A Sub-exponential FPT Algorithm and a Polynomial Kernel for Minimum Directed Bisection on Semicomplete Digraphs
Given an n -vertex digraph D and a non-negative integer k , the M inimum D irected B isection problem asks if the vertices of D can be partitioned into two parts, say L and R , such that | L | and | R | differ by at most 1 and the number of arcs from R to L is at most k . This problem is known to be...
Uložené v:
| Vydané v: | Algorithmica Ročník 83; číslo 6; s. 1861 - 1884 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.06.2021
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0178-4617, 1432-0541 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Given an
n
-vertex digraph
D
and a non-negative integer
k
, the M
inimum
D
irected
B
isection
problem asks if the vertices of
D
can be partitioned into two parts, say
L
and
R
, such that
|
L
|
and
|
R
|
differ by at most 1 and the number of arcs from
R
to
L
is at most
k
. This problem is known to be NP-hard even when
k
=
0
. We investigate the parameterized complexity of this problem on semicomplete digraphs. We show that M
inimum
D
irected
B
isection
admits a sub-exponential time fixed-parameter tractable algorithm on semicomplete digraphs. We also show that M
inimum
D
irected
B
isection
admits a polynomial kernel on semicomplete digraphs. To design the kernel, we use
(
n
,
k
,
k
2
)
-splitters, which, to the best of our knowledge, have never been used before in the design of kernels. We also prove that M
inimum
D
irected
B
isection
is NP-hard on semicomplete digraphs, but polynomial time solvable on tournaments. |
|---|---|
| AbstractList | Given an n-vertex digraph D and a non-negative integer k, the Minimum Directed Bisection problem asks if the vertices of D can be partitioned into two parts, say L and R, such that |L| and |R| differ by at most 1 and the number of arcs from R to L is at most k. This problem is known to be NP-hard even when k=0. We investigate the parameterized complexity of this problem on semicomplete digraphs. We show that Minimum Directed Bisection admits a sub-exponential time fixed-parameter tractable algorithm on semicomplete digraphs. We also show that Minimum Directed Bisection admits a polynomial kernel on semicomplete digraphs. To design the kernel, we use (n,k,k2)-splitters, which, to the best of our knowledge, have never been used before in the design of kernels. We also prove that Minimum Directed Bisection is NP-hard on semicomplete digraphs, but polynomial time solvable on tournaments. Given an n -vertex digraph D and a non-negative integer k , the M inimum D irected B isection problem asks if the vertices of D can be partitioned into two parts, say L and R , such that | L | and | R | differ by at most 1 and the number of arcs from R to L is at most k . This problem is known to be NP-hard even when k = 0 . We investigate the parameterized complexity of this problem on semicomplete digraphs. We show that M inimum D irected B isection admits a sub-exponential time fixed-parameter tractable algorithm on semicomplete digraphs. We also show that M inimum D irected B isection admits a polynomial kernel on semicomplete digraphs. To design the kernel, we use ( n , k , k 2 ) -splitters, which, to the best of our knowledge, have never been used before in the design of kernels. We also prove that M inimum D irected B isection is NP-hard on semicomplete digraphs, but polynomial time solvable on tournaments. |
