Efficient Dynamic Approximate Distance Oracles for Vertex-Labeled Planar Graphs
Let G be a graph where each vertex is associated with a label. A vertex-labeled approximate distance oracle is a data structure that, given a vertex v and a label λ , returns a (1 + ε )-approximation of the distance from v to the closest vertex with label λ in G . Such an oracle is dynamic if it als...
Uloženo v:
| Vydáno v: | Theory of computing systems Ročník 63; číslo 8; s. 1849 - 1874 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.11.2019
Springer Nature B.V |
| Témata: | |
| ISSN: | 1432-4350, 1433-0490 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Let
G
be a graph where each vertex is associated with a label. A
vertex-labeled approximate distance oracle
is a data structure that, given a vertex
v
and a label
λ
, returns a (1 +
ε
)-approximation of the distance from
v
to the closest vertex with label
λ
in
G
. Such an oracle is
dynamic
if it also supports label changes. In this paper we present three different dynamic approximate vertex-labeled distance oracles for planar graphs, all with polylogarithmic query and update times, and nearly linear space requirements. No such oracles were previously known. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1432-4350 1433-0490 |
| DOI: | 10.1007/s00224-019-09949-5 |