A Sub-exponential FPT Algorithm and a Polynomial Kernel for Minimum Directed Bisection on Semicomplete Digraphs

Given an n -vertex digraph D and a non-negative integer k , the M inimum D irected B isection problem asks if the vertices of D can be partitioned into two parts, say L and R , such that | L | and | R | differ by at most 1 and the number of arcs from R to L is at most k . This problem is known to be...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Algorithmica Ročník 83; číslo 6; s. 1861 - 1884
Hlavní autori: Madathil, Jayakrishnan, Sharma, Roohani, Zehavi, Meirav
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.06.2021
Springer Nature B.V
Predmet:
ISSN:0178-4617, 1432-0541
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Given an n -vertex digraph D and a non-negative integer k , the M inimum D irected B isection problem asks if the vertices of D can be partitioned into two parts, say L and R , such that | L | and | R | differ by at most 1 and the number of arcs from R to L is at most k . This problem is known to be NP-hard even when k = 0 . We investigate the parameterized complexity of this problem on semicomplete digraphs. We show that M inimum D irected B isection admits a sub-exponential time fixed-parameter tractable algorithm on semicomplete digraphs. We also show that M inimum D irected B isection admits a polynomial kernel on semicomplete digraphs. To design the kernel, we use ( n , k , k 2 ) -splitters, which, to the best of our knowledge, have never been used before in the design of kernels. We also prove that M inimum D irected B isection is NP-hard on semicomplete digraphs, but polynomial time solvable on tournaments.
AbstractList Given an n-vertex digraph D and a non-negative integer k, the Minimum Directed Bisection problem asks if the vertices of D can be partitioned into two parts, say L and R, such that |L| and |R| differ by at most 1 and the number of arcs from R to L is at most k. This problem is known to be NP-hard even when k=0. We investigate the parameterized complexity of this problem on semicomplete digraphs. We show that Minimum Directed Bisection admits a sub-exponential time fixed-parameter tractable algorithm on semicomplete digraphs. We also show that Minimum Directed Bisection admits a polynomial kernel on semicomplete digraphs. To design the kernel, we use (n,k,k2)-splitters, which, to the best of our knowledge, have never been used before in the design of kernels. We also prove that Minimum Directed Bisection is NP-hard on semicomplete digraphs, but polynomial time solvable on tournaments.
Given an n -vertex digraph D and a non-negative integer k , the M inimum D irected B isection problem asks if the vertices of D can be partitioned into two parts, say L and R , such that | L | and | R | differ by at most 1 and the number of arcs from R to L is at most k . This problem is known to be NP-hard even when k = 0 . We investigate the parameterized complexity of this problem on semicomplete digraphs. We show that M inimum D irected B isection admits a sub-exponential time fixed-parameter tractable algorithm on semicomplete digraphs. We also show that M inimum D irected B isection admits a polynomial kernel on semicomplete digraphs. To design the kernel, we use ( n , k , k 2 ) -splitters, which, to the best of our knowledge, have never been used before in the design of kernels. We also prove that M inimum D irected B isection is NP-hard on semicomplete digraphs, but polynomial time solvable on tournaments.
Author Sharma, Roohani
Madathil, Jayakrishnan
Zehavi, Meirav
Author_xml – sequence: 1
  givenname: Jayakrishnan
  surname: Madathil
  fullname: Madathil, Jayakrishnan
  email: jayakrishnan.m@iitgn.ac.in
  organization: Indian Institute of Technology Gandhinagar
– sequence: 2
  givenname: Roohani
  surname: Sharma
  fullname: Sharma, Roohani
  organization: Max Planck Institute for Informatics
– sequence: 3
  givenname: Meirav
  surname: Zehavi
  fullname: Zehavi, Meirav
  organization: Ben-Gurion University
BookMark eNp9kFtLAzEQhYNUsF7-gE8Bn6OTy-62j7VeUbHQ-hyyu7M1spusyRbqvze1gm_CDDMw55yB75iMnHdIyDmHSw5QXEUAlUkGgjOACeRse0DGXEnBIFN8RMbAiwlTOS-OyHGMHwBcFNN8TPyMLjclw22fAt1gTUvvFis6a9c-2OG9o8bV1NCFb7-c73bnJwwOW9r4QF-ss92mozc2YDVgTa9tTIv1jqZaYmcr3_UtDpgk62D693hKDhvTRjz7nSfk7e52NX9gz6_3j_PZM6tEAQMzJcg6L5tSQWlkPkkt-LSEDCtl8roxtVSoysxI2SAWJkMupJwqBbyRVVHIE3Kxz-2D_9xgHPSH3wSXXmqRScHlRCiZVGKvqoKPMWCj-2A7E740B70Dq_dgdQKrf8DqbTLJvSkmsVtj-Iv-x_UNlFp-Ww
Cites_doi 10.1007/978-3-662-44465-8_22
10.1137/1.9781611975482.64
10.1016/j.jcss.2010.10.001
10.1137/0221016
10.1016/0304-3975(76)90059-1
10.1016/j.jctb.2019.01.006
10.1016/j.disopt.2010.03.010
10.1137/140988553
10.1016/j.jda.2009.08.001
10.1002/jgt.22408
10.1145/210332.210337
10.1007/978-3-662-53622-3_7
10.1145/1374376.1374415
10.1007/978-3-642-17517-6_3
10.1007/BF01305310
10.1007/978-3-642-02927-1_6
10.1007/978-3-642-45043-3_8
10.1137/S009753970139567X
10.1016/j.jctb.2014.12.005
10.1007/s00453-014-9928-y
10.1016/j.tcs.2005.10.007
10.1145/3196276
10.1016/j.jctb.2010.10.003
10.1007/978-3-319-21275-3
10.1016/S0020-0190(03)00251-5
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s00453-021-00806-x
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0541
EndPage 1884
ExternalDocumentID 10_1007_s00453_021_00806_x
GrantInformation_xml – fundername: Israel Science Foundation
  grantid: 1176/18
– fundername: United States - Israel Binational Science Foundation
  grantid: 2018302
  funderid: http://dx.doi.org/10.13039/100006221
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFSI
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
E.L
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
VH1
VXZ
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c270t-ab03d6bfb40ba368a36219b05ec4a6dfad34e4b5a33fee7a5e123394401f3c773
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000616056000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-4617
IngestDate Sun Nov 09 06:36:06 EST 2025
Sat Nov 29 02:20:30 EST 2025
Fri Feb 21 02:48:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Bisection
Polynomial kernel
Splitters
FPT Algorithm
Chromatic coding
Semicomplete digraph
Tournament
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-ab03d6bfb40ba368a36219b05ec4a6dfad34e4b5a33fee7a5e123394401f3c773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2532138243
PQPubID 2043795
PageCount 24
ParticipantIDs proquest_journals_2532138243
crossref_primary_10_1007_s00453_021_00806_x
springer_journals_10_1007_s00453_021_00806_x
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Panolan, F., Saurabh, S., Zehavi, M.: Contraction decomposition in unit disk graphs and algorithmic applications in parameterized complexity. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6–9, 2019, pp. 1035–1054 (2019)
Kim, I.: On containment relations in directed graphs. PhD thesis, Princeton University (2013)
van Bevern, R., Feldmann, A.E., Sorge, M., Suchý, O.: On the parameterized complexity of computing graph bisections. In Brandstädt, A., Jansen, K., Reischuk, R. (eds) Graph-Theoretic Concepts in Computer Science—39th International Workshop, WG 2013, Lübeck, Germany, June 19–21, 2013, Revised Papers, volume 8165 of Lecture Notes in Computer Science, pp. 76–87. Springer (2013)
BuiTNPeckAPartitioning planar graphsSIAM J. Comput.1992212203215115452010.1137/0221016
Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomization. In: 36th Annual Symposium on Foundations of Computer Science, Milwaukee, Wisconsin, USA, 23–25 October 1995, pp. 182–191 (1995)
CyganMLokshtanovDPilipczukMPilipczukMSaurabhSMinimum bisection is fixed-parameter tractableSIAM J. Comput.2019482417450393792510.1137/140988553
Feige, U.: Faster fast (feedback arc set in tournaments). CoRR arXiv:abs/0911.5094 (2009)
Karpinski, M., Schudy, W.: Faster algorithms for feedback arc set tournament, kemeny rank aggregation and betweenness tournament. In: Algorithms and Computation—21st International Symposium, ISAAC 2010, Jeju Island, Korea, December 15–17, 2010, Proceedings, Part I, pp. 3–14 (2010)
LampisMKaouriGMitsouVOn the algorithmic effectiveness of digraph decompositions and complexity measuresDiscrete Optim.201181129138277256610.1016/j.disopt.2010.03.010
AlonNYusterRZwickUColor-codingJ. ACM1995424844856141178710.1145/210332.210337
BessySFominFVGaspersSPaulCPerezASaurabhSThomasséSKernels for feedback arc set in tournamentsJ. Comput. Syst. Sci.201177610711078285801010.1016/j.jcss.2010.10.001
KimISeymourPDTournament minorsJ. Comb. Theory Ser. B2015112138153332303910.1016/j.jctb.2014.12.005
Alon, N., Lokshtanov, D., Saurabh, S.: Fast FAST. In: Automata, Languages and Programming, 36th International Colloquium, ICALP 2009, Rhodes, Greece, July 5–12, 2009, Proceedings, Part I, pp. 49–58 (2009)
RédeiLEin kombinatorischer satzSatz. Acta Litt. Szeged1934739430009.14606
CamionPChemins et circuits hamiltoniens des graphes completsComptes Rendus Hebdomadaires des Séances de l’Académie des Sciences195924921215121521227350092.15801
BarberoFPaulCPilipczukMExploring the complexity of layout parameters in tournaments and semicomplete digraphsACM Trans. Algorithms201814338:138:31384134010.1145/3196276
PapadimitriouCHSideriMThe bisection width of grid graphsMath. Syst. Theory199629297110136879310.1007/BF01305310
Bang-JensenJGutinGZDigraphs—Theory, Algorithms and Applications2002BerlinSpringer1001.05002
DomMGuoJHüffnerFNiedermeierRTrußAFixed-parameter tractability results for feedback set problems in tournamentsJ. Discrete Algorithms2010817686255888110.1016/j.jda.2009.08.001
GareyMRJohnsonDSStockmeyerLJSome simplified NP-complete graph problemsTheor. Comput. Sci.19761323726741124010.1016/0304-3975(76)90059-1
Diestel, R.: Graph Theory, 4th edn, volume 173 of Graduate texts in mathematics. Springer (2012)
FeldmannAEWidmayerPAn o(n4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$^{\text{4}}$$\end{document}) time algorithm to compute the bisection width of solid grid graphsAlgorithmica2015711181200330215110.1007/s00453-014-9928-y
CyganMFominFVKowalikLLokshtanovDMarxDPilipczukMPilipczukMSaurabhSParameterized Algorithms2015BerlinSpringer10.1007/978-3-319-21275-3
JansenKKarpinskiMLingasASeidelEPolynomial time approximation schemes for MAX-BISECTION on planar and geometric graphsSIAM J. Comput.2005351110119217880010.1137/S009753970139567X
FeigeUYahalomOOn the complexity of finding balanced oneway cutsInf. Process. Lett.200387115197985210.1016/S0020-0190(03)00251-5
Fradkin, A.: Forbidden structures and algorithms in graphs and digraphs. PhD thesis, Princeton University (2011)
MarxDParameterized graph separation problemsTheor. Comput. Sci.20063513394406220249810.1016/j.tcs.2005.10.007
BarberoFPaulCPilipczukMStrong immersion is a well-quasi-ordering for semicomplete digraphsJ. Graph Theory2019904484496391518410.1002/jgt.22408
Räcke, H.: Optimal hierarchical decompositions for congestion minimization in networks. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada, May 17–20, 2008, pp. 255–264 (2008)
FominFVPilipczukMOn width measures and topological problems on semi-complete digraphsJ. Comb. Theory Ser. B201913878165397922710.1016/j.jctb.2019.01.006
ChudnovskyMSeymourPDA well-quasi-order for tournamentsJ. Comb. Theory Ser. B201110114753273717710.1016/j.jctb.2010.10.003
Díaz, J., Mertzios, G.B.: Minimum bisection is NP-hard on unit disk graphs. In: Mathematical Foundations of Computer Science 2014—39th International Symposium, MFCS 2014, Budapest, Hungary, August 25–29, 2014. Proceedings, Part II, pp. 251–262 (2014)
Madathil, J., Sharma, R., Zehavi, M.: A sub-exponential FPT algorithm and a polynomial kernel for minimum directed bisection on semicomplete digraphs. In: Rossmanith, P., Heggernes, P., Katoen, J.-P. (es) 44th International Symposium on Mathematical Foundations of Computer Science, MFCS 2019, August 26–30, 2019, Aachen, Germany, volume 138 of LIPIcs, pp. 28:1–28:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)
Macgregor, R.M.: On partitioning a graph: a theoretical and empirical study. PhD thesis, University of California, Berkeley (1979)
806_CR30
806_CR32
L Rédei (806_CR33) 1934; 7
806_CR1
K Jansen (806_CR21) 2005; 35
MR Garey (806_CR20) 1976; 1
S Bessy (806_CR6) 2011; 77
TN Bui (806_CR7) 1992; 21
M Chudnovsky (806_CR9) 2011; 101
806_CR19
M Dom (806_CR14) 2010; 8
U Feige (806_CR16) 2003; 87
806_CR15
F Barbero (806_CR5) 2019; 90
M Cygan (806_CR11) 2019; 48
806_CR12
806_CR34
M Lampis (806_CR25) 2011; 8
806_CR13
J Bang-Jensen (806_CR3) 2002
FV Fomin (806_CR18) 2019; 138
P Camion (806_CR8) 1959; 249
CH Papadimitriou (806_CR31) 1996; 29
N Alon (806_CR2) 1995; 42
F Barbero (806_CR4) 2018; 14
I Kim (806_CR24) 2015; 112
806_CR27
806_CR26
806_CR29
AE Feldmann (806_CR17) 2015; 71
806_CR23
806_CR22
M Cygan (806_CR10) 2015
D Marx (806_CR28) 2006; 351
References_xml – reference: Díaz, J., Mertzios, G.B.: Minimum bisection is NP-hard on unit disk graphs. In: Mathematical Foundations of Computer Science 2014—39th International Symposium, MFCS 2014, Budapest, Hungary, August 25–29, 2014. Proceedings, Part II, pp. 251–262 (2014)
– reference: Bang-JensenJGutinGZDigraphs—Theory, Algorithms and Applications2002BerlinSpringer1001.05002
– reference: CamionPChemins et circuits hamiltoniens des graphes completsComptes Rendus Hebdomadaires des Séances de l’Académie des Sciences195924921215121521227350092.15801
– reference: BarberoFPaulCPilipczukMStrong immersion is a well-quasi-ordering for semicomplete digraphsJ. Graph Theory2019904484496391518410.1002/jgt.22408
– reference: AlonNYusterRZwickUColor-codingJ. ACM1995424844856141178710.1145/210332.210337
– reference: PapadimitriouCHSideriMThe bisection width of grid graphsMath. Syst. Theory199629297110136879310.1007/BF01305310
– reference: GareyMRJohnsonDSStockmeyerLJSome simplified NP-complete graph problemsTheor. Comput. Sci.19761323726741124010.1016/0304-3975(76)90059-1
– reference: BarberoFPaulCPilipczukMExploring the complexity of layout parameters in tournaments and semicomplete digraphsACM Trans. Algorithms201814338:138:31384134010.1145/3196276
– reference: Fradkin, A.: Forbidden structures and algorithms in graphs and digraphs. PhD thesis, Princeton University (2011)
– reference: Diestel, R.: Graph Theory, 4th edn, volume 173 of Graduate texts in mathematics. Springer (2012)
– reference: Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomization. In: 36th Annual Symposium on Foundations of Computer Science, Milwaukee, Wisconsin, USA, 23–25 October 1995, pp. 182–191 (1995)
– reference: CyganMFominFVKowalikLLokshtanovDMarxDPilipczukMPilipczukMSaurabhSParameterized Algorithms2015BerlinSpringer10.1007/978-3-319-21275-3
– reference: FeldmannAEWidmayerPAn o(n4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$^{\text{4}}$$\end{document}) time algorithm to compute the bisection width of solid grid graphsAlgorithmica2015711181200330215110.1007/s00453-014-9928-y
– reference: BuiTNPeckAPartitioning planar graphsSIAM J. Comput.1992212203215115452010.1137/0221016
– reference: Madathil, J., Sharma, R., Zehavi, M.: A sub-exponential FPT algorithm and a polynomial kernel for minimum directed bisection on semicomplete digraphs. In: Rossmanith, P., Heggernes, P., Katoen, J.-P. (es) 44th International Symposium on Mathematical Foundations of Computer Science, MFCS 2019, August 26–30, 2019, Aachen, Germany, volume 138 of LIPIcs, pp. 28:1–28:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)
– reference: CyganMLokshtanovDPilipczukMPilipczukMSaurabhSMinimum bisection is fixed-parameter tractableSIAM J. Comput.2019482417450393792510.1137/140988553
– reference: Macgregor, R.M.: On partitioning a graph: a theoretical and empirical study. PhD thesis, University of California, Berkeley (1979)
– reference: LampisMKaouriGMitsouVOn the algorithmic effectiveness of digraph decompositions and complexity measuresDiscrete Optim.201181129138277256610.1016/j.disopt.2010.03.010
– reference: RédeiLEin kombinatorischer satzSatz. Acta Litt. Szeged1934739430009.14606
– reference: FeigeUYahalomOOn the complexity of finding balanced oneway cutsInf. Process. Lett.200387115197985210.1016/S0020-0190(03)00251-5
– reference: BessySFominFVGaspersSPaulCPerezASaurabhSThomasséSKernels for feedback arc set in tournamentsJ. Comput. Syst. Sci.201177610711078285801010.1016/j.jcss.2010.10.001
– reference: ChudnovskyMSeymourPDA well-quasi-order for tournamentsJ. Comb. Theory Ser. B201110114753273717710.1016/j.jctb.2010.10.003
– reference: Kim, I.: On containment relations in directed graphs. PhD thesis, Princeton University (2013)
– reference: Alon, N., Lokshtanov, D., Saurabh, S.: Fast FAST. In: Automata, Languages and Programming, 36th International Colloquium, ICALP 2009, Rhodes, Greece, July 5–12, 2009, Proceedings, Part I, pp. 49–58 (2009)
– reference: van Bevern, R., Feldmann, A.E., Sorge, M., Suchý, O.: On the parameterized complexity of computing graph bisections. In Brandstädt, A., Jansen, K., Reischuk, R. (eds) Graph-Theoretic Concepts in Computer Science—39th International Workshop, WG 2013, Lübeck, Germany, June 19–21, 2013, Revised Papers, volume 8165 of Lecture Notes in Computer Science, pp. 76–87. Springer (2013)
– reference: FominFVPilipczukMOn width measures and topological problems on semi-complete digraphsJ. Comb. Theory Ser. B201913878165397922710.1016/j.jctb.2019.01.006
– reference: Feige, U.: Faster fast (feedback arc set in tournaments). CoRR arXiv:abs/0911.5094 (2009)
– reference: Karpinski, M., Schudy, W.: Faster algorithms for feedback arc set tournament, kemeny rank aggregation and betweenness tournament. In: Algorithms and Computation—21st International Symposium, ISAAC 2010, Jeju Island, Korea, December 15–17, 2010, Proceedings, Part I, pp. 3–14 (2010)
– reference: Panolan, F., Saurabh, S., Zehavi, M.: Contraction decomposition in unit disk graphs and algorithmic applications in parameterized complexity. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6–9, 2019, pp. 1035–1054 (2019)
– reference: JansenKKarpinskiMLingasASeidelEPolynomial time approximation schemes for MAX-BISECTION on planar and geometric graphsSIAM J. Comput.2005351110119217880010.1137/S009753970139567X
– reference: MarxDParameterized graph separation problemsTheor. Comput. Sci.20063513394406220249810.1016/j.tcs.2005.10.007
– reference: DomMGuoJHüffnerFNiedermeierRTrußAFixed-parameter tractability results for feedback set problems in tournamentsJ. Discrete Algorithms2010817686255888110.1016/j.jda.2009.08.001
– reference: Räcke, H.: Optimal hierarchical decompositions for congestion minimization in networks. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada, May 17–20, 2008, pp. 255–264 (2008)
– reference: KimISeymourPDTournament minorsJ. Comb. Theory Ser. B2015112138153332303910.1016/j.jctb.2014.12.005
– ident: 806_CR12
  doi: 10.1007/978-3-662-44465-8_22
– ident: 806_CR30
  doi: 10.1137/1.9781611975482.64
– volume-title: Digraphs—Theory, Algorithms and Applications
  year: 2002
  ident: 806_CR3
– volume: 77
  start-page: 1071
  issue: 6
  year: 2011
  ident: 806_CR6
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/j.jcss.2010.10.001
– volume: 21
  start-page: 203
  issue: 2
  year: 1992
  ident: 806_CR7
  publication-title: SIAM J. Comput.
  doi: 10.1137/0221016
– ident: 806_CR26
– volume: 1
  start-page: 237
  issue: 3
  year: 1976
  ident: 806_CR20
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(76)90059-1
– volume: 138
  start-page: 78
  year: 2019
  ident: 806_CR18
  publication-title: J. Comb. Theory Ser. B
  doi: 10.1016/j.jctb.2019.01.006
– volume: 8
  start-page: 129
  issue: 1
  year: 2011
  ident: 806_CR25
  publication-title: Discrete Optim.
  doi: 10.1016/j.disopt.2010.03.010
– volume: 48
  start-page: 417
  issue: 2
  year: 2019
  ident: 806_CR11
  publication-title: SIAM J. Comput.
  doi: 10.1137/140988553
– volume: 8
  start-page: 76
  issue: 1
  year: 2010
  ident: 806_CR14
  publication-title: J. Discrete Algorithms
  doi: 10.1016/j.jda.2009.08.001
– volume: 90
  start-page: 484
  issue: 4
  year: 2019
  ident: 806_CR5
  publication-title: J. Graph Theory
  doi: 10.1002/jgt.22408
– volume: 42
  start-page: 844
  issue: 4
  year: 1995
  ident: 806_CR2
  publication-title: J. ACM
  doi: 10.1145/210332.210337
– ident: 806_CR13
  doi: 10.1007/978-3-662-53622-3_7
– ident: 806_CR32
  doi: 10.1145/1374376.1374415
– ident: 806_CR22
  doi: 10.1007/978-3-642-17517-6_3
– volume: 29
  start-page: 97
  issue: 2
  year: 1996
  ident: 806_CR31
  publication-title: Math. Syst. Theory
  doi: 10.1007/BF01305310
– ident: 806_CR1
  doi: 10.1007/978-3-642-02927-1_6
– ident: 806_CR23
– ident: 806_CR19
– volume: 249
  start-page: 2151
  issue: 21
  year: 1959
  ident: 806_CR8
  publication-title: Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences
– ident: 806_CR27
– ident: 806_CR34
  doi: 10.1007/978-3-642-45043-3_8
– ident: 806_CR29
– volume: 35
  start-page: 110
  issue: 1
  year: 2005
  ident: 806_CR21
  publication-title: SIAM J. Comput.
  doi: 10.1137/S009753970139567X
– volume: 112
  start-page: 138
  year: 2015
  ident: 806_CR24
  publication-title: J. Comb. Theory Ser. B
  doi: 10.1016/j.jctb.2014.12.005
– volume: 71
  start-page: 181
  issue: 1
  year: 2015
  ident: 806_CR17
  publication-title: Algorithmica
  doi: 10.1007/s00453-014-9928-y
– volume: 351
  start-page: 394
  issue: 3
  year: 2006
  ident: 806_CR28
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2005.10.007
– volume: 14
  start-page: 38:1
  issue: 3
  year: 2018
  ident: 806_CR4
  publication-title: ACM Trans. Algorithms
  doi: 10.1145/3196276
– volume: 101
  start-page: 47
  issue: 1
  year: 2011
  ident: 806_CR9
  publication-title: J. Comb. Theory Ser. B
  doi: 10.1016/j.jctb.2010.10.003
– volume: 7
  start-page: 39
  year: 1934
  ident: 806_CR33
  publication-title: Satz. Acta Litt. Szeged
– volume-title: Parameterized Algorithms
  year: 2015
  ident: 806_CR10
  doi: 10.1007/978-3-319-21275-3
– ident: 806_CR15
– volume: 87
  start-page: 1
  issue: 1
  year: 2003
  ident: 806_CR16
  publication-title: Inf. Process. Lett.
  doi: 10.1016/S0020-0190(03)00251-5
SSID ssj0012796
Score 2.2880788
Snippet Given an n -vertex digraph D and a non-negative integer k , the M inimum D irected B isection problem asks if the vertices of D can be partitioned into two...
Given an n-vertex digraph D and a non-negative integer k, the Minimum Directed Bisection problem asks if the vertices of D can be partitioned into two parts,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 1861
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Apexes
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Graph theory
Kernels
Mathematics of Computing
Polynomials
Theory of Computation
Title A Sub-exponential FPT Algorithm and a Polynomial Kernel for Minimum Directed Bisection on Semicomplete Digraphs
URI https://link.springer.com/article/10.1007/s00453-021-00806-x
https://www.proquest.com/docview/2532138243
Volume 83
WOSCitedRecordID wos000616056000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA-iHrw4P3E6JQdvGuiSpl2PUxyCOIabsltJ2kQLWzvaTuZ_70vWbih6UGhPSUP7Xt57v_R9IXRJBWdRWzHiSh4TU3-ESE1NsEMsHZ9qoSNtm034_X5nPA4GVVJYUUe71y5Jq6lXyW4GfRifIxx_AeZ4BJDjFpi7jhHHp-HLyndAfduVy_SdJy4Y6CpV5uc1vpqjNcb85ha11qbX-N977qHdCl3i7nI77KMNlR6gRt25AVeCfIiyLgaNQdRilqUmXAie6Q1GuDt5zfKkfJtikcZY4EE2-TBpyzD8oPJUTTBAXPyYpMl0PsVLbalifJMUNqArxXANTbS9iVMHNA5TbEHs4gg99-5Gt_ekar1AIuo7JRHSYbEntXQdKZjXgRtUm3S4ilzhxVrEzFXAXsGYVsoXXIEFNDm2TluzyPfZMdpM4QtOEObc0z6AmCDiACVikH8pvCCQVChPO5o30VXNgXC2rLARrmopW1qGQMvQ0jJcNFGrZlJYSVsRUs6oqaXosia6rpmyHv59tdO_TT9DO9Ty1fyEaaHNMp-rc7QdvZdJkV_YXfgJ5KfYQA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT8IwEG4MmuiL-DOiqH3wTZuMdt3gEY0EIxAiaHhb2q3VJTAIA4P_vdeyQTT6oMn21K7Zeu3d1913dwhdUcFZWFGMuJJHxOQfIVJTQ3aIpONTLXSobbEJv9OpDga1bhYUluZs99wlaTX1KtjNoA_jc4TjL8AcjwBy3HTBYhki31PvZeU7oL6tymXqzhMXDHQWKvPzGF_N0RpjfnOLWmvTKP7vPffQboYucX25HPbRhkoOUDGv3ICzjXyIxnUMGoOoxWScGLoQPNPo9nF9-DqexrO3ERZJhAXujocfJmwZmh_VNFFDDBAXt-MkHs1HeKktVYRv49QSuhIMV8-w7Q1PHdA4dLEJsdMj9Ny47981SVZ6gYTUd2ZESIdFntTSdaRgXhVuUG3S4Sp0hRdpETFXgXgFY1opX3AFFtDE2DoVzULfZ8eokMAXnCDMuad9ADG1kAOUiGD_S-HVapIK5WlH8xK6ziUQTJYZNoJVLmU7lwHMZWDnMliUUDkXUpDttjSgnFGTS9FlJXSTC2Xd_Ptop3_rfom2m_12K2g9dB7P0A61MjY_ZMqoMJvO1TnaCt9ncTq9sCvyExEN2yQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4QIMSF8RSDATlwg4iSNC07jkcFGkyVeIhblTQJVNq6aSto_HucrB0PwQEhtaekURsn9pfa_ozQPhWcpceaEV9yRSz_CJGG2mAHJb2QGmFS44pNhJ3OyeNjM_6Uxe-i3SuX5CSnwbI05cXRQJmjaeKbRSLW_whHYYA8AQEUOefbokH2vH77MPUj0NBV6LI16IkPxrpMm_l5jK-m6QNvfnOROssT1f7_zstoqUSduDVZJitoRuerqFZVdMDlBl9D_RYGTUL0eNDPbRgRPBPFd7jVfeoPs-K5h0WusMBxv_tm05mhua2Hue5igL74Jsuz3ksPT7SoVvg0G7lArxzDdWuj8G38OqB06OKIskfr6D66uDu7JGVJBpLS0CuIkB5TgTTS96RgwQncoPKkx3Xqi0AZoZivQeyCMaN1KLgGy2hzb71jw9IwZBtoNocv2ESY88CEAG6aKQeIoUAvSBE0m5IKHRjP8Do6qKSRDCbMG8mUY9nNZQJzmbi5TMZ11KgElpS7cJRQzqjlWPRZHR1WAvpo_n20rb9130ML8XmUXF912ttokToR2_80DTRbDF_0DppPX4tsNNx1i_MdyznkCA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Sub-exponential+FPT+Algorithm+and+a+Polynomial+Kernel+for+Minimum+Directed+Bisection+on+Semicomplete+Digraphs&rft.jtitle=Algorithmica&rft.au=Madathil+Jayakrishnan&rft.au=Sharma+Roohani&rft.au=Zehavi+Meirav&rft.date=2021-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=83&rft.issue=6&rft.spage=1861&rft.epage=1884&rft_id=info:doi/10.1007%2Fs00453-021-00806-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon