On the Metric Resolvent: Nonexpansiveness, Convergence Rates and Applications On the Metric Resolvent: Nonexpansiveness, Convergence Rates and Applications

In this paper, we study the nonexpansive properties of metric resolvent and present the convergence analysis for the associated fixed-point iterations of both Banach–Picard and Krasnosel’skiĭ–Mann types. A by-product of our expositions also extends the proximity operator and Moreau’s decomposition i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of the Operations Research Society of China (Internet) Ročník 13; číslo 4; s. 966 - 988
Hlavní autor: Xue, Feng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2025
Springer Nature B.V
Témata:
ISSN:2194-668X, 2194-6698
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we study the nonexpansive properties of metric resolvent and present the convergence analysis for the associated fixed-point iterations of both Banach–Picard and Krasnosel’skiĭ–Mann types. A by-product of our expositions also extends the proximity operator and Moreau’s decomposition identity to arbitrary metric. It is further shown that many classes of the first-order operator splitting algorithms, including the alternating direction methods of multipliers, primal–dual hybrid gradient and Bregman iterations, can be expressed by the fixed-point iterations of a simple metric resolvent, and thus, the convergence can be easily obtained within this unified framework.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2194-668X
2194-6698
DOI:10.1007/s40305-023-00518-9