Pre-trained Model-based Software Defect Prediction for Edge-cloud Systems

Edge-cloud computing is a distributed computing infrastructure that brings computation and data storage with low latency closer to clients. As interest in edge-cloud systems grows, research on testing the systems has also been actively studied. However, as with traditional systems, the amount of res...

Full description

Saved in:
Bibliographic Details
Published in:Journal of web engineering Vol. 22; no. 2; p. 255
Main Authors: Kwon, Sunjae, Lee, Sungu, Ryu, Duksan, Baik, Jongmoon
Format: Journal Article
Language:English
Published: Milan River Publishers 01.01.2023
Subjects:
ISSN:1540-9589, 1544-5976
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Edge-cloud computing is a distributed computing infrastructure that brings computation and data storage with low latency closer to clients. As interest in edge-cloud systems grows, research on testing the systems has also been actively studied. However, as with traditional systems, the amount of resources for testing is always limited. Thus, we suggest a function-level just-in-time (JIT) software defect prediction (SDP) model based on a pre-trained model to address the limitation by prioritizing the limited testing resources for the defect-prone functions. The pre-trained model is a transformer-based deep learning model trained on a large corpus of code snippets, and the fine-tuned pre-trained model can provide the defect proneness for the changed functions at a commit level. We evaluate the performance of the three popular pre-trained models (i.e., CodeBERT, GraphCodeBERT, UniXCoder) on edge-cloud systems in within-project and cross-project environments. To the best of our knowledge, it is the first attempt to analyse the performance of the three pre-trained model-based SDP models for edge-cloud systems. As a result, we can confirm that UniXCoder showed the best performance among the three in the WPDP environment. However, we also confirm that additional research is necessary to apply the SDP models to the CPDP environment.
AbstractList Edge-cloud computing is a distributed computing infrastructure that brings computation and data storage with low latency closer to clients. As interest in edge-cloud systems grows, research on testing the systems has also been actively studied. However, as with traditional systems, the amount of resources for testing is always limited. Thus, we suggest a function-level just-in-time (JIT) software defect prediction (SDP) model based on a pre-trained model to address the limitation by prioritizing the limited testing resources for the defect-prone functions. The pre-trained model is a transformer-based deep learning model trained on a large corpus of code snippets, and the fine-tuned pre-trained model can provide the defect proneness for the changed functions at a commit level. We evaluate the performance of the three popular pre-trained models (i.e., CodeBERT, GraphCodeBERT, UniXCoder) on edge-cloud systems in within-project and cross-project environments. To the best of our knowledge, it is the first attempt to analyse the performance of the three pre-trained model-based SDP models for edge-cloud systems. As a result, we can confirm that UniXCoder showed the best performance among the three in the WPDP environment. However, we also confirm that additional research is necessary to apply the SDP models to the CPDP environment.
Author Kwon, Sunjae
Lee, Sungu
Baik, Jongmoon
Ryu, Duksan
Author_xml – sequence: 1
  givenname: Sunjae
  surname: Kwon
  fullname: Kwon, Sunjae
– sequence: 2
  givenname: Sungu
  surname: Lee
  fullname: Lee, Sungu
– sequence: 3
  givenname: Duksan
  surname: Ryu
  fullname: Ryu, Duksan
– sequence: 4
  givenname: Jongmoon
  surname: Baik
  fullname: Baik, Jongmoon
BookMark eNotkE1LAzEQhoNUsK3-AU8LnlPzuR9HqVULFQX1HDbZiezSbmqSpfTfm3bLHOZl5mEGnhma9K4HhO4pWVBOJHvsDkClILiSZbVgjPErNE0DgWVV5JNzHpc3aBZCR4goGJNTtP70gKOv2x6a7N01sMW6Dil_ORsPtYfsGSyYmCWuaU1sXZ9Z57NV8wvYbN2QyGOIsAu36NrW2wB3lz5HPy-r7-Ub3ny8rpdPG2xYQSLWohFloU2eE8ugYTm3jIOwuiwZQEl0pWuouJFUFrmWIIkAoMArK4EXqeboYby79-5vgBBV5wbfp5cqmZCSc0pIothIGe9C8GDV3re72h8VJeqsTF2UqZMVdVLG_wFUi2Cp
ContentType Journal Article
Copyright 2023. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.13052/jwe1540-9589.2223
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1544-5976
ExternalDocumentID 10_13052_jwe1540_9589_2223
GroupedDBID 5GY
AAYXX
ABVLG
AENEX
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
DDS
EBS
EJD
HCIFZ
JAVBF
K7-
P2P
PHGZM
PHGZT
PIMPY
PQGLB
8FE
8FG
ABUWG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c270t-b4d487bc660f2ed263f23e4fb882ee80b9bae93c51576b5e504ee1e39f5e37373
IEDL.DBID PIMPY
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001027615200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1540-9589
IngestDate Sat Aug 23 14:48:05 EDT 2025
Sat Nov 29 06:10:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-b4d487bc660f2ed263f23e4fb882ee80b9bae93c51576b5e504ee1e39f5e37373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/publiccontent/docview/3055533100?pq-origsite=%requestingapplication%
PQID 3055533100
PQPubID 6781161
ParticipantIDs proquest_journals_3055533100
crossref_primary_10_13052_jwe1540_9589_2223
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Milan
PublicationPlace_xml – name: Milan
PublicationTitle Journal of web engineering
PublicationYear 2023
Publisher River Publishers
Publisher_xml – name: River Publishers
SSID ssj0047225
Score 2.2486465
Snippet Edge-cloud computing is a distributed computing infrastructure that brings computation and data storage with low latency closer to clients. As interest in...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 255
SubjectTerms Automation
Cloning
Cloud computing
Data storage
Deep learning
Defects
Distributed processing
Natural language
Neural networks
Performance evaluation
Programming languages
Quality control
Semantics
Software
Software engineering
Software quality
Software reliability
Syntax
Title Pre-trained Model-based Software Defect Prediction for Edge-cloud Systems
URI https://www.proquest.com/docview/3055533100
Volume 22
WOSCitedRecordID wos001027615200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1544-5976
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0047225
  issn: 1540-9589
  databaseCode: K7-
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1544-5976
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0047225
  issn: 1540-9589
  databaseCode: BENPR
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1544-5976
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0047225
  issn: 1540-9589
  databaseCode: PIMPY
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED7RlgEG3ohCqTKwIdMkjpN6QjxaUSGqiIdUpii2L6ioaksf9O9jJy7QhQllSmxFke18dz7ffR_AWRimgdSOARGZoiTIPEZS4UqiYYF5mSsxYzIXm4i63Wavx2NbHj21aZVLTMyBumB7NnnbGoQbaiRNxLyR81RRE5y-HH8QoyFlzlqtoEYJKoZ4yy1DJe48xK9LZDa8iCznTw1cwlmT2yIa_TK_8b7A7-cXxmiuGqpVnM6NT3v7fz97B7asE-pcFatmF9ZwuAebv6gJ96ETT5Dk-hGoHCOYNiDG4CnnSeP2Ip2gc4smE8TR_VQ_L45wtP_rtNQbEjkYzXXPggz9AF7areebO2JlF4j0I3dGRKD0LkbIMHQzH5Uf0synGGRCO-OITVdwkSKnUntCUSgYMjdA9JDyjCGN9HUI5eFoiEfgeEGk_SEp9CZLBkywlFJUjEuubzwv5FU4X45xMi7YNZLiiI35iZ2RxMxIYmakCrXlGCf2T5smP0N6_HfzCWwYqfgifFKD8mwyx1NYl5-z_nRSh8p1qxs_1qF0H5G6XThfFUDPlA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB5BggQ99EkFLYU9lFO1jb0PO3uoqqqAiCBRJECCk_HujqugKIEkNOqf6m_srB9tufTGofLJ9sqy_Y3m-3Z2ZwbgfZLkypEw4Lbwkqsi1jy3kePkFnRcRA4L7cpmE-lg0L28NMMV-NnkwoRtlY1PLB21n7oQI--UlalkCEd_vr3joWtUWF1tWmhUZnGCP5Y0ZZt_6h0QvvtCHB2efz3mdVcB7kQaLbhVnkS6dUkSFQK9SGQhJKrCktZE7EbW2ByNdET0aWI16kghxihNoVGmdNBzV6GtyNijFrSHvf7wqvH9ofKiLiu0qogb3TV1mg69vOjcLPH39Y-Blh9S4UMmKOnt6Nn_9mOew9NaSLMvleW_gBWcvIQnf5VXfAW94Qx52QMDPQtN38Y8kLZnZ8Q9y3yG7ADDbhZG4_yoTPBgpOHZof-G3I2n9zSyKui-CReP8i2voTWZTnALWKxS0nTO0kTRKW11LiV6bZyhkzhOzDZ8aFDMbqsKIVm1TKhFVmOeBcyzgPk27DQoZrW3mGd_IHzz79t7sH583j_NTnuDk7ewIUhwVeGgHWgtZvf4Dtbc98VoPtutDZPB9WND_gsqmx8n
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pre-trained+Model-based+Software+Defect+Prediction+for+Edge-cloud+Systems&rft.jtitle=Journal+of+web+engineering&rft.au=Kwon%2C+Sunjae&rft.au=Lee%2C+Sungu&rft.au=Ryu%2C+Duksan&rft.au=Baik%2C+Jongmoon&rft.date=2023-01-01&rft.issn=1540-9589&rft.eissn=1544-5976&rft_id=info:doi/10.13052%2Fjwe1540-9589.2223&rft.externalDBID=n%2Fa&rft.externalDocID=10_13052_jwe1540_9589_2223
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1540-9589&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1540-9589&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1540-9589&client=summon