| Author | Sharma, Roohani Madathil, Jayakrishnan Zehavi, Meirav |
| Author_xml | – sequence: 1 givenname: Jayakrishnan surname: Madathil fullname: Madathil, Jayakrishnan email: jayakrishnan.m@iitgn.ac.in organization: Indian Institute of Technology Gandhinagar – sequence: 2 givenname: Roohani surname: Sharma fullname: Sharma, Roohani organization: Max Planck Institute for Informatics – sequence: 3 givenname: Meirav surname: Zehavi fullname: Zehavi, Meirav organization: Ben-Gurion University |
| BookMark | eNp9kFtLAzEQhYNUsF7-gE8Bn6OTy-62j7VeUbHQ-hyyu7M1spusyRbqvze1gm_CDDMw55yB75iMnHdIyDmHSw5QXEUAlUkGgjOACeRse0DGXEnBIFN8RMbAiwlTOS-OyHGMHwBcFNN8TPyMLjclw22fAt1gTUvvFis6a9c-2OG9o8bV1NCFb7-c73bnJwwOW9r4QF-ss92mozc2YDVgTa9tTIv1jqZaYmcr3_UtDpgk62D693hKDhvTRjz7nSfk7e52NX9gz6_3j_PZM6tEAQMzJcg6L5tSQWlkPkkt-LSEDCtl8roxtVSoysxI2SAWJkMupJwqBbyRVVHIE3Kxz-2D_9xgHPSH3wSXXmqRScHlRCiZVGKvqoKPMWCj-2A7E740B70Dq_dgdQKrf8DqbTLJvSkmsVtj-Iv-x_UNlFp-Ww |
| Cites_doi | 10.1007/978-3-662-44465-8_22 10.1137/1.9781611975482.64 10.1016/j.jcss.2010.10.001 10.1137/0221016 10.1016/0304-3975(76)90059-1 10.1016/j.jctb.2019.01.006 10.1016/j.disopt.2010.03.010 10.1137/140988553 10.1016/j.jda.2009.08.001 10.1002/jgt.22408 10.1145/210332.210337 10.1007/978-3-662-53622-3_7 10.1145/1374376.1374415 10.1007/978-3-642-17517-6_3 10.1007/BF01305310 10.1007/978-3-642-02927-1_6 10.1007/978-3-642-45043-3_8 10.1137/S009753970139567X 10.1016/j.jctb.2014.12.005 10.1007/s00453-014-9928-y 10.1016/j.tcs.2005.10.007 10.1145/3196276 10.1016/j.jctb.2010.10.003 10.1007/978-3-319-21275-3 10.1016/S0020-0190(03)00251-5 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s00453-021-00806-x |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1432-0541 |
| EndPage | 1884 |
| ExternalDocumentID | 10_1007_s00453_021_00806_x |
| GrantInformation_xml | – fundername: Israel Science Foundation grantid: 1176/18 – fundername: United States - Israel Binational Science Foundation grantid: 2018302 funderid: http://dx.doi.org/10.13039/100006221 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFSI ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP E.L EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9O PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UQL UTJUX UZXMN VC2 VFIZW VH1 VXZ W23 W48 WK8 YLTOR Z45 Z7X Z83 Z88 Z8R Z8W Z92 ZMTXR ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JQ2 |
| ID | FETCH-LOGICAL-c270t-ab03d6bfb40ba368a36219b05ec4a6dfad34e4b5a33fee7a5e123394401f3c773 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000616056000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0178-4617 |
| IngestDate | Sun Nov 09 06:36:06 EST 2025 Sat Nov 29 02:20:30 EST 2025 Fri Feb 21 02:48:53 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Bisection Polynomial kernel Splitters FPT Algorithm Chromatic coding Semicomplete digraph Tournament |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c270t-ab03d6bfb40ba368a36219b05ec4a6dfad34e4b5a33fee7a5e123394401f3c773 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2532138243 |
