A Note on Generalized q-Difference Equations and Their Applications Involving q-Hypergeometric Functions

Our investigation is motivated essentially by the demonstrated applications of the basic (or q-) series and basic (or q-) polynomials, especially the basic (or q-) hypergeometric functions and basic (or q-) hypergeometric polynomials, in many diverse areas. Here, in this paper, we use two q-operator...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Symmetry (Basel) Ročník 12; číslo 11; s. 1816
Hlavní autoři: Srivastava, Hari M., Cao, Jian, Arjika, Sama
Médium: Journal Article
Jazyk:angličtina
Vydáno: 01.11.2020
ISSN:2073-8994, 2073-8994
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Our investigation is motivated essentially by the demonstrated applications of the basic (or q-) series and basic (or q-) polynomials, especially the basic (or q-) hypergeometric functions and basic (or q-) hypergeometric polynomials, in many diverse areas. Here, in this paper, we use two q-operators T(a,b,c,d,e,yDx) and E(a,b,c,d,e,yθx) to derive two potentially useful generalizations of the q-binomial theorem, a set of two extensions of the q-Chu-Vandermonde summation formula and two new generalizations of the Andrews-Askey integral by means of the q-difference equations. We also briefly describe relevant connections of various special cases and consequences of our main results with a number of known results.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym12111816