR.2017.515
– ident: 14294_CR27
  doi: 10.1109/CVPR.2018.00474
– ident: 14294_CR5
  doi: 10.1109/CVPR.2014.143
– volume: 47
  start-page: 630
  issue: 3
  year: 2021
  ident: 14294_CR4
  publication-title: Acta Automat Sin
– ident: 14294_CR2
  doi: 10.1007/978-3-030-01216-8_30
– volume: 3887426
  start-page: 12
  year: 2022
  ident: 14294_CR21
  publication-title: J Environ Public Health
  doi: 10.1155/2022/3887426
– volume: 2
  start-page: 155
  issue: 3
  year: 2006
  ident: 14294_CR12
  publication-title: Found Trends Commun Inf Theory
  doi: 10.1561/0100000006
– volume: 30
  start-page: 634
  issue: 4
  year: 2018
  ident: 14294_CR19
  publication-title: J Comput Aided Des Comput Graph
– ident: 14294_CR6
  doi: 10.5244/C.28.65
– volume: 8
  start-page: 208179
  year: 2020
  ident: 14294_CR30
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3038792
– ident: 14294_CR33
  doi: 10.1109/CVPR42600.2020.00661
– ident: 14294_CR8
  doi: 10.1007/978-3-319-46454-1_29
– ident: 14294_CR9
  doi: 10.1007/978-3-319-46454-1_29
– ident: 14294_CR10
  doi: 10.1109/CVPR.2015.7299094
– volume: 27
  start-page: 4389
  issue: 7
  year: 2021
  ident: 14294_CR20
  publication-title: Wirel Netw
  doi: 10.1007/s11276-021-02664-5
– volume: 95
  start-page: 646
  issue: 6
  year: 2020
  ident: 14294_CR31
  publication-title: DYNA
  doi: 10.6036/9844
– ident: 14294_CR34
  doi: 10.1109/CVPR.2013.312
– ident: 14294_CR18
  doi: 10.1109/ICCV.2019.00140
– volume: 45
  start-page: 1244
  issue: 7
  year: 2019
  ident: 14294_CR24
  publication-title: Acta Automat Sin
– volume: 29
  start-page: 459
  issue: 3
  year: 2017
  ident: 14294_CR25
  publication-title: J Comput Aided Des Comput Graph
– volume: 194
  year: 2020
  ident: 14294_CR37
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2020.105526
– ident: 14294_CR15
  doi: 10.1109/ICCV.2013.343
– volume: 37
  start-page: 583
  issue: 3
  year: 2015
  ident: 14294_CR16
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2014.2345390
– ident: 14294_CR11
  doi: 10.1109/ICCV.2017.129
– ident: 14294_CR7
  doi: 10.1109/ICCV.2015.490
– volume: 2021
  start-page: 1
  year: 2021
  ident: 14294_CR29
  publication-title: Complexity
  doi: 10.1155/2021/6690237
– ident: 14294_CR28
– ident: 14294_CR23
  doi: 10.1109/CVPR.2017.515
– volume: 34
  start-page: 2479
  issue: 11
  year: 2019
  ident: 14294_CR32
  publication-title: Control and Decision
– ident: 14294_CR13
  doi: 10.1109/CVPR.2016.90
– ident: 14294_CR1
  doi: 10.1109/CVPR.2016.156
– ident: 14294_CR3
  doi: 10.1109/CVPR42600.2020.01104
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: 14294_CR26
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-015-0816-y
– volume: 37
  start-page: 1834
  issue: 9
  year: 2015
  ident: 14294_CR35
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2014.2388226
– ident: 14294_CR17
– ident: 14294_CR36
SSID ssj0016524
Score 2.3977757
Snippet Aiming at the problem that the correlation between multi-channel feature representation and filter structure is not considered in the objective function...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 35191
SubjectTerms 1231: IoT-driven Computer Vision Technology for Smart Transportation Applications
