A Note on Generalized q-Difference Equations and Their Applications Involving q-Hypergeometric Functions

Our investigation is motivated essentially by the demonstrated applications of the basic (or q-) series and basic (or q-) polynomials, especially the basic (or q-) hypergeometric functions and basic (or q-) hypergeometric polynomials, in many diverse areas. Here, in this paper, we use two q-operator...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) Jg. 12; H. 11; S. 1816
Hauptverfasser: Srivastava, Hari M., Cao, Jian, Arjika, Sama
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 01.11.2020
ISSN:2073-8994, 2073-8994
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Our investigation is motivated essentially by the demonstrated applications of the basic (or q-) series and basic (or q-) polynomials, especially the basic (or q-) hypergeometric functions and basic (or q-) hypergeometric polynomials, in many diverse areas. Here, in this paper, we use two q-operators T(a,b,c,d,e,yDx) and E(a,b,c,d,e,yθx) to derive two potentially useful generalizations of the q-binomial theorem, a set of two extensions of the q-Chu-Vandermonde summation formula and two new generalizations of the Andrews-Askey integral by means of the q-difference equations. We also briefly describe relevant connections of various special cases and consequences of our main results with a number of known results.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym12111816