Memory-Efficient Attacks on Small LWE Keys

Combinatorial attacks on small max norm LWE keys suffer enormous memory requirements, which render them inefficient in realistic attack scenarios. Therefore, more memory-efficient substitutes for these algorithms are needed. In this work, we provide new combinatorial algorithms for recovering small...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of cryptology Ročník 37; číslo 4; s. 36
Hlavní autori: Esser, Andre, Mukherjee, Arindam, Sarkar, Santanu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.10.2024
Springer Nature B.V
Predmet:
ISSN:0933-2790, 1432-1378
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Combinatorial attacks on small max norm LWE keys suffer enormous memory requirements, which render them inefficient in realistic attack scenarios. Therefore, more memory-efficient substitutes for these algorithms are needed. In this work, we provide new combinatorial algorithms for recovering small max norm LWE secrets outperforming previous approaches whenever the available memory is limited. We provide analyses of our algorithms for secret key distributions of current NTRU, Kyber and Dilithium variants, showing that our new approach outperforms previous memory-efficient algorithms. For instance, considering uniformly random ternary secrets of length n we improve the best known time complexity for polynomial memory algorithms from 2 1.063 n down-to 2 0.926 n . We obtain even larger gains for LWE secrets in { - m , … , m } n with m = 2 , 3 as found in Kyber and Dilithium. For example, for uniformly random keys in { - 2 , … , 2 } n as is the case for Dilithium we improve the previously best time under polynomial memory restriction from 2 1.742 n down-to 2 1.282 n . Eventually, we provide novel time-memory trade-offs continuously interpolating between our polynomial memory algorithms and the best algorithms in the unlimited memory case (May, in: Malkin, Peikert (eds) CRYPTO 2021, Part II, Springer, Heidelberg 2021. https://doi.org/10.1007/978-3-030-84245-1_24 ).
AbstractList Combinatorial attacks on small max norm LWE keys suffer enormous memory requirements, which render them inefficient in realistic attack scenarios. Therefore, more memory-efficient substitutes for these algorithms are needed. In this work, we provide new combinatorial algorithms for recovering small max norm LWE secrets outperforming previous approaches whenever the available memory is limited. We provide analyses of our algorithms for secret key distributions of current NTRU, Kyber and Dilithium variants, showing that our new approach outperforms previous memory-efficient algorithms. For instance, considering uniformly random ternary secrets of length n we improve the best known time complexity for polynomial memory algorithms from 21.063n down-to 20.926n. We obtain even larger gains for LWE secrets in {-m,…,m}n with m=2,3 as found in Kyber and Dilithium. For example, for uniformly random keys in {-2,…,2}n as is the case for Dilithium we improve the previously best time under polynomial memory restriction from 21.742n down-to 21.282n. Eventually, we provide novel time-memory trade-offs continuously interpolating between our polynomial memory algorithms and the best algorithms in the unlimited memory case (May, in: Malkin, Peikert (eds) CRYPTO 2021, Part II, Springer, Heidelberg 2021. https://doi.org/10.1007/978-3-030-84245-1_24).
Combinatorial attacks on small max norm LWE keys suffer enormous memory requirements, which render them inefficient in realistic attack scenarios. Therefore, more memory-efficient substitutes for these algorithms are needed. In this work, we provide new combinatorial algorithms for recovering small max norm LWE secrets outperforming previous approaches whenever the available memory is limited. We provide analyses of our algorithms for secret key distributions of current NTRU, Kyber and Dilithium variants, showing that our new approach outperforms previous memory-efficient algorithms. For instance, considering uniformly random ternary secrets of length n we improve the best known time complexity for polynomial memory algorithms from 2 1.063 n down-to 2 0.926 n . We obtain even larger gains for LWE secrets in { - m , … , m } n with m = 2 , 3 as found in Kyber and Dilithium. For example, for uniformly random keys in { - 2 , … , 2 } n as is the case for Dilithium we improve the previously best time under polynomial memory restriction from 2 1.742 n down-to 2 1.282 n . Eventually, we provide novel time-memory trade-offs continuously interpolating between our polynomial memory algorithms and the best algorithms in the unlimited memory case (May, in: Malkin, Peikert (eds) CRYPTO 2021, Part II, Springer, Heidelberg 2021. https://doi.org/10.1007/978-3-030-84245-1_24 ).
ArticleNumber 36
Author Mukherjee, Arindam
Esser, Andre
Sarkar, Santanu
Author_xml – sequence: 1
  givenname: Andre
  orcidid: 0000-0001-5806-3600
  surname: Esser
  fullname: Esser, Andre
  organization: Technology Innovation Institute
– sequence: 2
  givenname: Arindam
  orcidid: 0000-0001-5505-6536
  surname: Mukherjee
  fullname: Mukherjee, Arindam
  email: arindamaths@gmail.com
  organization: Department of Mathematics, Indian Institute of Technology Madras
– sequence: 3
  givenname: Santanu
  orcidid: 0000-0001-6821-920X
  surname: Sarkar
  fullname: Sarkar, Santanu
  organization: Department of Mathematics, Indian Institute of Technology Madras
BookMark eNp9kMFKAzEQhoNUsK2-gKcFb0J0JpNNusdSahUrHlQ8hjRNpLXdrcn20Lc3dQVvnmZgvv8f-AasVze1Z-wS4QYB9G0CQFlyEJJDVaLidML6KElwJD3qsT5URFzoCs7YIKV1xnWpqc-un_y2iQc-DWHlVr5ui3HbWveZiqYuXrZ2synm79Pi0R_SOTsNdpP8xe8csre76evkns-fZw-T8Zw7oaHlVpFSjtC7pcSFEEtQeQcMKlQhyAqDFPkG1pL2CwzOa6qCVuUoAKpRSUN21fXuYvO196k162Yf6_zSkCil1IjqSImOcrFJKfpgdnG1tfFgEMzRiemcmOzE_DgxlEPUhVKG6w8f_6r_SX0Dukpjyg
Cites_doi 10.1007/978-981-99-8730-6_3
10.1007/PL00003816
10.1007/978-3-031-22301-3_9
10.1145/1060590.1060603
10.1007/978-3-319-79063-3_6
10.1007/978-3-030-10970-7_15
10.1112/S1461157016000206
10.1007/978-3-030-38471-5_18
10.1145/1536414.1536440
10.1007/978-3-642-20465-4_21
10.1007/978-981-99-7563-1_4
10.1007/978-3-030-64834-3_22
10.1007/978-3-642-32009-5_42
10.1007/978-3-642-13190-5_12
10.1007/978-3-030-56880-1_7
10.1109/EuroSP.2018.00032
10.1007/978-3-030-45727-3_4
10.1007/978-3-662-53018-4_6
10.1007/978-3-662-53008-5_7
10.1007/978-3-642-13190-5_1
10.1504/IJACT.2012.045590
10.1007/978-3-031-30589-4_13
10.1007/978-3-642-25385-0_6
10.1007/BFb0054868
10.1007/978-3-540-74143-5_9
10.1007/978-3-031-41326-1_7
10.1007/978-3-642-40041-4_3
10.1007/978-3-030-77886-6_9
10.1007/978-3-319-66787-4_12
10.1007/978-3-031-22912-1_13
10.1007/978-3-031-07082-2_16
10.1007/978-3-030-35199-1_9
10.1007/978-3-030-84245-1_24
10.1007/978-3-642-29011-4_31
10.1007/978-3-642-33027-8_31
10.1109/TIT.1962.1057777
10.1007/978-3-319-72565-9_12
10.1007/978-3-642-29011-4_43
10.1145/1536414.1536461
10.1007/978-3-642-10366-7_36
10.1007/978-3-642-13190-5_13
ContentType Journal Article
Copyright International Association for Cryptologic Research 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
International Association for Cryptologic Research 2024.
Copyright_xml – notice: International Association for Cryptologic Research 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: International Association for Cryptologic Research 2024.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s00145-024-09516-3
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Education
Computer Science
EISSN 1432-1378
ExternalDocumentID 10_1007_s00145_024_09516_3
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
28-
29K
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
3-Y
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDO
EIOEI
EIS
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
Z8M
Z8R
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c270t-a6366c31ecd41b22d061ec01f6f9ff491f42ecd0aa37eb1fce739f7658f016853
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001295054100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0933-2790
IngestDate Mon Oct 06 16:37:08 EDT 2025
Sat Nov 29 06:12:31 EST 2025
Fri Feb 21 02:37:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Nested collision search
Time-memory trade-off
Representation technique
Polynomial memory
Combinatorial attacks
Learning with errors
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-a6366c31ecd41b22d061ec01f6f9ff491f42ecd0aa37eb1fce739f7658f016853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6821-920X
0000-0001-5505-6536
0000-0001-5806-3600
PQID 3254471165
PQPubID 2043756
ParticipantIDs proquest_journals_3254471165
crossref_primary_10_1007_s00145_024_09516_3
springer_journals_10_1007_s00145_024_09516_3
PublicationCentury 2000
PublicationDate 20241000
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 20241000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of cryptology
PublicationTitleAbbrev J Cryptol
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References M.R. Albrecht, S. Bai, L. Ducas, A subfield lattice attack on overstretched NTRU assumptions—cryptanalysis of some FHE and graded encoding schemes, in M. Robshaw, J. Katz, editors, CRYPTO 2016, Part I. LNCS, vol. 9814 (Springer, Heidelberg, 2016), pp. 153–178.https://doi.org/10.1007/978-3-662-53018-4_6
A. Becker, J.S. Coron, A. Joux, Improved generic algorithms for hard knapsacks, in K.G. Paterson, editor, EUROCRYPT 2011. LNCS, vol. 6632 (Springer, Heidelberg, 2011), pp. 364–385.https://doi.org/10.1007/978-3-642-20465-4_21
M.R. Albrecht, S. Bai, P.A. Fouque, P. Kirchner, D. Stehlé, W. Wen, Faster enumeration-based lattice reduction: root Hermite factor k1/(2k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{1/(2k)}$$\end{document} time kk/8+o(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{k/8+o(k)}$$\end{document}, in D. Micciancio, T. Ristenpart, editors, CRYPTO 2020, Part II. LNCS, vol. 12171 (Springer, Heidelberg, 2020), pp. 186–212.https://doi.org/10.1007/978-3-030-56880-1_7
L. Bi, X. Lu, J. Luo, K. Wang, Hybrid dual and meet-LWE attack, in Information Security and Privacy: 27th Australasian Conference, ACISP 2022, Wollongong, NSW, Australia, November 28–30, 2022, Proceedings (Springer, 2022). pp. 168–188
A. Esser, A. May, F. Zweydinger, McEliece needs a break—solving McEliece-1284 and quasi-cyclic-2918 with modern ISD, in O. Dunkelman, S. Dziembowski, editors, EUROCRYPT 2022, Part III. LNCS, vol. 13277 (Springer, Heidelberg, 2022), pp. 433–457.https://doi.org/10.1007/978-3-031-07082-2_16
T. Güneysu, V. Lyubashevsky, T. Pöppelmann, Practical lattice-based cryptography: a signature scheme for embedded systems, in E. Prouff, P. Schaumont, editors, CHES 2012. LNCS, vol. 7428 (Springer, Heidelberg, 2012), pp. 530–547. https://doi.org/10.1007/978-3-642-33027-8_31
C. Peikert, Public-key cryptosystems from the worst-case shortest vector problem: extended abstract, in M. Mitzenmacher, editor, 41st ACM STOC (ACM Press, 2009). pp. 333–342.https://doi.org/10.1145/1536414.1536461
M. Hhan, J. Kim, C. Lee, Y. Son, How to meet ternary LWE keys on Babai’s nearest plane. Cryptology ePrint Archive (2022)
X. Bonnetain, R. Bricout, A. Schrottenloher, Y. Shen, Improved classical and quantum algorithms for subset-sum, in S. Moriai, H. Wang, editors, ASIACRYPT 2020, Part II. LNCS, vol. 12492 (Springer, Heidelberg, 2020), pp. 633–666.https://doi.org/10.1007/978-3-030-64834-3_22
A. Hülsing, J. Rijneveld, J.M. Schanck, P. Schwabe, High-speed key encapsulation from NTRU, in W. Fischer, N. Homma, editors, CHES 2017. LNCS, vol. 10529 (Springer, Heidelberg, 2017), pp. 232–252.https://doi.org/10.1007/978-3-319-66787-4_12
A. Esser, A. May, Low weight discrete logarithm and subset sum in 20.65n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{0.65n}$$\end{document} with polynomial memory, in A. Canteaut, Y. Ishai, editors, EUROCRYPT 2020, Part III. LNCS, vol. 12107 (Springer, Heidelberg, 2020), pp. 94–122.https://doi.org/10.1007/978-3-030-45727-3_4
I. Dinur, O. Dunkelman, N. Keller, A. Shamir, Memory-efficient algorithms for finding needles in haystacks, in M. Robshaw, J. Katz, editors, CRYPTO 2016, Part II. LNCS, vol. 9815 (Springer, Heidelberg, 2016), pp. 185–206.https://doi.org/10.1007/978-3-662-53008-5_7
J.W. Bos, M.E. Kaihara, T. Kleinjung, A.K. Lenstra, P.L. Montgomery, Solving a 112-bit prime elliptic curve discrete logarithm problem on game consoles using sloppy reduction. Int. J. Appl. Cryptogr.2(3), 212–228 (2012)
R. Bricout, A. Chailloux, T. Debris-Alazard, M. Lequesne, Ternary syndrome decoding with large weight, in K.G. Paterson, D. Stebila, editors, SAC 2019. LNCS, vol. 11959 (Springer, Heidelberg, 2019), pp. 437–466.https://doi.org/10.1007/978-3-030-38471-5_18
A. Esser, F. Zweydinger, New time-memory trade-offs for subset sum—improving ISD in theory and practice, in C. Hazay, M. Stam, editors, Advances in Cryptology—EUROCRYPT 2023—42nd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Lyon, France, April 23–27, 2023, Proceedings, Part V. Lecture Notes in Computer Science, vol. 14008 (Springer, 2023), pp. 360–390.https://doi.org/10.1007/978-3-031-30589-4_13
D. Stehlé, R. Steinfeld, K. Tanaka, K. Xagawa, Efficient public key encryption based on ideal lattices, in M. Matsui, editor, ASIACRYPT 2009. LNCS, vol. 5912 (Springer, Heidelberg, 2009), pp. 617–635. https://doi.org/10.1007/978-3-642-10366-7_36
J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J.M. Schanck, P. Schwabe, G. Seiler, D. Stehlé, Crystals-kyber: a CCA-secure module-lattice-based KEM, in 2018 IEEE European Symposium on Security and Privacy (EuroS &P) (IEEE, 2018), pp. 353–367
D.J. Bernstein, C. Chuengsatiansup, T. Lange, C. van Vredendaal, NTRU prime: reducing attack surface at low cost, in C. Adams, J. Camenisch, editors, SAC 2017. LNCS, vol. 10719 (Springer, Heidelberg, 2017), pp. 235–260.https://doi.org/10.1007/978-3-319-72565-9_12
C. Delaplace, A. Esser, A. May, Improved low-memory subset sum and LPN algorithms via multiple collisions, in M. Albrecht, editor, 17th IMA International Conference on Cryptography and Coding. LNCS, vol. 11929 (Springer, Heidelberg, 2019), pp. 178–199.https://doi.org/10.1007/978-3-030-35199-1_9
I. Dinur, O. Dunkelman, N. Keller, A. Shamir, Efficient dissection of composite problems, with applications to cryptanalysis, knapsacks, and combinatorial search problems, in R. Safavi-Naini, R. Canetti, editors. CRYPTO 2012. LNCS, vol. 7417 (Springer, Heidelberg, 2012), pp. 719–740.https://doi.org/10.1007/978-3-642-32009-5_42
K. Carrier, V. Hatey, J. Tillich, Projective space stern decoding and application to SDitH. IACR Cryptol. ePrint Arch (2023), p. 1865. https://eprint.iacr.org/2023/1865
L. Ducas, M. Stevens, W.P.J. van Woerden, Advanced lattice sieving on GPUs, with tensor cores, in A. Canteaut, F.X. Standaert, editors, EUROCRYPT 2021, Part II. LNCS, vol. 12697 (Springer, Heidelberg, 2021), pp. 249–279.https://doi.org/10.1007/978-3-030-77886-6_9
N. Gama, P.Q. Nguyen, O. Regev, Lattice enumeration using extreme pruning, in H. Gilbert, editor, EUROCRYPT 2010. LNCS, vol. 6110 (Springer, Heidelberg, 2010), pp. 257–278.https://doi.org/10.1007/978-3-642-13190-5_13
A. Esser, R. Girme, A. Mukherjee, S. Sarkar, Memory-efficient attacks on small LWE keys, in J. Guo, R. Steinfeld, editors, Advances in Cryptology—ASIACRYPT 2023—29th International Conference on the Theory and Application of Cryptology and Information Security, Guangzhou, China, December 4–8, 2023, Proceedings, Part IV. Lecture Notes in Computer Science, vol. 14441 (Springer, 2023), pp. 72–105.https://doi.org/10.1007/978-981-99-8730-6_3.
D.H. Nguyen, T.T. Nguyen, T.N. Duong, P.H. Pham, Cryptanalysis of md5 on GPU cluster, in Proceedings of International Conference on Information Security and Artificial Intelligence, vol. 2 (2010), pp. 910–914
E. Prange, The use of information sets in decoding cyclic codes. IRE Trans. Inf. Theory8(5), 5–9 (1962)
C. Gentry, Fully homomorphic encryption using ideal lattices, in M. Mitzenmacher, editor, 41st ACM STOC (ACM Press, 2009). pp. 169–178.https://doi.org/10.1145/1536414.1536440
O. Regev, On lattices, learning with errors, random linear codes, and cryptography, in H.N. Gabow, R. Fagin, editors, 37th ACM STOC (ACM Press, 2005). pp. 84–93. https://doi.org/10.1145/1060590.1060603
E. Bellini, J. Chavez-Saab, J.J. Chi-Domínguez, A. Esser, S. Ionica, L. Rivera-Zamarripa, F. Rodríguez-Henríquez, M. Trimoska, F. Zweydinger, Parallel isogeny path finding with limited memory, in Progress in Cryptology–INDOCRYPT 2022: 23rd International Conference on Cryptology in India, Kolkata, India, December 11–14, 2022, Proceedings (Springer, 2023), pp. 294–316
J. Hoffstein, J. Pipher, J.H. Silverman, NTRU: a ring-based public key cryptosystem, in Third Algorithmic Number Theory Symposium (ANTS). LNCS, vol. 1423 (Springer, Heidelberg, 1998), pp. 267–288
V. Lyubashevsky, C. Peikert, O. Regev, On ideal lattices and learning with errors over rings, in H. Gilbert, editor, EUROCRYPT 2010. LNCS, vol. 6110 (Springer, Heidelberg, 2010), pp. 1–23.https://doi.org/10.1007/978-3-642-13190-5_1
V. Lyubashevsky, Lattice signatures without trapdoors, in D. Pointcheval, T. Johansson, editors, EUROCRYPT 2012. LNCS, vol. 7237 (Springer, Heidelberg, 2012), pp. 738–755.https://doi.org/10.1007/978-3-642-29011-4_43
L. Ducas, A. Durmus, T. Lepoint, V. Lyubashevsky, Lattice signatures and bimodal Gaussians, in R. Canetti, J.A. Garay, editors, CRYPTO 2013, Part I. LNCS, vol. 8042 (Springer, Heidelberg, 2013), pp. 40–56.https://doi.org/10.1007/978-3-642-40041-4_3
A. Esser, P. Santini, Not just regular decoding: asymptotics and improvements of regular syndrome decoding attacks. IACR Cryptol. ePrint Arch (2023), p. 1568. https://eprint.iacr.org/2023/1568
T. Glaser, A. May, How to enumerate LWE keys as narrow as in Kyber/Dilithium, in International Conference on Cryptology and Network Security (Springer, 2023), pp. 75–100
A. May, A. Meurer, E. Thomae, Decoding random linear codes in O~(20.054n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{\cal O\it }(2^{0.054n})$$\end{document}, in D.H. Lee, X. Wang, editors, ASIACRYPT 2011. LNCS, vol. 7073 (Springer, Heidelberg, 2011), pp. 107–124.https://doi.org/10.1007/978-3-642-25385-0_6
P.C. van Oorschot, M.J. Wi
9516_CR21
9516_CR43
9516_CR22
9516_CR44
9516_CR23
9516_CR45
9516_CR24
9516_CR40
9516_CR41
9516_CR20
9516_CR42
9516_CR29
9516_CR25
9516_CR26
9516_CR27
9516_CR28
9516_CR10
9516_CR32
9516_CR11
9516_CR33
9516_CR12
9516_CR34
9516_CR9
9516_CR13
9516_CR35
9516_CR8
9516_CR7
9516_CR6
9516_CR30
9516_CR5
9516_CR31
9516_CR4
9516_CR3
9516_CR2
9516_CR1
9516_CR18
9516_CR19
9516_CR14
9516_CR36
9516_CR15
9516_CR37
9516_CR16
9516_CR38
9516_CR17
9516_CR39
References_xml – reference: A. Esser, A. May, F. Zweydinger, McEliece needs a break—solving McEliece-1284 and quasi-cyclic-2918 with modern ISD, in O. Dunkelman, S. Dziembowski, editors, EUROCRYPT 2022, Part III. LNCS, vol. 13277 (Springer, Heidelberg, 2022), pp. 433–457.https://doi.org/10.1007/978-3-031-07082-2_16
– reference: A. Becker, J.S. Coron, A. Joux, Improved generic algorithms for hard knapsacks, in K.G. Paterson, editor, EUROCRYPT 2011. LNCS, vol. 6632 (Springer, Heidelberg, 2011), pp. 364–385.https://doi.org/10.1007/978-3-642-20465-4_21
– reference: A. Esser, A. May, Low weight discrete logarithm and subset sum in 20.65n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{0.65n}$$\end{document} with polynomial memory, in A. Canteaut, Y. Ishai, editors, EUROCRYPT 2020, Part III. LNCS, vol. 12107 (Springer, Heidelberg, 2020), pp. 94–122.https://doi.org/10.1007/978-3-030-45727-3_4
– reference: I. Dinur, O. Dunkelman, N. Keller, A. Shamir, Memory-efficient algorithms for finding needles in haystacks, in M. Robshaw, J. Katz, editors, CRYPTO 2016, Part II. LNCS, vol. 9815 (Springer, Heidelberg, 2016), pp. 185–206.https://doi.org/10.1007/978-3-662-53008-5_7
– reference: T. Glaser, A. May, How to enumerate LWE keys as narrow as in Kyber/Dilithium, in International Conference on Cryptology and Network Security (Springer, 2023), pp. 75–100
– reference: G. Adj, D. Cervantes-Vázquez, J.J. Chi-Domínguez, A. Menezes, F. Rodríguez-Henríquez, On the cost of computing isogenies between supersingular elliptic curves, in C. Cid, M.J. Jacobson Jr, editors, SAC 2018. LNCS, vol. 11349 (Springer, Heidelberg, 2019), pp. 322–343. https://doi.org/10.1007/978-3-030-10970-7_15
– reference: D. Stehlé, R. Steinfeld, K. Tanaka, K. Xagawa, Efficient public key encryption based on ideal lattices, in M. Matsui, editor, ASIACRYPT 2009. LNCS, vol. 5912 (Springer, Heidelberg, 2009), pp. 617–635. https://doi.org/10.1007/978-3-642-10366-7_36
– reference: N. Gama, P.Q. Nguyen, O. Regev, Lattice enumeration using extreme pruning, in H. Gilbert, editor, EUROCRYPT 2010. LNCS, vol. 6110 (Springer, Heidelberg, 2010), pp. 257–278.https://doi.org/10.1007/978-3-642-13190-5_13
– reference: K. Carrier, V. Hatey, J. Tillich, Projective space stern decoding and application to SDitH. IACR Cryptol. ePrint Arch (2023), p. 1865. https://eprint.iacr.org/2023/1865
– reference: N. Howgrave-Graham, A. Joux, New generic algorithms for hard knapsacks, in H. Gilbert, editor, EUROCRYPT 2010. LNCS, vol. 6110 (Springer, Heidelberg, 2010), pp. 235–256.https://doi.org/10.1007/978-3-642-13190-5_12
– reference: A. Hülsing, J. Rijneveld, J.M. Schanck, P. Schwabe, High-speed key encapsulation from NTRU, in W. Fischer, N. Homma, editors, CHES 2017. LNCS, vol. 10529 (Springer, Heidelberg, 2017), pp. 232–252.https://doi.org/10.1007/978-3-319-66787-4_12
– reference: E. Bellini, J. Chavez-Saab, J.J. Chi-Domínguez, A. Esser, S. Ionica, L. Rivera-Zamarripa, F. Rodríguez-Henríquez, M. Trimoska, F. Zweydinger, Parallel isogeny path finding with limited memory, in Progress in Cryptology–INDOCRYPT 2022: 23rd International Conference on Cryptology in India, Kolkata, India, December 11–14, 2022, Proceedings (Springer, 2023), pp. 294–316
– reference: V. Lyubashevsky, C. Peikert, O. Regev, On ideal lattices and learning with errors over rings, in H. Gilbert, editor, EUROCRYPT 2010. LNCS, vol. 6110 (Springer, Heidelberg, 2010), pp. 1–23.https://doi.org/10.1007/978-3-642-13190-5_1
– reference: J.W. Bos, M.E. Kaihara, T. Kleinjung, A.K. Lenstra, P.L. Montgomery, Solving a 112-bit prime elliptic curve discrete logarithm problem on game consoles using sloppy reduction. Int. J. Appl. Cryptogr.2(3), 212–228 (2012)
– reference: A. Esser, F. Zweydinger, New time-memory trade-offs for subset sum—improving ISD in theory and practice, in C. Hazay, M. Stam, editors, Advances in Cryptology—EUROCRYPT 2023—42nd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Lyon, France, April 23–27, 2023, Proceedings, Part V. Lecture Notes in Computer Science, vol. 14008 (Springer, 2023), pp. 360–390.https://doi.org/10.1007/978-3-031-30589-4_13
– reference: M. Hhan, J. Kim, C. Lee, Y. Son, How to meet ternary LWE keys on Babai’s nearest plane. Cryptology ePrint Archive (2022)
– reference: J. Hoffstein, J. Pipher, J.H. Silverman, NTRU: a ring-based public key cryptosystem, in Third Algorithmic Number Theory Symposium (ANTS). LNCS, vol. 1423 (Springer, Heidelberg, 1998), pp. 267–288
– reference: A. May, How to meet ternary LWE keys, in T. Malkin, C. Peikert, editors, CRYPTO 2021, Part II. LNCS, vol. 12826 (Springer, Heidelberg, Virtual Event, 2021), pp. 701–731.https://doi.org/10.1007/978-3-030-84245-1_24
– reference: X. Bonnetain, R. Bricout, A. Schrottenloher, Y. Shen, Improved classical and quantum algorithms for subset-sum, in S. Moriai, H. Wang, editors, ASIACRYPT 2020, Part II. LNCS, vol. 12492 (Springer, Heidelberg, 2020), pp. 633–666.https://doi.org/10.1007/978-3-030-64834-3_22
– reference: A. Esser, R. Girme, A. Mukherjee, S. Sarkar, Memory-efficient attacks on small LWE keys, in J. Guo, R. Steinfeld, editors, Advances in Cryptology—ASIACRYPT 2023—29th International Conference on the Theory and Application of Cryptology and Information Security, Guangzhou, China, December 4–8, 2023, Proceedings, Part IV. Lecture Notes in Computer Science, vol. 14441 (Springer, 2023), pp. 72–105.https://doi.org/10.1007/978-981-99-8730-6_3.
– reference: D.J. Bernstein, C. Chuengsatiansup, T. Lange, C. van Vredendaal, NTRU prime: reducing attack surface at low cost, in C. Adams, J. Camenisch, editors, SAC 2017. LNCS, vol. 10719 (Springer, Heidelberg, 2017), pp. 235–260.https://doi.org/10.1007/978-3-319-72565-9_12
– reference: T. Güneysu, V. Lyubashevsky, T. Pöppelmann, Practical lattice-based cryptography: a signature scheme for embedded systems, in E. Prouff, P. Schaumont, editors, CHES 2012. LNCS, vol. 7428 (Springer, Heidelberg, 2012), pp. 530–547. https://doi.org/10.1007/978-3-642-33027-8_31
– reference: V. Lyubashevsky, Lattice signatures without trapdoors, in D. Pointcheval, T. Johansson, editors, EUROCRYPT 2012. LNCS, vol. 7237 (Springer, Heidelberg, 2012), pp. 738–755.https://doi.org/10.1007/978-3-642-29011-4_43
– reference: R. Bricout, A. Chailloux, T. Debris-Alazard, M. Lequesne, Ternary syndrome decoding with large weight, in K.G. Paterson, D. Stebila, editors, SAC 2019. LNCS, vol. 11959 (Springer, Heidelberg, 2019), pp. 437–466.https://doi.org/10.1007/978-3-030-38471-5_18
– reference: M.R. Albrecht, S. Bai, L. Ducas, A subfield lattice attack on overstretched NTRU assumptions—cryptanalysis of some FHE and graded encoding schemes, in M. Robshaw, J. Katz, editors, CRYPTO 2016, Part I. LNCS, vol. 9814 (Springer, Heidelberg, 2016), pp. 153–178.https://doi.org/10.1007/978-3-662-53018-4_6
– reference: C. van Vredendaal, Reduced memory meet-in-the-middle attack against the NTRU private key. LMS J. Comput. Math.19(1), 43–57 (2016). https://doi.org/10.1112/S1461157016000206
– reference: C. Delaplace, A. Esser, A. May, Improved low-memory subset sum and LPN algorithms via multiple collisions, in M. Albrecht, editor, 17th IMA International Conference on Cryptography and Coding. LNCS, vol. 11929 (Springer, Heidelberg, 2019), pp. 178–199.https://doi.org/10.1007/978-3-030-35199-1_9
– reference: L. Ducas, M. Stevens, W.P.J. van Woerden, Advanced lattice sieving on GPUs, with tensor cores, in A. Canteaut, F.X. Standaert, editors, EUROCRYPT 2021, Part II. LNCS, vol. 12697 (Springer, Heidelberg, 2021), pp. 249–279.https://doi.org/10.1007/978-3-030-77886-6_9
– reference: C. Gentry, Fully homomorphic encryption using ideal lattices, in M. Mitzenmacher, editor, 41st ACM STOC (ACM Press, 2009). pp. 169–178.https://doi.org/10.1145/1536414.1536440
– reference: P.C. van Oorschot, M.J. Wiener, Parallel collision search with cryptanalytic applications. J. Cryptol.12(1), 1–28 (1999). https://doi.org/10.1007/PL00003816
– reference: A. May, A. Meurer, E. Thomae, Decoding random linear codes in O~(20.054n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{\cal O\it }(2^{0.054n})$$\end{document}, in D.H. Lee, X. Wang, editors, ASIACRYPT 2011. LNCS, vol. 7073 (Springer, Heidelberg, 2011), pp. 107–124.https://doi.org/10.1007/978-3-642-25385-0_6
– reference: M.R. Albrecht, S. Bai, P.A. Fouque, P. Kirchner, D. Stehlé, W. Wen, Faster enumeration-based lattice reduction: root Hermite factor k1/(2k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{1/(2k)}$$\end{document} time kk/8+o(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{k/8+o(k)}$$\end{document}, in D. Micciancio, T. Ristenpart, editors, CRYPTO 2020, Part II. LNCS, vol. 12171 (Springer, Heidelberg, 2020), pp. 186–212.https://doi.org/10.1007/978-3-030-56880-1_7
– reference: O. Regev, On lattices, learning with errors, random linear codes, and cryptography, in H.N. Gabow, R. Fagin, editors, 37th ACM STOC (ACM Press, 2005). pp. 84–93. https://doi.org/10.1145/1060590.1060603
– reference: L. Ducas, A. Durmus, T. Lepoint, V. Lyubashevsky, Lattice signatures and bimodal Gaussians, in R. Canetti, J.A. Garay, editors, CRYPTO 2013, Part I. LNCS, vol. 8042 (Springer, Heidelberg, 2013), pp. 40–56.https://doi.org/10.1007/978-3-642-40041-4_3
– reference: D.H. Nguyen, T.T. Nguyen, T.N. Duong, P.H. Pham, Cryptanalysis of md5 on GPU cluster, in Proceedings of International Conference on Information Security and Artificial Intelligence, vol. 2 (2010), pp. 910–914
– reference: A. Esser, P. Santini, Not just regular decoding: asymptotics and improvements of regular syndrome decoding attacks. IACR Cryptol. ePrint Arch (2023), p. 1568. https://eprint.iacr.org/2023/1568
– reference: H. Zhu, S. Kamada, M. Kudo, T. Takagi, Improved hybrid attack via error-splitting method for finding quinary short lattice vectors, in J. Shikata, H. Kuzuno, editors, Advances in Information and Computer Security—18th International Workshop on Security, IWSEC 2023, Yokohama, Japan, August 29–31, 2023, Proceedings. Lecture Notes in Computer Science, vol. 14128 (Springer, 2023), pp. 117–136. https://doi.org/10.1007/978-3-031-41326-1_7.
– reference: J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J.M. Schanck, P. Schwabe, G. Seiler, D. Stehlé, Crystals-kyber: a CCA-secure module-lattice-based KEM, in 2018 IEEE European Symposium on Security and Privacy (EuroS &P) (IEEE, 2018), pp. 353–367
– reference: R. Niederhagen, K.C. Ning, B.Y. Yang, Implementing Joux-Vitse’s crossbred algorithm for solving MQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal{M}\cal{Q}}$$\end{document} systems over F2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}} _2$$\end{document} on GPUs, in T. Lange, R. Steinwandt, editors, Post-Quantum Cryptography—9th International Conference, PQCrypto 2018 (Springer, Heidelberg, 2018). pp. 121–141.https://doi.org/10.1007/978-3-319-79063-3_6
– reference: C. Peikert, Public-key cryptosystems from the worst-case shortest vector problem: extended abstract, in M. Mitzenmacher, editor, 41st ACM STOC (ACM Press, 2009). pp. 333–342.https://doi.org/10.1145/1536414.1536461
– reference: A. Becker, A. Joux, A. May, A. Meurer, Decoding random binary linear codes in 2n/20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{n/20}$$\end{document}: how 1 + 1 = 0 improves information set decoding, in D. Pointcheval, T. Johansson, editors, EUROCRYPT 2012. LNCS, vol. 7237 (Springer, Heidelberg, 2012), pp. 520–536.https://doi.org/10.1007/978-3-642-29011-4_31
– reference: L. Bi, X. Lu, J. Luo, K. Wang, Hybrid dual and meet-LWE attack, in Information Security and Privacy: 27th Australasian Conference, ACISP 2022, Wollongong, NSW, Australia, November 28–30, 2022, Proceedings (Springer, 2022). pp. 168–188
– reference: N. Howgrave-Graham, A hybrid lattice-reduction and meet-in-the-middle attack against NTRU, in A. Menezes, editor, CRYPTO 2007. LNCS, vol. 4622 (Springer, Heidelberg, 2007), pp. 150–169.https://doi.org/10.1007/978-3-540-74143-5_9
– reference: E. Prange, The use of information sets in decoding cyclic codes. IRE Trans. Inf. Theory8(5), 5–9 (1962)
– reference: I. Dinur, O. Dunkelman, N. Keller, A. Shamir, Efficient dissection of composite problems, with applications to cryptanalysis, knapsacks, and combinatorial search problems, in R. Safavi-Naini, R. Canetti, editors. CRYPTO 2012. LNCS, vol. 7417 (Springer, Heidelberg, 2012), pp. 719–740.https://doi.org/10.1007/978-3-642-32009-5_42
– ident: 9516_CR19
  doi: 10.1007/978-981-99-8730-6_3
– ident: 9516_CR43
  doi: 10.1007/PL00003816
– ident: 9516_CR8
  doi: 10.1007/978-3-031-22301-3_9
– ident: 9516_CR41
  doi: 10.1145/1060590.1060603
– ident: 9516_CR38
  doi: 10.1007/978-3-319-79063-3_6
– ident: 9516_CR1
  doi: 10.1007/978-3-030-10970-7_15
– ident: 9516_CR44
  doi: 10.1112/S1461157016000206
– ident: 9516_CR12
  doi: 10.1007/978-3-030-38471-5_18
– ident: 9516_CR25
  doi: 10.1145/1536414.1536440
– ident: 9516_CR4
  doi: 10.1007/978-3-642-20465-4_21
– ident: 9516_CR26
  doi: 10.1007/978-981-99-7563-1_4
– ident: 9516_CR9
  doi: 10.1007/978-3-030-64834-3_22
– ident: 9516_CR15
  doi: 10.1007/978-3-642-32009-5_42
– ident: 9516_CR31
  doi: 10.1007/978-3-642-13190-5_12
– ident: 9516_CR37
– ident: 9516_CR3
  doi: 10.1007/978-3-030-56880-1_7
– ident: 9516_CR10
  doi: 10.1109/EuroSP.2018.00032
– ident: 9516_CR20
  doi: 10.1007/978-3-030-45727-3_4
– ident: 9516_CR2
  doi: 10.1007/978-3-662-53018-4_6
– ident: 9516_CR16
  doi: 10.1007/978-3-662-53008-5_7
– ident: 9516_CR34
  doi: 10.1007/978-3-642-13190-5_1
– ident: 9516_CR11
  doi: 10.1504/IJACT.2012.045590
– ident: 9516_CR23
  doi: 10.1007/978-3-031-30589-4_13
– ident: 9516_CR28
– ident: 9516_CR36
  doi: 10.1007/978-3-642-25385-0_6
– ident: 9516_CR29
  doi: 10.1007/BFb0054868
– ident: 9516_CR30
  doi: 10.1007/978-3-540-74143-5_9
– ident: 9516_CR45
  doi: 10.1007/978-3-031-41326-1_7
– ident: 9516_CR17
  doi: 10.1007/978-3-642-40041-4_3
– ident: 9516_CR18
  doi: 10.1007/978-3-030-77886-6_9
– ident: 9516_CR22
– ident: 9516_CR32
  doi: 10.1007/978-3-319-66787-4_12
– ident: 9516_CR6
  doi: 10.1007/978-3-031-22912-1_13
– ident: 9516_CR21
  doi: 10.1007/978-3-031-07082-2_16
– ident: 9516_CR14
  doi: 10.1007/978-3-030-35199-1_9
– ident: 9516_CR13
– ident: 9516_CR35
  doi: 10.1007/978-3-030-84245-1_24
– ident: 9516_CR5
  doi: 10.1007/978-3-642-29011-4_31
– ident: 9516_CR27
  doi: 10.1007/978-3-642-33027-8_31
– ident: 9516_CR40
  doi: 10.1109/TIT.1962.1057777
– ident: 9516_CR7
  doi: 10.1007/978-3-319-72565-9_12
– ident: 9516_CR33
  doi: 10.1007/978-3-642-29011-4_43
– ident: 9516_CR39
  doi: 10.1145/1536414.1536461
– ident: 9516_CR42
  doi: 10.1007/978-3-642-10366-7_36
– ident: 9516_CR24
  doi: 10.1007/978-3-642-13190-5_13
SSID ssj0017573
Score 2.3883762
Snippet Combinatorial attacks on small max norm LWE keys suffer enormous memory requirements, which render them inefficient in realistic attack scenarios. Therefore,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 36
SubjectTerms Algorithms
Binomial distribution
Coding and Information Theory
Combinatorial analysis
Combinatorics
Communications Engineering
Computational Mathematics and Numerical Analysis
Computer Science
Networks
Polynomials
Probability Theory and Stochastic Processes
Research Article
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7aevDiW6xW2YMnNZhstpvmJFVaBLUUH9jbkuYBQt3WdhX8907SbIuCXjwHQvgymfkm80LoOFGSMKnBUwVyjxNJCJasSTDXDSMYVXIgtR82wbvdZr8veuHDbRrSKkud6BW1Hin3R37OXC8t7prFXIzfsJsa5aKrYYTGMqq6TmUg59XLdrd3P48j8MYsxizcxDIuSCib8cVzzjtw1ckJdjQjxey7aVrwzR8hUm95Ouv_PfMGWgucM2rNhGQTLZl8y41rDqkd2-jkzuXbfuK27ycBZihqFYUrvo9GefTwKofD6Pa5Hd3Are-gp0778eoahyEKWMWcFFimLE0Vo0bphA7iWIMBN4pQm1phbSKoTWJYI1IyDnrbKsOZsByIiQU2CMZ8F1XyUW72UMQEvH8qNLXgRFmjmpobYGwKSKa1dGBr6LTELxvPemVk867IHu0M0M482hmroXoJWhbezTRbIFZDZyXsi-Xfd9v_e7cDtBq7m_ZZeHVUKSbv5hCtqI_iZTo5ClLzBf9ixcM
  priority: 102
  providerName: ProQuest
Title Memory-Efficient Attacks on Small LWE Keys
URI https://link.springer.com/article/10.1007/s00145-024-09516-3
https://www.proquest.com/docview/3254471165
Volume 37
WOSCitedRecordID wos001295054100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1432-1378
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0017573
  issn: 0933-2790
  databaseCode: K7-
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1432-1378
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0017573
  issn: 0933-2790
  databaseCode: M7S
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1432-1378
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0017573
  issn: 0933-2790
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-1378
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017573
  issn: 0933-2790
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH64zYMXp1NxOksOntRA03TNcpzSIUzHcP7YrWRpAsLsZKuC_71J1m4oetBzSihf8vK-x3vvewCnoRQ-FamJVA25x6HwfSxox8csbStOiRQTkbphE2ww6IzHfFg0hS3KavcyJele6lWzm2Xztps4xJYWRJhWoNa2ajM2Rh89rnIHrL3MK3M7pYxxv2iV-XmPr-5ozTG_pUWdt-nV__efO7BdsEvUXV6HXdhQWQPq5eQGVBhyw85qLuo69uDs1hbbfuDYiUkYH4S6eW4779EsQ6MXMZ2im6cY9c2R78NDL76_usbFBAUsA-bnWEQ0iiQlSqYhmQRBary3kj7RkeZah5zoMDBrvhCUmUdbS8Uo18ywEm2ooPHkB1DNZpk6BES5MX7CU6JNBKWV7KRMGbomDcPUmkx0E85LIJPXpVBGspJEdpAkBpLEQZLQJrRKrJPCaBYJtXJpzOoBNeGixHa9_PtuR3_7_Bi2Ans8riSvBdV8_qZOYFO-58-LuQe1y3gwvPOg0mfYs7WgI89dsE8D78Qf
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB5KK-jFt1itmoNe1MUkm2a7B5GqLUofFK3oLW43uyDUtrZR6Z_yNzqbJi0KevPgeWEJ-SYz32QeH8C-J4VNRYiZKpJ74gnbJoKWbMLCouLUkaIjwlhsgjWbpYcH3srARzoLY9oqU58YO-qwL80_8hNqdmkxsyzmbPBCjGqUqa6mEhoTs6ip8TumbKPT60vE98B1q5X2xRVJVAWIdJkdEeFT35fUUTL0nI7rhhjRlLQd7Wuutccd7bl4ZgtBGToyLRWjXDOM1BrpUcmoRKDLz3nU84tZyJ1Xmq2bad2CFSc1bW4U0hi3kzGdeFjPZCNmGtojhtb4hH4NhTN--60kG0e66tJ_e0fLsJhwaqs8-QhWIKN6q0aOOmldWYPDhuknHpNKvC8Dw6xVjiKzXMDq96zbZ9HtWvX7ioUPPVqHuz951A3I9vo9tQkW5ejfHB46GpNErWQpZAoZqUQSrbXT0Xk4SvEKBpNdIMF063OMboDoBjG6Ac1DIQUpSPzCKJghlIfjFObZ8c-3bf1-2x7MX7Ub9aB-3axtw4JrrCzuOCxANhq-qh2Yk2_R02i4m1isBY9_bQCfuv4jhQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT8IwEL4oGuOLKGpEUfvgk9rYrWOlj0QhGpAQ8QdvS-naxAQHgWnif29bNlCjD8bnLt3y7dr7Lnf3HcBJIAWhIjaRqiH3OBCEYEFrBLO4qjj1pBiI2A2bYJ1Ord_n3U9d_K7aPU9JznoarEpTkl6MY30xb3yzzN52FgfYUoQQ02VYCUwkY4u67nqP8zwCq85yzNxOLGOcZG0zP-_x1TUt-Oa3FKnzPM3i_795EzYy1onqMzPZgiWVlKCYT3RA2QEv2RnOWb3HNpze2iLcd9xwIhPmPaieprYjH40S1HsRwyFqPzVQy5jCDjw0G_eX1zibrIClz0iKRUjDUFJPyTjwBr4fG6-uJPF0qLnWAfd04Js1IgRl5jLXUjHKNTNsRRuKaDz8LhSSUaL2AFFuLgWPx542kZVWshYzZWicNMxTa2-gy3CWgxqNZwIa0Vwq2UESGUgiB0lEy1DJcY-ywzSNqJVRY1YnqAznOc6L5d932__b48ew1r1qRu2bTusA1n37p1zVXgUK6eRVHcKqfEufp5MjZ2MfnjvMhQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Memory-Efficient+Attacks+on+Small+LWE+Keys&rft.jtitle=Journal+of+cryptology&rft.au=Esser%2C+Andre&rft.au=Mukherjee%2C+Arindam&rft.au=Sarkar%2C+Santanu&rft.date=2024-10-01&rft.issn=0933-2790&rft.eissn=1432-1378&rft.volume=37&rft.issue=4&rft_id=info:doi/10.1007%2Fs00145-024-09516-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00145_024_09516_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0933-2790&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0933-2790&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0933-2790&client=summon