| PQPubID | 2043795 |
| PageCount | 24 |
| ParticipantIDs | proquest_journals_2532138243 crossref_primary_10_1007_s00453_021_00806_x springer_journals_10_1007_s00453_021_00806_x |
| PublicationCentury | 2000 |
| PublicationDate | 2021-06-01 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Algorithmica |
| PublicationTitleAbbrev | Algorithmica |
| PublicationYear | 2021 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Panolan, F., Saurabh, S., Zehavi, M.: Contraction decomposition in unit disk graphs and algorithmic applications in parameterized complexity. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6–9, 2019, pp. 1035–1054 (2019) Kim, I.: On containment relations in directed graphs. PhD thesis, Princeton University (2013) van Bevern, R., Feldmann, A.E., Sorge, M., Suchý, O.: On the parameterized complexity of computing graph bisections. In Brandstädt, A., Jansen, K., Reischuk, R. (eds) Graph-Theoretic Concepts in Computer Science—39th International Workshop, WG 2013, Lübeck, Germany, June 19–21, 2013, Revised Papers, volume 8165 of Lecture Notes in Computer Science, pp. 76–87. Springer (2013) BuiTNPeckAPartitioning planar graphsSIAM J. Comput.1992212203215115452010.1137/0221016 Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomization. In: 36th Annual Symposium on Foundations of Computer Science, Milwaukee, Wisconsin, USA, 23–25 October 1995, pp. 182–191 (1995) CyganMLokshtanovDPilipczukMPilipczukMSaurabhSMinimum bisection is fixed-parameter tractableSIAM J. Comput.2019482417450393792510.1137/140988553 Feige, U.: Faster fast (feedback arc set in tournaments). CoRR arXiv:abs/0911.5094 (2009) Karpinski, M., Schudy, W.: Faster algorithms for feedback arc set tournament, kemeny rank aggregation and betweenness tournament. In: Algorithms and Computation—21st International Symposium, ISAAC 2010, Jeju Island, Korea, December 15–17, 2010, Proceedings, Part I, pp. 3–14 (2010) LampisMKaouriGMitsouVOn the algorithmic effectiveness of digraph decompositions and complexity measuresDiscrete Optim.201181129138277256610.1016/j.disopt.2010.03.010 AlonNYusterRZwickUColor-codingJ. ACM1995424844856141178710.1145/210332.210337 BessySFominFVGaspersSPaulCPerezASaurabhSThomasséSKernels for feedback arc set in tournamentsJ. Comput. Syst. Sci.201177610711078285801010.1016/j.jcss.2010.10.001 KimISeymourPDTournament minorsJ. Comb. Theory Ser. B2015112138153332303910.1016/j.jctb.2014.12.005 Alon, N., Lokshtanov, D., Saurabh, S.: Fast FAST. In: Automata, Languages and Programming, 36th International Colloquium, ICALP 2009, Rhodes, Greece, July 5–12, 2009, Proceedings, Part I, pp. 49–58 (2009) RédeiLEin kombinatorischer satzSatz. Acta Litt. Szeged1934739430009.14606 CamionPChemins et circuits hamiltoniens des graphes completsComptes Rendus Hebdomadaires des Séances de l’Académie des Sciences195924921215121521227350092.15801 BarberoFPaulCPilipczukMExploring the complexity of layout parameters in tournaments and semicomplete digraphsACM Trans. Algorithms201814338:138:31384134010.1145/3196276 PapadimitriouCHSideriMThe bisection width of grid graphsMath. Syst. Theory199629297110136879310.1007/BF01305310 Bang-JensenJGutinGZDigraphs—Theory, Algorithms and Applications2002BerlinSpringer1001.05002 DomMGuoJHüffnerFNiedermeierRTrußAFixed-parameter tractability results for feedback set problems in tournamentsJ. Discrete Algorithms2010817686255888110.1016/j.jda.2009.08.001 GareyMRJohnsonDSStockmeyerLJSome simplified NP-complete graph problemsTheor. Comput. Sci.19761323726741124010.1016/0304-3975(76)90059-1 Diestel, R.: Graph Theory, 4th edn, volume 173 of Graduate texts in mathematics. Springer (2012) FeldmannAEWidmayerPAn o(n4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$^{\text{4}}$$\end{document}) time algorithm to compute the bisection width of solid grid graphsAlgorithmica2015711181200330215110.1007/s00453-014-9928-y CyganMFominFVKowalikLLokshtanovDMarxDPilipczukMPilipczukMSaurabhSParameterized Algorithms2015BerlinSpringer10.1007/978-3-319-21275-3 JansenKKarpinskiMLingasASeidelEPolynomial time approximation schemes for MAX-BISECTION on planar and geometric graphsSIAM J. Comput.2005351110119217880010.1137/S009753970139567X FeigeUYahalomOOn the complexity of finding balanced oneway cutsInf. Process. Lett.200387115197985210.1016/S0020-0190(03)00251-5 Fradkin, A.: Forbidden structures and algorithms in graphs and digraphs. PhD thesis, Princeton University (2011) MarxDParameterized graph separation problemsTheor. Comput. Sci.20063513394406220249810.1016/j.tcs.2005.10.007 BarberoFPaulCPilipczukMStrong immersion is a well-quasi-ordering for semicomplete digraphsJ. Graph Theory2019904484496391518410.1002/jgt.22408 Räcke, H.: Optimal hierarchical decompositions for congestion minimization in networks. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada, May 17–20, 2008, pp. 255–264 (2008) FominFVPilipczukMOn width measures and topological problems on semi-complete digraphsJ. Comb. Theory Ser. B201913878165397922710.1016/j.jctb.2019.01.006 ChudnovskyMSeymourPDA well-quasi-order for tournamentsJ. Comb. Theory Ser. B201110114753273717710.1016/j.jctb.2010.10.003 Díaz, J., Mertzios, G.B.: Minimum bisection is NP-hard on unit disk graphs. In: Mathematical Foundations of Computer Science 2014—39th International Symposium, MFCS 2014, Budapest, Hungary, August 25–29, 2014. Proceedings, Part II, pp. 251–262 (2014) Madathil, J., Sharma, R., Zehavi, M.: A sub-exponential FPT algorithm and a polynomial kernel for minimum directed bisection on semicomplete digraphs. In: Rossmanith, P., Heggernes, P., Katoen, J.-P. (es) 44th International Symposium on Mathematical Foundations of Computer Science, MFCS 2019, August 26–30, 2019, Aachen, Germany, volume 138 of LIPIcs, pp. 28:1–28:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019) Macgregor, R.M.: On partitioning a graph: a theoretical and empirical study. PhD thesis, University of California, Berkeley (1979) 806_CR30 806_CR32 L Rédei (806_CR33) 1934; 7 806_CR1 K Jansen (806_CR21) 2005; 35 MR Garey (806_CR20) 1976; 1 S Bessy (806_CR6) 2011; 77 TN Bui (806_CR7) 1992; 21 M Chudnovsky (806_CR9) 2011; 101 806_CR19 M Dom (806_CR14) 2010; 8 U Feige (806_CR16) 2003; 87 806_CR15 F Barbero (806_CR5) 2019; 90 M Cygan (806_CR11) 2019; 48 806_CR12 806_CR34 M Lampis (806_CR25) 2011; 8 806_CR13 J Bang-Jensen (806_CR3) 2002 FV Fomin (806_CR18) 2019; 138 P Camion (806_CR8) 1959; 249 CH Papadimitriou (806_CR31) 1996; 29 N Alon (806_CR2) 1995; 42 F Barbero (806_CR4) 2018; 14 I Kim (806_CR24) 2015; 112 806_CR27 806_CR26 806_CR29 AE Feldmann (806_CR17) 2015; 71 806_CR23 806_CR22 M Cygan (806_CR10) 2015 D Marx (806_CR28) 2006; 351 |
| References_xml | – reference: Díaz, J., Mertzios, G.B.: Minimum bisection is NP-hard on unit disk graphs. In: Mathematical Foundations of Computer Science 2014—39th International Symposium, MFCS 2014, Budapest, Hungary, August 25–29, 2014. Proceedings, Part II, pp. 251–262 (2014) – reference: Bang-JensenJGutinGZDigraphs—Theory, Algorithms and Applications2002BerlinSpringer1001.05002 – reference: CamionPChemins et circuits hamiltoniens des graphes completsComptes Rendus Hebdomadaires des Séances de l’Académie des Sciences195924921215121521227350092.15801 – reference: BarberoFPaulCPilipczukMStrong immersion is a well-quasi-ordering for semicomplete digraphsJ. Graph Theory2019904484496391518410.1002/jgt.22408 – reference: AlonNYusterRZwickUColor-codingJ. ACM1995424844856141178710.1145/210332.210337 – reference: PapadimitriouCHSideriMThe bisection width of grid graphsMath. Syst. Theory199629297110136879310.1007/BF01305310 – reference: GareyMRJohnsonDSStockmeyerLJSome simplified NP-complete graph problemsTheor. Comput. Sci.19761323726741124010.1016/0304-3975(76)90059-1 – reference: BarberoFPaulCPilipczukMExploring the complexity of layout parameters in tournaments and semicomplete digraphsACM Trans. Algorithms201814338:138:31384134010.1145/3196276 – reference: Fradkin, A.: Forbidden structures and algorithms in graphs and digraphs. PhD thesis, Princeton University (2011) – reference: Diestel, R.: Graph Theory, 4th edn, volume 173 of Graduate texts in mathematics. Springer (2012) – reference: Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomization. In: 36th Annual Symposium on Foundations of Computer Science, Milwaukee, Wisconsin, USA, 23–25 October 1995, pp. 182–191 (1995) – reference: CyganMFominFVKowalikLLokshtanovDMarxDPilipczukMPilipczukMSaurabhSParameterized Algorithms2015BerlinSpringer10.1007/978-3-319-21275-3 – reference: FeldmannAEWidmayerPAn o(n4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$^{\text{4}}$$\end{document}) time algorithm to compute the bisection width of solid grid graphsAlgorithmica2015711181200330215110.1007/s00453-014-9928-y – reference: BuiTNPeckAPartitioning planar graphsSIAM J. Comput.1992212203215115452010.1137/0221016 – reference: Madathil, J., Sharma, R., Zehavi, M.: A sub-exponential FPT algorithm and a polynomial kernel for minimum directed bisection on semicomplete digraphs. In: Rossmanith, P., Heggernes, P., Katoen, J.-P. (es) 44th International Symposium on Mathematical Foundations of Computer Science, MFCS 2019, August 26–30, 2019, Aachen, Germany, volume 138 of LIPIcs, pp. 28:1–28:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019) – reference: CyganMLokshtanovDPilipczukMPilipczukMSaurabhSMinimum bisection is fixed-parameter tractableSIAM J. Comput.2019482417450393792510.1137/140988553 – reference: Macgregor, R.M.: On partitioning a graph: a theoretical and empirical study. PhD thesis, University of California, Berkeley (1979) – reference: LampisMKaouriGMitsouVOn the algorithmic effectiveness of digraph decompositions and complexity measuresDiscrete Optim.201181129138277256610.1016/j.disopt.2010.03.010 – reference: RédeiLEin kombinatorischer satzSatz. Acta Litt. Szeged1934739430009.14606 – reference: FeigeUYahalomOOn the complexity of finding balanced oneway cutsInf. Process. Lett.200387115197985210.1016/S0020-0190(03)00251-5 – reference: BessySFominFVGaspersSPaulCPerezASaurabhSThomasséSKernels for feedback arc set in tournamentsJ. Comput. Syst. Sci.201177610711078285801010.1016/j.jcss.2010.10.001 – reference: ChudnovskyMSeymourPDA well-quasi-order for tournamentsJ. Comb. Theory Ser. B201110114753273717710.1016/j.jctb.2010.10.003 – reference: Kim, I.: On containment relations in directed graphs. PhD thesis, Princeton University (2013) – reference: Alon, N., Lokshtanov, D., Saurabh, S.: Fast FAST. In: Automata, Languages and Programming, 36th International Colloquium, ICALP 2009, Rhodes, Greece, July 5–12, 2009, Proceedings, Part I, pp. 49–58 (2009) – reference: van Bevern, R., Feldmann, A.E., Sorge, M., Suchý, O.: On the parameterized complexity of computing graph bisections. In Brandstädt, A., Jansen, K., Reischuk, R. (eds) Graph-Theoretic Concepts in Computer Science—39th International Workshop, WG 2013, Lübeck, Germany, June 19–21, 2013, Revised Papers, volume 8165 of Lecture Notes in Computer Science, pp. 76–87. Springer (2013) – reference: FominFVPilipczukMOn width measures and topological problems on semi-complete digraphsJ. Comb. Theory Ser. B201913878165397922710.1016/j.jctb.2019.01.006 – reference: Feige, U.: Faster fast (feedback arc set in tournaments). CoRR arXiv:abs/0911.5094 (2009) – reference: Karpinski, M., Schudy, W.: Faster algorithms for feedback arc set tournament, kemeny rank aggregation and betweenness tournament. In: Algorithms and Computation—21st International Symposium, ISAAC 2010, Jeju Island, Korea, December 15–17, 2010, Proceedings, Part I, pp. 3–14 (2010) – reference: Panolan, F., Saurabh, S., Zehavi, M.: Contraction decomposition in unit disk graphs and algorithmic applications in parameterized complexity. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6–9, 2019, pp. 1035–1054 (2019) – reference: JansenKKarpinskiMLingasASeidelEPolynomial time approximation schemes for MAX-BISECTION on planar and geometric graphsSIAM J. Comput.2005351110119217880010.1137/S009753970139567X – reference: MarxDParameterized graph separation problemsTheor. Comput. Sci.20063513394406220249810.1016/j.tcs.2005.10.007 – reference: DomMGuoJHüffnerFNiedermeierRTrußAFixed-parameter tractability results for feedback set problems in tournamentsJ. Discrete Algorithms2010817686255888110.1016/j.jda.2009.08.001 – reference: Räcke, H.: Optimal hierarchical decompositions for congestion minimization in networks. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada, May 17–20, 2008, pp. 255–264 (2008) – reference: KimISeymourPDTournament minorsJ. Comb. Theory Ser. B2015112138153332303910.1016/j.jctb.2014.12.005 – ident: 806_CR12 doi: 10.1007/978-3-662-44465-8_22 – ident: 806_CR30 doi: 10.1137/1.9781611975482.64 – volume-title: Digraphs—Theory, Algorithms and Applications year: 2002 ident: 806_CR3 – volume: 77 start-page: 1071 issue: 6 year: 2011 ident: 806_CR6 publication-title: J. Comput. Syst. Sci. doi: 10.1016/j.jcss.2010.10.001 – volume: 21 start-page: 203 issue: 2 year: 1992 ident: 806_CR7 publication-title: SIAM J. Comput. doi: 10.1137/0221016 – ident: 806_CR26 – volume: 1 start-page: 237 issue: 3 year: 1976 ident: 806_CR20 publication-title: Theor. Comput. Sci. doi: 10.1016/0304-3975(76)90059-1 – volume: 138 start-page: 78 year: 2019 ident: 806_CR18 publication-title: J. Comb. Theory Ser. B doi: 10.1016/j.jctb.2019.01.006 – volume: 8 start-page: 129 issue: 1 year: 2011 ident: 806_CR25 publication-title: Discrete Optim. doi: 10.1016/j.disopt.2010.03.010 – volume: 48 start-page: 417 issue: 2 year: 2019 ident: 806_CR11 publication-title: SIAM J. Comput. doi: 10.1137/140988553 – volume: 8 start-page: 76 issue: 1 year: 2010 ident: 806_CR14 publication-title: J. Discrete Algorithms doi: 10.1016/j.jda.2009.08.001 – volume: 90 start-page: 484 issue: 4 year: 2019 ident: 806_CR5 publication-title: J. Graph Theory doi: 10.1002/jgt.22408 – volume: 42 start-page: 844 issue: 4 year: 1995 ident: 806_CR2 publication-title: J. ACM doi: 10.1145/210332.210337 – ident: 806_CR13 doi: 10.1007/978-3-662-53622-3_7 – ident: 806_CR32 doi: 10.1145/1374376.1374415 – ident: 806_CR22 doi: 10.1007/978-3-642-17517-6_3 – volume: 29 start-page: 97 issue: 2 year: 1996 ident: 806_CR31 publication-title: Math. Syst. Theory doi: 10.1007/BF01305310 – ident: 806_CR1 doi: 10.1007/978-3-642-02927-1_6 – ident: 806_CR23 – ident: 806_CR19 – volume: 249 start-page: 2151 issue: 21 year: 1959 ident: 806_CR8 publication-title: Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences – ident: 806_CR27 – ident: 806_CR34 doi: 10.1007/978-3-642-45043-3_8 – ident: 806_CR29 – volume: 35 start-page: 110 issue: 1 year: 2005 ident: 806_CR21 publication-title: SIAM J. Comput. doi: 10.1137/S009753970139567X – volume: 112 start-page: 138 year: 2015 ident: 806_CR24 publication-title: J. Comb. Theory Ser. B doi: 10.1016/j.jctb.2014.12.005 – volume: 71 start-page: 181 issue: 1 year: 2015 ident: 806_CR17 publication-title: Algorithmica doi: 10.1007/s00453-014-9928-y – volume: 351 start-page: 394 issue: 3 year: 2006 ident: 806_CR28 publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2005.10.007 – volume: 14 start-page: 38:1 issue: 3 year: 2018 ident: 806_CR4 publication-title: ACM Trans. Algorithms doi: 10.1145/3196276 – volume: 101 start-page: 47 issue: 1 year: 2011 ident: 806_CR9 publication-title: J. Comb. Theory Ser. B doi: 10.1016/j.jctb.2010.10.003 – volume: 7 start-page: 39 year: 1934 ident: 806_CR33 publication-title: Satz. Acta Litt. Szeged – volume-title: Parameterized Algorithms year: 2015 ident: 806_CR10 doi: 10.1007/978-3-319-21275-3 – ident: 806_CR15 – volume: 87 start-page: 1 issue: 1 year: 2003 ident: 806_CR16 publication-title: Inf. Process. Lett. doi: 10.1016/S0020-0190(03)00251-5 |
| SSID | ssj0012796 |
| Score | 2.2880788 |
| Snippet | Given an
n
-vertex digraph
D
and a non-negative integer
k
, the M
inimum
D
irected
B
isection
problem asks if the vertices of
D