Accuracy
Algorithms
Artificial neural networks
Channels
Computer Communication Networks
Computer Science
Constraints
Correlation
Data Structures and Information Theory
Feature maps
Intelligent transportation systems
Localization
Multimedia Information Systems
Neural networks
Object recognition
Process controls
Regularization
Spatial data
Special Purpose and Application-Based Systems
Task complexity
Tracking
Vision systems
Title Object Tracking with Channel Group Regularization and Smooth Constraints Using Improved Dynamic Convolution Kernels in ITS
URI https://link.springer.com/article/10.1007/s11042-022-14294-w
https://www.proquest.com/docview/3248730063
Volume 84
WOSCitedRecordID wos000900189300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RS8MwED50-qAPTqfidEoefNPCmqRt-ijqUIQp25S9lTRNQNBO2rqBv94kba2KPuhzryEkl7vL5b77AI5DrLxQEeUoTIVDla8cHirpMB0qqzjwqUuVJZsIhkM2nYZ3FSgsr6vd6ydJa6kbsJtroCSm-tzVRpQ6i2VY0e6OGcKG0fjh4-3A9zCt4DE___fVBTVx5benUOthBu3_zW0TNqqIEp2VKrAFSzLtQLtma0DV4e3A-qfWg9vwdhubDAzSvkqYbDkyCVlksAapfEI2I4VGlqc-q5CaiKcJGj_PZkbORJWGXKLIkS06QGVyQibooqS4NyLzSq3Rjcz0qDl6TNH1ZLwD94PLyfmVU_EwOAIH_cKJeV9inBCWBAGXfR9L4eJEutz3CMcsFj4XQWDuPpwLSinhgoUeJ1qAKW0_yC600lkq9wAlhqQ0xh7Rt0rtPhkTHqeUC9_jTF_c-l04qbcmeinbbURNY2WzyJFe5MgucrToQq_evag6enmkI0RmmvD7pAun9W41n38fbf9v4gewhg0XsK0360GryF7lIayKefGYZ0dWJd8BX0XeuQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90CuqD06k4nZoH37SwpmmbPoo6HJtTtil7K2mawEA7aecG_vUmWWtV9EGfew3hcrmv3N0P4DTA0g2kIy2JCbeI9KTFAiksqlxlGfkesYk0YBN-r0dHo-A-bwrLimr34knSaOqy2c3WrSS6-txWSpRY82VYIcpi6Yn5_cHjx9uB52KSt8f8_N9XE1T6ld-eQo2FaVX_t7ct2Mw9SnSxEIFtWBJJDaoFWgPKL28NNj6NHtyBt7tIZ2CQslVcZ8uRTsgi3WuQiCdkMlKob3Dq07xTE7EkRoPnyUTTaa9Sg0tMM2SKDtAiOSFidLWAuNcks1ysUUekatUMjRPUHg524aF1Pby8sXIcBotjvzm1ItYUGMcOjX2fiaaHBbdxLGzmuQ7DNOIe476vYx_GOCHEYZwGLnMUAZVKfzh7UEkmidgHFGuQ0gi7jooqlfmklLuMEMY9l1EVuDXrcFYcTfiyGLcRloOVNZNDxeTQMDmc16FRnF6YX70sVB4i1UP4PacO58VplZ9_X-3gb-QnsHYzvO2G3XavcwjrWOMCm9qzBlSm6as4glU-m46z9NiI5zvYpuGd
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_oFNGD06k4P3PwpsU1Tdv0KM6hKFPcFG8lTRMYuE626tC_3rysdSp6EM99DSF5yfvI-70fwEFEtR9pTzuaMukwHWhHRFo53LjKOgkD5jJtySbCdps_PEQ3n1D8ttq9fJKcYBqwS1OWHz-l-ngKfHMRVoKV6K65UJkznoU5hoX0GK937j_eEQKfsgIq8_N_X83R1Mf89ixqrU2r-v95rsBy4WmSk4lqrMKMympQLVkcSHGoa7D0qSXhGrxdJ5iZIcaGScyiE0zUEsQgZOqR2EwVubX89cMCwUlElpJOfzBAOfQ2kXQiHxFbjEAmSQuVkuZrJvo9iSIvhbqTSzU0o45ILyMX3c463LXOuqfnTsHP4EgaNnInEQ1FaerxNAyFagRUSZemyhWB7wnKExkIGYYYEwkhGWOekDzyhWcEuDb3ircBlWyQqU0gKZKXJtT3TLRpzCrn0heMCRn4gpuArlGHw3Kb4qdJG4542nAZFzk2ixzbRY7HddgpdzIujuQoNp4jx-b8gVeHo3Lnpp9_H23rb-L7sHDTbMVXF-3LbVikSBdsS9J2oJIPn9UuzMuXvDca7llNfQcl4uqB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Object+Tracking+with+Channel+Group+Regularization+and+Smooth+Constraints+Using+Improved+Dynamic+Convolution+Kernels+in+ITS&rft.jtitle=Multimedia+tools+and+applications&rft.au=Sun%2C+Jinping&rft.au=Li%2C+Dan&rft.date=2025-09-01&rft.pub=Springer+US&rft.eissn=1573-7721&rft.volume=84&rft.issue=29&rft.spage=35191&rft.epage=35215&rft_id=info:doi/10.1007%2Fs11042-022-14294-w&rft.externalDocID=10_1007_s11042_022_14294_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon