Efficient Dynamic Approximate Distance Oracles for Vertex-Labeled Planar Graphs

Let G be a graph where each vertex is associated with a label. A vertex-labeled approximate distance oracle is a data structure that, given a vertex v and a label λ , returns a (1 + ε )-approximation of the distance from v to the closest vertex with label λ in G . Such an oracle is dynamic if it als...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Theory of computing systems Ročník 63; číslo 8; s. 1849 - 1874
Hlavní autoři: Laish, Itay, Mozes, Shay
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.11.2019
Springer Nature B.V
Témata:
ISSN:1432-4350, 1433-0490
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Let G be a graph where each vertex is associated with a label. A vertex-labeled approximate distance oracle is a data structure that, given a vertex v and a label λ , returns a (1 + ε )-approximation of the distance from v to the closest vertex with label λ in G . Such an oracle is dynamic if it also supports label changes. In this paper we present three different dynamic approximate vertex-labeled distance oracles for planar graphs, all with polylogarithmic query and update times, and nearly linear space requirements. No such oracles were previously known.
AbstractList Let G be a graph where each vertex is associated with a label. A vertex-labeled approximate distance oracle is a data structure that, given a vertex v and a label λ, returns a (1 + ε)-approximation of the distance from v to the closest vertex with label λ in G. Such an oracle is dynamic if it also supports label changes. In this paper we present three different dynamic approximate vertex-labeled distance oracles for planar graphs, all with polylogarithmic query and update times, and nearly linear space requirements. No such oracles were previously known.
Let G be a graph where each vertex is associated with a label. A vertex-labeled approximate distance oracle is a data structure that, given a vertex v and a label λ , returns a (1 + ε )-approximation of the distance from v to the closest vertex with label λ in G . Such an oracle is dynamic if it also supports label changes. In this paper we present three different dynamic approximate vertex-labeled distance oracles for planar graphs, all with polylogarithmic query and update times, and nearly linear space requirements. No such oracles were previously known.
Author Laish, Itay
Mozes, Shay
Author_xml – sequence: 1
  givenname: Itay
  surname: Laish
  fullname: Laish, Itay
  organization: Efi Arazi School of Computer Science, The Interdisciplinary Center Herzliya
– sequence: 2
  givenname: Shay
  orcidid: 0000-0001-9262-1821
  surname: Mozes
  fullname: Mozes, Shay
  email: smozes@idc.ac.il
  organization: Efi Arazi School of Computer Science, The Interdisciplinary Center Herzliya
BookMark eNp9kE9PAjEQxRuDiYB-AU9NPFen7f7rkQCiCQke1GszW1pdsnTXdkng27uyJt48zRzeezPvNyEj33hLyC2Hew6QP0QAIRIGXDFQKlEsvSBjnkjJIFEwOu-CJTKFKzKJcQcAsgAYk83SucpU1nd0cfK4rwydtW1ojtUeO0sXVezQG0s3AU1tI3VNoO82dPbI1lja2m7pS40eA10FbD_jNbl0WEd78zun5O1x-Tp_YuvN6nk-WzMjcugYKpU6VaqktDwzqcshS1ShQBphCyGUFdw5Y3KRlarAQkLucLsVLs0xRYMop-RuyO1__TrY2Oldcwi-P6mFKArJeSGzXiUGlQlNjME63Ya-WDhpDvoHnB7A6R6cPoPTaW-Sgyn2Yv9hw1_0P65v845yUA
Cites_doi 10.1007/978-3-642-38236-9_5
10.1145/2530531
10.1137/1.9781611974331.ch26
10.1006/jcss.1997.1493
10.1007/978-3-662-48971-0_53
10.1145/1039488.1039493
10.1145/380752.380798
10.1007/978-3-642-22012-8_39
10.1007/s00224-017-9827-0
10.1007/978-3-642-22006-7_12
10.1137/1.9781611973099.18
10.1145/2213977.2214084
10.1007/978-3-642-33090-2_29
10.1145/828.1884
10.1137/0136016
10.1145/2746539.2746615
10.1007/978-3-319-28684-6_9
10.1007/978-3-662-44777-2_69
10.1007/3-540-44676-1_10
10.1016/0020-0190(83)90075-3
10.1137/1.9781611973105.40
10.1137/1.9781611974331.ch53
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Theory of Computing Systems is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Theory of Computing Systems is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYYUZ
Q9U
DOI 10.1007/s00224-019-09949-5
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ABI/INFORM China
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1433-0490
EndPage 1874
ExternalDocumentID 10_1007_s00224_019_09949_5
GrantInformation_xml – fundername: Israel Science Foundation
  grantid: ISF 592/17
  funderid: https://doi.org/10.13039/501100003977
– fundername: Israel Science Foundation
  grantid: ISF 794/13
  funderid: https://doi.org/10.13039/501100003977
GroupedDBID --Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
2.D
203
29Q
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8V8
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARAPS
ARCSS
ARMRJ
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D0L
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ3
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
MK~
ML~
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF-
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R89
R9I
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XOL
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c270t-a995f9b94be16c5f706498903c2e8229e21ffcc726b98a8307fadd2f57a5acaa3
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000494473500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1432-4350
IngestDate Wed Nov 05 00:51:03 EST 2025
Sat Nov 29 03:28:55 EST 2025
Fri Feb 21 02:34:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords cover
Approximate distance oracles
Vertex labels
Portals
Planar graphs
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-a995f9b94be16c5f706498903c2e8229e21ffcc726b98a8307fadd2f57a5acaa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9262-1821
PQID 2288311836
PQPubID 48907
PageCount 26
ParticipantIDs proquest_journals_2288311836
crossref_primary_10_1007_s00224_019_09949_5
springer_journals_10_1007_s00224_019_09949_5
PublicationCentury 2000
PublicationDate 20191100
2019-11-00
20191101
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 20191100
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Theory of computing systems
PublicationTitleAbbrev Theory Comput Syst
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Hermelin, D., Levy, A., Weimann, O., Yuster, R.: Distance oracles for vertex-labeled graphs. In: ICALP (2), Lecture Notes in Computer Science, vol. 6756, pp. 490–501. Springer (2011)
Li, M., Ma, C.C.C.: Ning, L.: (1 + 𝜖)-distance oracles for vertex-labeled planar graphs. In: TAMC, pp. 42–51 (2013)
SommerCShortest-path queries in static networksACM Comput. Surv.201446445:145:3110.1145/25305311305.68137
WilkinsonBryan T.Amortized Bounds for Dynamic Orthogonal Range ReportingAlgorithms - ESA 20142014Berlin, HeidelbergSpringer Berlin Heidelberg84285610.1007/978-3-662-44777-2_69
MozesShaySkopEyal E.Efficient Vertex-Label Distance Oracles for Planar GraphsTheory of Computing Systems2017622419440376771910.1007/s00224-017-9827-0
Klein, P.N.: Multiple-source shortest paths in planar graphs. In: SODA, pp. 146–155 (2005)
Chechik, S.: Improved distance oracles and spanners for vertex-labeled graphs. In: ESA, Lecture Notes in Computer Science, vol. 7501, pp. 325–336. Springer (2012)
Klein, P.N.: Preprocessing an undirected planar network to enable fast approximate distance queries. In: SODA, pp. 820–827 (2002)
ThorupMCompact oracles for reachability and approximate distances in planar digraphsJ. ACM20045169931024214526110.1145/1039488.10394931125.68394
Wulff-Nilsen, C.: Approximate distance oracles with improved preprocessing time. In: SODA, pp. 202–208. SIAM (2012)
HenzingerMRKleinPNRaoSSubramanianSFaster shortest-path algorithms for planar graphsJ. Comput. Syst. Sci.1997551323147304610.1006/jcss.1997.14930880.68099
Thorup, M., Zwick, U.: Approximate distance oracles. In: STOC, pp. 183–192. ACM (2001)
Wulff-Nilsen, C.: Approximate distance oracles for planar graphs with improved query time-space tradeoff. In: SODA, pp. 351–362 (2016)
Łȧcki, J., Ocwieja, J., Pilipczuk, M., Sankowski, P., Zych, A.: The power of dynamic distance oracles: efficient dynamic algorithms for the steiner tree. In: STOC, pp. 11–20 (2015)
PaghRasmusRodlerFlemming FricheCuckoo HashingAlgorithms — ESA 20012001Berlin, HeidelbergSpringer Berlin Heidelberg12113310.1007/3-540-44676-1_10
Kawarabayashi, K., Klein, P.N., Sommer, C.: Linear-space approximate distance oracles for planar, bounded-genus and minor-free graphs. In: ICALP (1), Lecture Notes in Computer Science, vol. 6755, pp. 135–146. Springer (2011)
WillardDELog-logarithmic worst-case range queries are possible in space theta(n)Inf. Process. Lett.1983172818410.1016/0020-0190(83)90075-30509.68106
Abraham, I., Chechik, S., Gavoille, C.: Fully dynamic approximate distance oracles for planar graphs via forbidden-set distance labels. In: STOC, pp. 1199–1218. ACM (2012)
Abraham, I., Chechik, S., Delling, D., Goldberg, A.V., Werneck, R.F.: On dynamic approximate shortest paths for planar graphs with worst-case costs. In: SODA, pp. 740–753. SIAM (2016)
LiptonRJTarjanREA separator theorem for planar graphsSIAM J. Appl. Math.197936217718952449510.1137/0136016
Kawarabayashi, K., Sommer, C., Thorup, M.: More compact oracles for approximate distances in undirected planar graphs. In: SODA, pp. 550–563. SIAM (2013)
Gu, Q., Xu, G.: Constant query time (1 + 𝜖)-approximate distance oracle for planar graphs. In: ISAAC, pp. 625–636 (2015)
MozesShaySkopEyal E.Efficient Vertex-Label Distance Oracles for Planar GraphsApproximation and Online Algorithms2015ChamSpringer International Publishing9710910.1007/978-3-319-28684-6_9
FredmanMLKomlȯsJSzemerėdiEStoring a sparse table with O(1) worst case access timeJ. ACM,198431353854481915610.1145/828.18840629.68068
M Thorup (9949_CR19) 2004; 51
9949_CR9
RJ Lipton (9949_CR13) 1979; 36
Bryan T. Wilkinson (9949_CR21) 2014
9949_CR20
MR Henzinger (9949_CR6) 1997; 55
Rasmus Pagh (9949_CR17) 2001
DE Willard (9949_CR22) 1983; 17
9949_CR12
9949_CR23
9949_CR24
9949_CR10
Shay Mozes (9949_CR15) 2015
ML Fredman (9949_CR4) 1984; 31
9949_CR11
9949_CR14
Shay Mozes (9949_CR16) 2017; 62
9949_CR2
C Sommer (9949_CR18) 2014; 46
9949_CR1
9949_CR3
9949_CR5
9949_CR8
9949_CR7
References_xml – reference: Gu, Q., Xu, G.: Constant query time (1 + 𝜖)-approximate distance oracle for planar graphs. In: ISAAC, pp. 625–636 (2015)
– reference: Łȧcki, J., Ocwieja, J., Pilipczuk, M., Sankowski, P., Zych, A.: The power of dynamic distance oracles: efficient dynamic algorithms for the steiner tree. In: STOC, pp. 11–20 (2015)
– reference: ThorupMCompact oracles for reachability and approximate distances in planar digraphsJ. ACM20045169931024214526110.1145/1039488.10394931125.68394
– reference: Thorup, M., Zwick, U.: Approximate distance oracles. In: STOC, pp. 183–192. ACM (2001)
– reference: WilkinsonBryan T.Amortized Bounds for Dynamic Orthogonal Range ReportingAlgorithms - ESA 20142014Berlin, HeidelbergSpringer Berlin Heidelberg84285610.1007/978-3-662-44777-2_69
– reference: Kawarabayashi, K., Klein, P.N., Sommer, C.: Linear-space approximate distance oracles for planar, bounded-genus and minor-free graphs. In: ICALP (1), Lecture Notes in Computer Science, vol. 6755, pp. 135–146. Springer (2011)
– reference: Li, M., Ma, C.C.C.: Ning, L.: (1 + 𝜖)-distance oracles for vertex-labeled planar graphs. In: TAMC, pp. 42–51 (2013)
– reference: Abraham, I., Chechik, S., Gavoille, C.: Fully dynamic approximate distance oracles for planar graphs via forbidden-set distance labels. In: STOC, pp. 1199–1218. ACM (2012)
– reference: PaghRasmusRodlerFlemming FricheCuckoo HashingAlgorithms — ESA 20012001Berlin, HeidelbergSpringer Berlin Heidelberg12113310.1007/3-540-44676-1_10
– reference: Abraham, I., Chechik, S., Delling, D., Goldberg, A.V., Werneck, R.F.: On dynamic approximate shortest paths for planar graphs with worst-case costs. In: SODA, pp. 740–753. SIAM (2016)
– reference: WillardDELog-logarithmic worst-case range queries are possible in space theta(n)Inf. Process. Lett.1983172818410.1016/0020-0190(83)90075-30509.68106
– reference: Klein, P.N.: Multiple-source shortest paths in planar graphs. In: SODA, pp. 146–155 (2005)
– reference: HenzingerMRKleinPNRaoSSubramanianSFaster shortest-path algorithms for planar graphsJ. Comput. Syst. Sci.1997551323147304610.1006/jcss.1997.14930880.68099
– reference: MozesShaySkopEyal E.Efficient Vertex-Label Distance Oracles for Planar GraphsApproximation and Online Algorithms2015ChamSpringer International Publishing9710910.1007/978-3-319-28684-6_9
– reference: LiptonRJTarjanREA separator theorem for planar graphsSIAM J. Appl. Math.197936217718952449510.1137/0136016
– reference: Wulff-Nilsen, C.: Approximate distance oracles for planar graphs with improved query time-space tradeoff. In: SODA, pp. 351–362 (2016)
– reference: Hermelin, D., Levy, A., Weimann, O., Yuster, R.: Distance oracles for vertex-labeled graphs. In: ICALP (2), Lecture Notes in Computer Science, vol. 6756, pp. 490–501. Springer (2011)
– reference: Kawarabayashi, K., Sommer, C., Thorup, M.: More compact oracles for approximate distances in undirected planar graphs. In: SODA, pp. 550–563. SIAM (2013)
– reference: Wulff-Nilsen, C.: Approximate distance oracles with improved preprocessing time. In: SODA, pp. 202–208. SIAM (2012)
– reference: Klein, P.N.: Preprocessing an undirected planar network to enable fast approximate distance queries. In: SODA, pp. 820–827 (2002)
– reference: FredmanMLKomlȯsJSzemerėdiEStoring a sparse table with O(1) worst case access timeJ. ACM,198431353854481915610.1145/828.18840629.68068
– reference: SommerCShortest-path queries in static networksACM Comput. Surv.201446445:145:3110.1145/25305311305.68137
– reference: Chechik, S.: Improved distance oracles and spanners for vertex-labeled graphs. In: ESA, Lecture Notes in Computer Science, vol. 7501, pp. 325–336. Springer (2012)
– reference: MozesShaySkopEyal E.Efficient Vertex-Label Distance Oracles for Planar GraphsTheory of Computing Systems2017622419440376771910.1007/s00224-017-9827-0
– ident: 9949_CR10
– ident: 9949_CR12
  doi: 10.1007/978-3-642-38236-9_5
– volume: 46
  start-page: 45:1
  issue: 4
  year: 2014
  ident: 9949_CR18
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2530531
– ident: 9949_CR24
  doi: 10.1137/1.9781611974331.ch26
– volume: 55
  start-page: 3
  issue: 1
  year: 1997
  ident: 9949_CR6
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1006/jcss.1997.1493
– ident: 9949_CR11
– ident: 9949_CR5
  doi: 10.1007/978-3-662-48971-0_53
– volume: 51
  start-page: 993
  issue: 6
  year: 2004
  ident: 9949_CR19
  publication-title: J. ACM
  doi: 10.1145/1039488.1039493
– ident: 9949_CR20
  doi: 10.1145/380752.380798
– ident: 9949_CR7
  doi: 10.1007/978-3-642-22012-8_39
– volume: 62
  start-page: 419
  issue: 2
  year: 2017
  ident: 9949_CR16
  publication-title: Theory of Computing Systems
  doi: 10.1007/s00224-017-9827-0
– ident: 9949_CR8
  doi: 10.1007/978-3-642-22006-7_12
– ident: 9949_CR23
  doi: 10.1137/1.9781611973099.18
– ident: 9949_CR2
  doi: 10.1145/2213977.2214084
– ident: 9949_CR3
  doi: 10.1007/978-3-642-33090-2_29
– volume: 31
  start-page: 538
  issue: 3
  year: 1984
  ident: 9949_CR4
  publication-title: J. ACM,
  doi: 10.1145/828.1884
– volume: 36
  start-page: 177
  issue: 2
  year: 1979
  ident: 9949_CR13
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0136016
– ident: 9949_CR14
  doi: 10.1145/2746539.2746615
– start-page: 97
  volume-title: Approximation and Online Algorithms
  year: 2015
  ident: 9949_CR15
  doi: 10.1007/978-3-319-28684-6_9
– start-page: 842
  volume-title: Algorithms - ESA 2014
  year: 2014
  ident: 9949_CR21
  doi: 10.1007/978-3-662-44777-2_69
– start-page: 121
  volume-title: Algorithms — ESA 2001
  year: 2001
  ident: 9949_CR17
  doi: 10.1007/3-540-44676-1_10
– volume: 17
  start-page: 81
  issue: 2
  year: 1983
  ident: 9949_CR22
  publication-title: Inf. Process. Lett.
  doi: 10.1016/0020-0190(83)90075-3
– ident: 9949_CR9
  doi: 10.1137/1.9781611973105.40
– ident: 9949_CR1
  doi: 10.1137/1.9781611974331.ch53
SSID ssj0003800
Score 2.1746628
Snippet Let G be a graph where each vertex is associated with a label. A vertex-labeled approximate distance oracle is a data structure that, given a vertex v and a...
Let G be a graph where each vertex is associated with a label. A vertex-labeled approximate distance oracle is a data structure that, given a vertex v and a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 1849
SubjectTerms Computer Science
Data structures
Graphs
Special Issue on Approximation and Online Algorithms
Theory of Computation
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV2xTsMwED1BYYCBQgFRKMgDG1gkThPHE6qgBQloGQB1ixzHkbq0JQmon8_ZSVqBBAtzHCvyne9e7Lv3AM4ZYnDpCEVThzNzzRjQWAch5Tgc8wsLBC_FJvhwGI7H4rk6cMursso6JtpAncyUOSO_YkYWF9GwF1zP36lRjTK3q5WExjps4Lyu8fMHTpeR2AttCwpCAtMZ5DtV04xtnbPJC3-kTcGQ6Arqf09MK7T544LU5p1B879fvAs7FeIkvdJF9mBNT1vQrNUcSLW5W7D9tGRwzfdh1LfcEpiSyG0pWk96hn58McERmtwa2ImvkVEmTV0dQexL3nRW6AV9lDHmsoQYPSSZkTtDiZ0fwOug_3JzTyvxBaoYdwoqhfBTEYturN1A-SlH7CJC4XiKaUMSr5mbpkpxFsQilCGGihRDJUt9Ln2ppPQOoTGdTfURkDhOJMKUxPXcuMuFDgOdqC5GWQN3Uu214aJe-WhecmxESzZla6cI7RRZO0V-Gzr1ckfVfsuj1Vq34bI22Orx77Md_z3bCWwx4yO2-bADjSL70KewqT6LSZ6dWW_7AqOI2Qk
  priority: 102
  providerName: ProQuest
Title Efficient Dynamic Approximate Distance Oracles for Vertex-Labeled Planar Graphs
URI https://link.springer.com/article/10.1007/s00224-019-09949-5
https://www.proquest.com/docview/2288311836
Volume 63
WOSCitedRecordID wos000494473500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-0490
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003800
  issn: 1432-4350
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED3RlgEGyqcolMoDG1hKnSaOxwIFJKBELd9L5LiO1KWgpKD-fM5ukgoEAywnRXGs6Gzfe5Z97wAOGXJw6QhFE4czc8zo01j7AeXYHPGF-YLPi03wfj94ehJhnhSWFbfdiyNJG6nLZDcLN7j1NVd8REdQrwI1hLvALMfB8KGMv25gE0-QCJh8IM_JU2V-7uMrHC045rdjUYs25_X__ec6rOXsknTn02EDlvRkE-pF5QaSL-RNWL0p1VqzLbjtWR0JhB9yNi9QT7pGanw2xhaanBmKiZ-R21SaO3QEeS550OlUz-i1jBG3RsTUPpIpuTDy19k23J_37k4vaV5ogSrGnSmVQniJiEUn1m1feQlHniIC4biKaSMIr1k7SZTizI9FIAMMCwmGRZZ4XHpSSenuQHXyOtG7QOJ4JJGSjNpuO-5woQNfj1QHI6qhNol2G3BU-Dt6m-tpRKVysvVchJ6LrOcirwHNYkiifG1lETMFknFf5PoNOC6GYPH69972_tZ8H1aYGUWbeNiE6jR91wewrD6m4yxtQYU_PregdtLrhwN8uuIU7Y1zaiwLjeVDtKH30rLz8xNb1taq
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RQGp74FVQl6cPcCoWWefh-FAhxPISy8KBIm7BcRxpD11osoXdP8Vv7Iw32RVIcOPQcxxLznye73M8D4BtgRpce8rw3JOCrhkjntoo5hKHI7-ISMlRswnZ6cS3t-pqCp7rXBgKq6x9onPU2b2hf-R7gtriohr2o_2HP5y6RtHtat1CYwSLczt8wiNb-fOshfbdEeL46PrwlFddBbgR0utzrVSYq1QFqW1GJswlkrKKlecbYan6uRXNPDdGiihVsY5xD-ToA0QeSh1qo7WP836CmSDA7UChgt7h2PP7sUt5QQlCmUihVyXpuFQ9R5Z4cKcAJRUoHr4kwom6fXUh63jueP5_-0ILMFcpanYw2gKLMGV7SzBfd6tglfNagq8X4wq15Te4PHK1M5ByWWvY07-7hh1QefVBF0dY1iJZja-xy0JT3CBDbc9ubNG3A97WKXJ1xqjfky7YCZX8Lpfh14cscgWme_c9-x1YmmYaZVjW9JtpIJWNI5uZAFmE5Fxu_Qb8qC2dPIxqiCTjatEOFwniInG4SMIGrNfmTSp_UiYT2zZgtwbI5PHbs62-P9sWfD69vmgn7bPO-Rp8EYRPl2i5DtP94q_dgFnz2O-WxaZDOoO7jwbOPxbzNzU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RqBAcSnmJ5VUf6IlaZJ1NHB9QhbosRUsXDqXiFhzHlvbAAsny-mv8Oma8ya5aCW4ceo5jyZnP832O5wGwI1CD60AZ7gIp6Jox5pmNEy5xOPKLiJUcNZuQvV5ycaHOpuC5zoWhsMraJ3pHnV8b-ke-J6gtLqrhMN5zVVjEWbvz_eaWUwcpummt22mMINK1Tw94fCv3j9to669CdA5___jJqw4D3AgZDLlWKnIqU63MNmMTOYkErRIVhEZYqoRuRdM5Y6SIM5XoBPeDQ38gXCR1pI3WIc77AWaQhSPaY13JxywQJj79BeUIZSVFQZWw49P2PHHiIZ6ClVRL8ehvUpwo3X8uZz3ndRb-56_1GT5VSpsdjLbGIkzZwRIs1F0sWOXUlmD-17hybbkMp4e-pgZSMWs_DfRV37ADKrv-2McRlrVJbuNr7LTQFE_IUPOzP7bApfMTnSGH54z6QOmCHVEp8HIFzt9lkaswPbge2DVgWZZrlGd5M2xmLalsEtvctJBdSOY5GzZgt7Z6ejOqLZKOq0h7jKSIkdRjJI0asFmbOq38TJlO7NyAbzVYJo9fn2397dm-wCziJT057nU3YE4QVH3-5SZMD4s7uwUfzf2wXxbbHvQMLt8bNy9jiD_b
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Dynamic+Approximate+Distance+Oracles+for+Vertex-Labeled+Planar+Graphs&rft.jtitle=Theory+of+computing+systems&rft.au=Laish%2C+Itay&rft.au=Mozes%2C+Shay&rft.date=2019-11-01&rft.issn=1432-4350&rft.eissn=1433-0490&rft.volume=63&rft.issue=8&rft.spage=1849&rft.epage=1874&rft_id=info:doi/10.1007%2Fs00224-019-09949-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00224_019_09949_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-4350&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-4350&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-4350&client=summon