can be partitioned into two... Given an n-vertex digraph D and a non-negative integer k, the Minimum Directed Bisection problem asks if the vertices of D can be partitioned into two parts,... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1861 |
| SubjectTerms | Algorithm Analysis and Problem Complexity Algorithms Apexes Computer Science Computer Systems Organization and Communication Networks Data Structures and Information Theory Graph theory Kernels Mathematics of Computing Polynomials Theory of Computation |
| Title | A Sub-exponential FPT Algorithm and a Polynomial Kernel for Minimum Directed Bisection on Semicomplete Digraphs |
| URI | https://link.springer.com/article/10.1007/s00453-021-00806-x https://www.proquest.com/docview/2532138243 |
| Volume | 83 |
| WOSCitedRecordID | wos000616056000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1432-0541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012796 issn: 0178-4617 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA-iHrw4P3E6JQdvGuiSpl2PUxyCOIabsltJ2kQLWzvaTuZ_70vWbih6UGhPSUP7Xt57v_R9IXRJBWdRWzHiSh4TU3-ESE1NsEMsHZ9qoSNtm034_X5nPA4GVVJYUUe71y5Jq6lXyW4GfRifIxx_AeZ4BJDjFpi7jhHHp-HLyndAfduVy_SdJy4Y6CpV5uc1vpqjNcb85ha11qbX-N977qHdCl3i7nI77KMNlR6gRt25AVeCfIiyLgaNQdRilqUmXAie6Q1GuDt5zfKkfJtikcZY4EE2-TBpyzD8oPJUTTBAXPyYpMl0PsVLbalifJMUNqArxXANTbS9iVMHNA5TbEHs4gg99-5Gt_ekar1AIuo7JRHSYbEntXQdKZjXgRtUm3S4ilzhxVrEzFXAXsGYVsoXXIEFNDm2TluzyPfZMdpM4QtOEObc0z6AmCDiACVikH8pvCCQVChPO5o30VXNgXC2rLARrmopW1qGQMvQ0jJcNFGrZlJYSVsRUs6oqaXosia6rpmyHv59tdO_TT9DO9Ty1fyEaaHNMp-rc7QdvZdJkV_YXfgJ5KfYQA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT8IwEG4MmuiL-DOiqH3wTZuMdt3gEY0EIxAiaHhb2q3VJTAIA4P_vdeyQTT6oMn21K7Zeu3d1913dwhdUcFZWFGMuJJHxOQfIVJTQ3aIpONTLXSobbEJv9OpDga1bhYUluZs99wlaTX1KtjNoA_jc4TjL8AcjwBy3HTBYhki31PvZeU7oL6tymXqzhMXDHQWKvPzGF_N0RpjfnOLWmvTKP7vPffQboYucX25HPbRhkoOUDGv3ICzjXyIxnUMGoOoxWScGLoQPNPo9nF9-DqexrO3ERZJhAXujocfJmwZmh_VNFFDDBAXt-MkHs1HeKktVYRv49QSuhIMV8-w7Q1PHdA4dLEJsdMj9Ny47981SVZ6gYTUd2ZESIdFntTSdaRgXhVuUG3S4Sp0hRdpETFXgXgFY1opX3AFFtDE2DoVzULfZ8eokMAXnCDMuad9ADG1kAOUiGD_S-HVapIK5WlH8xK6ziUQTJYZNoJVLmU7lwHMZWDnMliUUDkXUpDttjSgnFGTS9FlJXSTC2Xd_Ptop3_rfom2m_12K2g9dB7P0A61MjY_ZMqoMJvO1TnaCt9ncTq9sCvyExEN2yQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4QIMSF8RSDATlwg4iSNC07jkcFGkyVeIhblTQJVNq6aSto_HucrB0PwQEhtaekURsn9pfa_ozQPhWcpceaEV9yRSz_CJGG2mAHJb2QGmFS44pNhJ3OyeNjM_6Uxe-i3SuX5CSnwbI05cXRQJmjaeKbRSLW_whHYYA8AQEUOefbokH2vH77MPUj0NBV6LI16IkPxrpMm_l5jK-m6QNvfnOROssT1f7_zstoqUSduDVZJitoRuerqFZVdMDlBl9D_RYGTUL0eNDPbRgRPBPFd7jVfeoPs-K5h0WusMBxv_tm05mhua2Hue5igL74Jsuz3ksPT7SoVvg0G7lArxzDdWuj8G38OqB06OKIskfr6D66uDu7JGVJBpLS0CuIkB5TgTTS96RgwQncoPKkx3Xqi0AZoZivQeyCMaN1KLgGy2hzb71jw9IwZBtoNocv2ESY88CEAG6aKQeIoUAvSBE0m5IKHRjP8Do6qKSRDCbMG8mUY9nNZQJzmbi5TMZ11KgElpS7cJRQzqjlWPRZHR1WAvpo_n20rb9130ML8XmUXF912ttokToR2_80DTRbDF_0DppPX4tsNNx1i_MdyznkCA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Sub-exponential+FPT+Algorithm+and+a+Polynomial+Kernel+for+Minimum+Directed+Bisection+on+Semicomplete+Digraphs&rft.jtitle=Algorithmica&rft.au=Madathil+Jayakrishnan&rft.au=Sharma+Roohani&rft.au=Zehavi+Meirav&rft.date=2021-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=83&rft.issue=6&rft.spage=1861&rft.epage=1884&rft_id=info:doi/10.1007%2Fs00453-021-00806-x&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon |